
A System to Detect Timing Problems in Digital
Circuits

Esteban Pelaez, Mario Berón, Carlos Salgado, Mario Peralta, Lorena Baigorria,
Ana Garis, Germán Montejano, Daniel Riesco, and Pedro Henriques

Universidad Nacional de San Luis, Informatic Department, Ejército de los Andes 950
San Luis, Argentina

{epelaez,mberon,csalgado,mperalta,flbaigor,agaris,gmonte,driesco}@unsl.

edu.ar

Universidade do Minho, Informatic Department,Campus de Gualtar 4710-057, Braga,
Portugal

pedrorangelhenriques@gmail.com

http://www.unsl.edu.ar

Abstract. Nowadays, the digital circuit production is carried out spec-
ifying the circuit functionality using a hardware description language.
Then, this specification is synthesized down to a structural netlist suit-
able for use by the target technologys place-and-route applications. Many
synthesis tools make this task introducing some unnecessary gates and
wires in the final circuit. As a consequence, it can appear a circuit con-
taining one or more paths that do not influence the circuit output. This
kind of non-relevant paths is known as False Path.

The problem with false paths is that if they are not considered, the circuit
delay may be overestimated during design analysis and optimization. For
this reason, the digital circuit industry is looking for effective methods
and tools to overcome the mentioned drawbacks.

This paper presents a system to detect False Paths based on the analysis
of the circuit intermediate specification. The tool analyzes the specifica-
tion using compilation techniques and then applies some special purpose
algorithms for detecting false paths. Furthermore, it shows the gates and
wires that are not necessary for the circuit final version.

Keywords: False Path, Syntactic Analysis, Semantic Analysis, Hard-
ware Description Languages, Intermediate Language

1 Introduction

Static time analysis establishes an industry standard in the design methodology
to calibrate the speed of high performance microprocessors [jLKWtC02]. Unfor-
tunately, not all paths identified by this type of analysis can be sensitive to them.
This leads to a pessimistic estimation of the processor speed, and the dedicated
engineering efforts to optimize such paths can not improve chip performance
[ZAB+01,KB99].

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 616

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/15776143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A false path is a path whose time delay can not affect a change in the output
signal [DYG89,CCW+07]. The false path information can be used to reduce the
time required for the tests generation and application, and the circuits area,
whereas also it reduces to the minimum on-test (Over-testing) [PCDM89]. This
information is valuable in the design and circuits testing.

From the design point of view, the constraints on the false paths can be
ignored, so designers can replace the gates in false paths by smaller gates with a
larger delay. In addition, the paths optimization (For those paths larger than the
critical path) can be skipped if paths are identified as paths that does not have to
meet design constraints [IOF]. Therefore, the circuit area and the time required
for logic sensitized can be decreased by using the false paths information.

A test pattern for delay failures over false path can not be generated, so the
early identification of such false path may reduce significantly the ATPG (Auto-
matic Test Pattern Generation) time. Moreover, the false path identification can
alleviate the fact that some delay failures over false path may become testable
due to the design testability application.

In a circuit with delay faults, however, the false path delay may interfere
with the test of other paths. Some paths contain false redundant logic. Since
the clock speed is often determined in the static time analysis, the presence
of false paths can take to a pessimistic operation (Slow). For these reasons,
the false paths removal in combinational logic is advantageous [NP02]. This
means that false paths detection and elimination in a circuit contributes to the
performance improvement and circuit size. This will result in a cost reduction for
the developer, since to detect these false paths in series avoid the construction
of thousands of faulty circuits.

In this sense this paper presents a tool that, starting from an HDL code
generates an intermediate code document on which is easier to detect and correct
the errors introduced by false paths. This will lead, during circuit fabrication,
to get more efficient and less expensive circuits.

The paper is organized as follow. Section 2 explains the false path problem.
Section 3 presents the system for detecting false path. Section 4 explains some
false path algorithms. Section 5 describes the partial results. Finally, Section 6
expounds the conclusion and future work.

2 The Problem

Nowadays, the industry produces digital circuit using hardware description lan-
guages. In this context, the circuits are specified and then this specification is
sensitized inside a FPGA. Generally, this task produces circuits with many false
paths.

A false path is a path that never be activated by any input vector. Observe
Figure 1 and suppose that the goal is to verify if the path < B, 1, 2, 3, 4, Y > is a
false path. In order to carry out this task, the signals C and A must be initialized
with 1 and 0 respectively. In this situation, the value of signal B is propagated to
the gate input 4. To propagate the value of signal X2 to the output Y, the signal

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 617

Fig. 1. A simple circuit with a false path

C must be initialized with 0. It is possible to observe that this configuration is
invalid because the signal C can not be initialized with both 1 and 0 at the same
time. For this reason, the path < B, 1, 2, 3, 4, Y > is a false path.

3 The Solution: A System for detecting False Path

The problem mentioned in section 2 can be solved building a system with the
characteristic described below.

The system is composed by:

– A syntactic/semantic analyzer [BDRG+74];
– Several auxiliary routines, for the internal data structures administration

and verification processes;
– A plug-in area, for inserting false path algorithms.

The input is a circuit specification generated by a synthesis tool. This spec-
ification is done using a standard intermediate language.

As output, the tool produces:

– True or False, when the goal is just to verify if some path is a false path,
– A set of false paths, when the goal is to identify all false paths.
– True if the internal circuit representation (Graph) is correct. False in other

case.

The system architecture is shown in Figure 2. Next items explain each system
component.

Syntactic and Semantic Analyzer: The syntactic/semantic analyzer was dif-
ficult to develop because the grammar of intermediate language (CDL. Circuit
Description Language) is not available (The synthesis tools are commercial
and they do not give access to the source code) [MHS05,DKV00]. In order to
overcome this problem, the synthesizer output was manually analyzed and
the following grammar was created.
1. Design ::= Subckts
2. Subckts ::= Subckt | Subckts Subckt

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 618

Fig. 2. System Architecture

3. Subckt ::= SUBCKT Idlist END Id
4. Subckt ::= SUBCKT Idlist InstanceList END Id
5. Subckt ::= SUBCKT Idlist Params END Id
6. Subckt ::= SUBCKT Idlist InstanceList Params END Id
7. InstanceList ::= Instance | InstanceList Instance
8. Instance ::= XId Idlist
9. Params ::= Param | Params Param

10. Param ::= EQUATION Id | EQUATION STRING | STRING
11. IdList ::= Id | IdList Id
The grammar defines a design as a sub-circuit set (See rules 1 and 2). Each
sub-circuit can be specified as follow:
– Describing its interface. In this case, the component is specified in other

file or it is a standard component (See rule 3).
– Specifying its interface and its instances. In this situation a new compo-

nent is created (See rule 4).
– Drawing its interface and equations. This equation indicates how the

gates are connected (See rule 5).
– Giving a complete specification. In this case, all the alternatives previ-

ously described are used (See rule 6).
The circuit instances (Rule 7) begin with a special symbol and after that an
identifier list is expected. The last identifier of each instance is a gate and
the others are signals. Figure 3 shows the specification of the circuit depicted
in Figure 1.

Taking the context free grammar (CFG) listed above, a translation grammar
(TG) was created adding attributes to the grammar symbols and semantic
actions to the productions. The TG is intended to extract information from
the source text in order to build the circuit internal representation that
will be used in the next phase by to the auxiliary routines. For example,
semantic actions detect: i) Gates; ii) Circuit Inputs; iii) Circuit outputs; iv)
Gate delay; v) Wire delay, etc.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 619

subckt Circuit A B C X1 Y

Xi1 B D NEG

Xi2 D C E AND2

Xi3 A E X2 OR2

Xi4 C X2 Y OR2

end Circuit

Fig. 3. Circuit Specification

Auxiliary Routines: The auxiliary routines have three main goals. The first
one is to build a circuit representation based in graph. The second one is
to implement several traversals on the graph. The thrid is to verify that
the graph representation is equivalent to the CDL specification received as
input.
Concerning the first goal, the circuits were modeled as a graph G=(P,E)
where P is a node set and E is an arc set (A binary relation on P). Each
element of P represents a circuit gate and each element of E represents the
wires that connect the gates. The elements of P have attributes useful to de-
tect the false path and other circuit properties. For example, each node has
associate a: i) Delay; ii) Number of input; and iii) Number of output. Fur-
thermore of the attributes previously described, each node has an identifier
to gather it quickly.
Like nodes, the arcs also have attributes. In this case, furthermore of the
arc identifier, a delay is associated with each arc. This attribute is used for
computing the path delay.
The traversals (Second goal) are used to do complex connection between
graph nodes (This kind of connections appear in the specification of big
designs), and to implement false path algorithms.
The verification process (Third goal) is carried out through the application
of several traversal on the graph for generating a CDL specification. After
that, this CDL specification is compared with the input CDL file. If both
files are equal then the verification process result is correct. In other case,
some errors in the graph representation have been found.

Plug-in Area: This area allows to add the false path algorithms used for verify-
ing designs. The algorithms work using: i) The circuit representation created
by the Analyzer and the Auxiliary Routines; ii) The node source; and iii)
The target node. One variant can be used when the goal is to detect all the
circuit false path. In this case, the algorithms only needs to use the graph
representation.
Currently, there are many algorithms for detecting false paths. However,
they have two main problems:
– Their complexity is exponential;
– They can not be directly applied because are based on data structures

not provided by the synthesis tools.
The first one is complex to solve because is not easy to reduce the algo-
rithms computational complexity. However, for tackling the problem many

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 620

heuristics1 useful for detecting false paths can be used. The second one is
successfully solved building a syntactic/semantic analyzer for creating the
data structures needed by the algorithms. The analysis is carried out on a
standard domain specific language as previously defined.

4 Algorithms to detect False Path

Before applying any false path checking algorithm, is necessary to discover and
save all existent paths between every input and output of the circuit being
scanned. After such analysis, a file containing a list of paths is created. Every
path is represented by a node sequence from the beginning (Input port) to the
end (Output port). This file and the graph representation are then utilized to
feed whichever of project. As explained before, there are many algorithms for
false path detection. Among different approaches, there is a particular one who
deals with dynamic false path (This algorithm takes into account gate delays
[DYG89]). Besides dynamic false path detection, there is a static false path
detection which is in fact our project target. Regarding Static Analysis, we must
say that a complete analysis can not be achieved applying only one algorithm.
In our research, at least three different procedures must be performed in order
to get a complete analysis. Those three actions are described below.

Backward Unequivocal Propagation (BUP): Given a known value V (0
or 1) on a signal S coming from a gate G (AND, OR, NAND or NOR). V is
an unequivocal value only if it is generated by a unique set of values at G
inputs (i.e. for a OR gate, the output equal to zero can only be obtained if all
gate inputs are also zero). Therefore, the algorithm works moving backwards
only on these cases. It looks for an inconsistency and if it finds one the path
is declared false. The problem with this approach is that it is not able to set
signals backwards when they are not unequivocal.

Forward Unequivocal Propagation (FUP): Given a control value V as in-
put of a gate G, this gate output can be determined unequivocally despite
other inputs. Once again, this approach move forward only for control values
and is unable to set signals forward when they are not unequivocal.

Backward SEG Propagation (BSEGP): This approach was proposed by us
with the intention of solving the previous issues. This algorithm performs
a more complex and deep analysis on signals that are not unequivocal but
ambiguous; trying with different values and including new types like strong
and weak values. Drawbacks found in this solution are: The computational
complexity increase hugely when the circuit under analysis has many gates.

5 Partial Results

The partial results are related with:
1 Our research group did define several heuristics and they were applied to various

designs. The heuristics have not been published.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 621

– The implementation of some flase path algorithms.
– Improvements done on the algorithms in order to reduce the computational

complexity and to increment the number of false path detected.
– Apply the false path algorithms to some test cases.

Next subsection describe each one of the items mentioned above.

5.1 False Path Algorithms

The false path algorithms implemented are described below.

False Path Checking Algorithms (FPCA) Backward unequivocal Propa-
gation (BUP in advance) and some of Backward SEG Propagation (BSEGP)
have been coded and implemented so far. Currently, BUP and BSEGP are car-
ried out together. It means that when a signal is being treated, the backward
propagation method applied depends on that signal value. So, if the program
finds a non- unequivocal value, then it performs a BSEGP. On the other hand,
if the program finds an unequivocal value it performs a BUP.

Deep Parameter It would enable user specify a parameter so that analysis
could stop after passing a number of gates in every branch. Such parameter is
not implemented.

5.2 Test Cases

In order to apply the system to real cases the process shown in Figure 4 must
be used. The CDL file is a input of two process. The first one builts a graph
representation and optionally verify the circuit false path. The second one gen-
erates a CDL specification from the graph. This specification is compared with
the CDL input file. The main goal of this task is to check that the graph exactly
represent the input CDL description.

Using the procedure mentioned above, many CDL files have been tested and
have succeeded finding false paths and finishing successfully. The results obtained
are shown in Table 1.

This table presents the time taken by the algorithm FPCA (See section 5).
The analysis was performed using several CDL examples.

Based on the information available it is possible to affirm that: there are no
direct relations between the time employed by the algorithm and the features
of the file in question. Although the bigger file size the longer time is taken
to finish the analysis, it does not necessarily happen for all files. The main
parameter that does affect the processing time is the graph connectivity degree.
The connectivity is directly related to the number of paths found for every pair
source-target (Input port output port).

The results show that some file took to much time (14 hours) to finish.
This happens due to the huge amount of paths found in these circuits. This
characteristic is important because the designs analyzed are small. Therefore for
complex designs the approaches used in the system must be improved.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 622

File Size I/O Ports Paths Found False Path Found FPCA Time

des90 11,7 kb 188 12965 1756 32 seg

des79 23,8 kb 639 2068 0 4 seg

des78 36 kb 557 4312 0 20 seg

des94 40 kb 799 10149 111 42 seg

des39 135,3 kb 1454 2886866 1027972 50400 seg

des38 192,6 kb 2908 61902 0 604 seg

des43 191,2 kb 2759 35590 2726 489 seg
Table 1. Results

Fig. 4. Task Flow for detecting false path

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 623

5.3 Improvements to Apply

In our analysis, we found that the algorithm implementation order is very im-
portant regarding computational time. BUP and FUP are predictable in terms
of time due to the unequivocal characteristic. When these algorithms can not
continue, they just stop. After being the circuit analyzed and the BUP and FUP
possibilities used up, the BSEGP should be applied. It minimizes the number of
no valued signals so that BSEGP can complete in less time.

Another issue to be considered is the number of paths involved in the analysis.
Finding all paths in a circuit takes much time in big circuits given that they are
proportional to input and output ports number. Due to the amount of paths, it
is necessary to save in hard disk and that implies the use of low speed resources.
Adding other parameters like test-longest-path and if false, test next longest,
indeed reduce time compared to analyzing every path in circuit.

A better and more accurate graph representation should be considered. A
stronger graph library may improve the computational time as well.

It is possible to achieve better computational time doing two independent
tasks at the same time. Starting with path discovering and simultaneously re-
building back the CDL file for comparison could shrink the whole program exe-
cution time.

6 Conclusion and Future Work

In this paper a system to detect false paths was presented. This system was built
with the goal of solving several problems found in the industrial circuit design.
The system has the following components:

1. The syntactic/semantic Analyzer;
2. The Auxiliary Routines;
3. A Plug-in area.

The first component was difficult to build because the analysis is carried out
using an intermediate language. The grammar for this language was not available
because the synthesis tools are commercial software. To solve this problem, the
grammar was derived through the manual inspection of several circuits specified
in that intermediate language.

The second component implements: i) Algorithms for building and traversing
graphs and ii) Routines for doing some useful verifications. The first one is used
to connect complex circuits and to detect false paths. The second one is needed
for checking that the graph exactly represent the input file.

Finally, the third component implements the interface for adding false path
algorithms.

The system was used to verify several real designs (Small size) and its per-
formance was good. However, we detected some drawbacks that deserve further
research. So as future work, we plan the following tasks:

1. Improve the performance of false path checking algorithms.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 624

2. Parallelize the analysis process.
3. Use a better graph representation.
4. Elaborate some strategies for parsing large specifications.

Another challenging and important is to extend the strategies described in
this paper, for the analysis of combinational and sequentials designs [NTKW98].

References

[BDRG+74] F. L. Bauer, F. L. De Remer, M. Griffiths, U. Hill, J. J. Horning, C. H. A.
Koster, W. M. McKeeman, P. C. Poole, and W. M. Waite. Compiler con-
struction: an advanced course. Springer-Verlag New York, Inc., New York,
NY, USA, 1974. Series Editor-Goos, G. and Series Editor-Hartmanis, J.

[CCW+07] Lei Cheng, Deming Chen, Martin D. F. Wong, Mike Hutton, and Jason
Govig. Timing constraint-driven technology mapping for fpgas consider-
ing false paths and multi-clock domains. In ICCAD ’07: Proceedings of
the 2007 IEEE/ACM international conference on Computer-aided design,
pages 370–375, Piscataway, NJ, USA, 2007. IEEE Press.

[DKV00] Arie Deursen, Paul Klint, and J. M.W. Visser. Domain-specific languages.
Technical report, Amsterdam, The Netherlands, The Netherlands, 2000.

[DYG89] D. H. Du, S. H. Yen, and S. Ghanta. On the general false path problem
in timing analysis. pages 555–560, 1989.

[IOF] H. Iwata, S. Ohtake, and H. Fujiwara. An approach to rtl false path
mapping using uniqueness of paths. In Information Science Technical
Report.

[jLKWtC02] Jing jia Liou, Angela Krstic, Li-C. Wang, and Kwang ting Cheng. False-
path-aware statistical timing analysis and efficient path selection for delay
testing and timing validation, 2002.

[KB99] Yuji Kukimoto and Robert K. Brayton. Timing-safe false path removal
for combinational modules. In ICCAD ’99: Proceedings of the 1999
IEEE/ACM international conference on Computer-aided design, pages
544–550, Piscataway, NJ, USA, 1999. IEEE Press.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and how to
develop domain-specific languages. ACM Comput. Surv., 37(4):316–344,
2005.

[NP02] Mehrdad Nourani and Christos A. Papachristou. False path exclusion in
delay analysis of rtl structures. IEEE Trans. Very Large Scale Integr.
Syst., 10(1):30–43, 2002.

[NTKW98] Kazuhiro Nakamura, Kazuyoshi Takagi, Shinji Kimura, and Katsumasa
Watanabe. Waiting false path analysis of sequential logic circuits for
performance optimization. In ICCAD ’98: Proceedings of the 1998
IEEE/ACM international conference on Computer-aided design, pages
392–395, New York, NY, USA, 1998. ACM.

[PCDM89] S. Perremans, L. Claesen, and H. De Man. Static timing analysis of
dynamically sensitizable paths. In DAC ’89: Proceedings of the 26th
ACM/IEEE Design Automation Conference, pages 568–573, New York,
NY, USA, 1989. ACM.

[ZAB+01] Jing Zeng, Magdy S. Abadir, Jayanta Bhadra, Jacob A. Abraham, and
Jacob A. Abraham eda Tools. Full chip false timing path identification:
Applications to the powerpc trade; microprocessors, 2001.

CACIC 2010 - XVI CONGRESO ARGENTINO DE CIENCIAS DE LA COMPUTACIÓN 625

