
Toughness of the corona of two graphs

R.M. Casablanca, A. Diánez and P. García-Vázquez

Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain

The toughness of a non-complete graph G = (V , E) is defined as τ (G) = min{|S|/ω(G − S)}, where the 
minimum is taken over all cutsets S of vertices of G and ω(G  − S) denotes the number of components of 
the resultant graph G − S by deletion of S. The corona of two graphs G and H , written as G ◦ H , is  the 
graph obtained by taking one copy of G and |V (G)| copies of H , and then joining the ith vertex of G to 
every vertex in the ith copy of H . In this paper, we investigate the toughness of this kind of graphs and 
obtain the exact value for the corona of two graphs belonging to some families as paths, cycles, stars, 
wheels or complete graphs.
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1. Introduction

Throughout this paper, all the graphs are simple, that is, without loops and multiple edges. Nota-
tions and terminology not explicitly given here can be found in the book by Chartrand and
Lesniak [9].

Let G be a graph with vertex set V (G) and edge set E(G). The graph G is called connected if
every pair of vertices is joined by a path. A cutset in a graph G is a subset S ⊂ V (G) of vertices of
G such that G − S is not connected. The existence of a cutset is always guaranteed in every graph
different from a complete graph Kn. The index of connectivity of G, denoted by κ(G), is defined
as the minimum cardinality over all cutsets of G, if G is a non-complete graph, or |V (G)| − 1,
otherwise.

There are several measures of vulnerability of a network [6,18,21,22]. The vulnerability param-
eters one generally encounters are the indices of connectivity and edge-connectivity. These two
parameters give the minimum cost to disrupt the network, but they do not take into account what
remains after destruction. To measure the vulnerability of networks more properly, some vulnera-
bility parameters have been introduced and studied. Among them are toughness [3,17,19,20,23],
integrity [2], neighbour-integrity [1,26], scattering number [27], tenacity [24] and several vari-
ants of connectivity and edge-connectivity called conditional connectivity [5,7,11,12,16], each of
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which measures not only the difficulty of breaking down the network but also the effect of the
damage. In general, for most of the aforementioned parameters, the corresponding computing
problem is NP-hard. So it is of interest to give the formulae or algorithms for computing these
parameters for special classes of graphs. For our purpose, we deal with the notion of toughness,
introduced by Chvátal [10], which pays special attention to the relationship between the cardinal-
ity of the rupture set in the network and the number of components after rupture. The parameter
is defined as

τ(G) = min{|S|/ω(G − S) : S ⊆ J (G)},
where J (G) = {S ⊂ V (G) : S is a cutset of G or G − S is an isolated vertex} and ω(G − S)

denotes the number of components in the resultant graph G − S by removing S.
Since this parameter was introduced, a lot of research has been done, mainly relating toughness

conditions to the existence of cycle structures. Historically, most of the research was based on a
number of conjectures in [10]. Some of most interesting results are addressed in [4,8,13]. However,
exact values of τ(G) are known only for a few families of graphs G, as paths and cycles [25], the
Cartesian product of two complete graphs [10] and of paths and/or cycles [15] and the composition
of two graphs, one of them being a path, a cycle or a complete bipartite graph [15].

In this paper, we focus on the toughness of the corona of two graphs. If for each vertex x in a
graph G, we introduce a new vertex x ′ and join x and x ′ by an edge, the resulting graph is called
the corona of G. The operation of adding one vertex for each vertex of G and connecting them
by an edge can be generalized as follows. The corona of any two graphs G and H , denoted by
G ◦ H , is the graph obtained by taking one copy of G and |V (G)| copies of H , and then joining
the ith vertex of G to every vertex in the ith copy of H . Observe that the particular case in which
H = K1, the graph G ◦ K1 is called the corona of G. This notion was introduced in [14].

There exist several kinds of interconnection networks whose structure can be modelled in terms
of the corona of two predetermined networks. This is the case, for instance, of electric networks
distributed in a big city where each transformer must guarantee the energy supply of its catchment
area. In order to optimize resources, the distribution of transformers is made by dividing the city
in catchment areas of the same entity. Thus, in terms of graph theory, the structure to be analysed
consists of a network transformers, modelled by a graph G, where each transformer is connected
with its catchment area, modelled by the graph H . The resultant graph is the corona G ◦ H of G

and H . In the maintenance of electric networks, it is relevant to avoid the disruption of the energy
supply, but when the failure of some nodes produces the rupture of the network, the greater the
number of fragments in which the network has been divided, the greater the cost of reconstruction.

The relationship between the cardinality of a cutset of a graph G and the remaining components
after disruption is analysed by the notion of toughness, defined above. So our aim in this work is
to determine the toughness of the corona G ◦ H of two connected graphs G and H in terms of
their known parameters. As a consequence, we will deduce the exact value of the corona of some
families of graphs involving paths, cycles, stars, wheels or complete graphs.

2. Notations and remarks

Let G and H be two connected graphs on m and n vertices, respectively. Let us set V (G) =
{v1, . . . , vm} and denote by Hi the copy of H that is joined to vertex vi of G in G ◦ H . Thus,
every cutset S of G ◦ H will henceforth be expressed as S = S0 ∪ ⋃m

i=1 Si , where S0 ⊆ V (G) and
Si ⊆ V (Hi), for i = 1, . . . , m. We denote by ω0 = ω(G − S0), ωi = ω(Hi − Si), i = 1, . . . , m,
that is, the number of component of G − S0 and Hi − Si , i = 1, . . . , m, respectively.

A cutset of G ◦ H such that |S|/ω(G ◦ H − S) = τ(G ◦ H) will be called a τ -cut of G ◦ H .
Let us see some remarks on the τ -cut of the corona of two graphs.



Remark 2.1 If S = S0 ∪ ⋃m

i=1 Si is a cutset of the corona G ◦ H of two connected graphs G and
H , then S0 �= ∅.

Proof If S0 = ∅, then every vertex of G ◦ H − S either is in V (G) or is adjacent to one vertex
of G; hence, G ◦ H − S is connected, against the fact that S is a cutset of G ◦ H . �

Remark 2.2 Let S = S0 ∪ ⋃m
i=1 Si be a τ -cut of the corona G ◦ H of two connected graphs G,

H . If vj ∈ S0, then either Sj = ∅ or Sj is a cutset of Hj .

Proof Let vj ∈ S0 and suppose by contradiction that Sj �= ∅ is not a cutset of Hj . Let us consider
the set S∗ = S \ Sj . Observe that either Hj − Sj is a component of G ◦ H − S or Sj = V (Hj )

and Hj is a component of G ◦ H − S∗. Thus, ω(G ◦ H − S∗) ≥ ω(G ◦ H − S), and therefore,

|S∗|
ω(G ◦ H − S∗)

≤ |S| − |Sj |
ω(G ◦ H − S)

<
|S|

ω(G ◦ H − S)
= τ(G ◦ H − S),

which contradicts the hypothesis that S is a τ -cut of G ◦ H . Then either Sj = ∅ or Sj is a cutset
of Hj . �

Remark 2.3 Let S = S0 ∪ ⋃m
i=1 Si be a τ -cut of the corona G ◦ H of two connected graphs G,

H . If vj �∈ S0, then Sj = ∅.

Proof Let vj �∈ S0 and suppose by contradiction that Sj �= ∅. Let us consider the set S∗ = S \ Sj .
Observe that either Hj − Sj belongs to the component of G ◦ H − S that contains vertex vj or
Sj = V (Hj ) and Hj belongs to the component of G ◦ H − S∗ that contains vertex vj . Thus,
ω(G ◦ H − S∗) = ω(G ◦ H − S), and therefore,

|S∗|
ω(G ◦ H − S∗)

= |S| − |Sj |
ω(G ◦ H − S)

<
|S|

ω(G ◦ H − S)
= τ(G ◦ H − S),

which is again a contradiction with the fact that S is a τ -cut of G ◦ H . Then Sj = ∅. �

Let S = S0 ∪ ⋃m
i=1 Si be a τ -cut of G ◦ H . From now on, we may assume without loss of

generality that the vertices of the set V (G) = {v1, . . . , vm} are ordered so that |S1| ≥ · · · ≥ |Sm|.
Let k ∈ {1, . . . , m} be the maximum integer such that Si �= ∅ for all i = 1, . . . , k. Then, as an
immediate consequence of Remarks 2.1–2.3, it follows that |S| = |S0| + ∑k

i=1 |Si | and ω(G ◦
H − S) = ω0 + ∑k

i=1 ωi + |S0| − k.

3. Main results

Let G, H be two connected graphs on m and n vertices, respectively. Our purpose is to determine
the toughness of the corona G ◦ H of G and H . To begin with, given a τ -cut of G ◦ H , the first
question that we must answer is whether every copy of graph H can be disconnected in the same
way. The following lemma provides an answer to this question.

Lemma 3.1 Let G and H be two connected graphs of order m and n, respectively, and let S =
S0 ∪ ⋃m

i=1 Si be a τ -cut of G ◦ H of minimum cardinality. If Si �= ∅, Sj �= ∅, for i, j = 1, . . . , m

with i �= j , then |Si | = |Sj | and ωi = ωj .



Proof Let us consider the vertex set V (G) = {v1, . . . , vm} ordered so that |S1| ≥ · · · ≥ |Sm|,
and let k ∈ {1, . . . , m} be the maximum integer such that Si �= ∅ for all i = 1, . . . , k. Thus,
|S| = |S0| + ∑k

i=1 |Si |. Since S is a τ -cut of G ◦ H , we have

τ(G ◦ H) =
|S0| +

k∑
i=1

|Si |

ω0 +
k∑

i=1

ωi + |S0| − k

≤ |S0| + k|S�|
ω0 + kω� + |S0| − k

, for every � = 1, . . . , k, (1)

yielding that

(
|S0| +

k∑
i=1

|Si |
)

kω� + (ω0 + |S0| − k)

k∑
i=1

|Si |

≤ |S0|
k∑

i=1

ωi +
(

ω0 +
k∑

i=1

ωi + |S0| − k

)
k|S�|, for � = 1, . . . , k. (2)

By taking summation in Equation (2), we deduce that

(
|S0| +

k∑
i=1

|Si |
)

k

k∑
�=1

ω� + k(ω0 + |S0| − k)

k∑
i=1

|Si |

≤ k|S0|
k∑

i=1

ωi +
(

ω0 +
k∑

i=1

ωi + |S0| − k

)
k

k∑
�=1

|S�|

=
(

|S0| +
k∑

�=1

|S�|
)

k

k∑
i=1

ωi + k(ω0 + |S0| − k)

k∑
�=1

|S�|,

which implies that all the inequalities of Equation (2) become equalities, and therefore, all the
inequalities of Equation (1) become equalities. Thus,

τ(G ◦ H) = |S0| + k|Si |
ω0 + kωi + |S0| − k

= |S0| + k|Sj |
ω0 + kωj + |S0| − k

, for all i, j = 1, . . . , k, (3)

which means that the set S∗ = S0 ∪ ⋃k
i=1 S∗

i , where S∗
i = Sk , for all i = 1, . . . , k, is also a τ -cut.

Hence,

|S| = |S0| +
k∑

i=1

|Si | ≥ |S0| + k|Sk| = |S∗|,

leading to |S1| = · · · = |Sk| because S has minimum cardinality. Moreover, given any two subsets
Si , Sj , with i, j ∈ {1, . . . , k} and i �= j , from Equation (3), it is clear that ωi = ωj . Then the
result holds. �

Given a τ -cut S = S0 ∪ ⋃m
i=1 Si of G ◦ H with minimum cardinality, by Lemma 3.1, we may

assume without loss of generality that for each i = 1, . . . , m, either Si = ∅ or Si = SH , for some
SH ⊂ V (H). Furthermore, it follows that either ω(Hi − Si) = 1 (if Si = ∅) or ω(Hi − Si) =
ω(H − SH ) (if Si = SH ).



To upper bound the index of toughness of G ◦ H , it is enough to find a cutset S of G ◦ H and
compute |S|/ω(G ◦ H − S). There are some alternatives in the choice of such a cutset, as the
following proposition shows.

Proposition 3.1 Let G and H be two connected graphs of order m and n, respectively. Let
SH ⊂ V (H) be any cutset of H of cardinality |SH | = p and denote by q = ω(H − SH ). Then

τ(G ◦ H) ≤ min

{
1

2
,

τ (G)

1 + τ(G)
,

1 + p

1 + q
,

1 + p

1/τ(G) + q

}
.

Proof First, let vj be any vertex of V (G) and let us consider the set S = {vj } in G ◦ H . Then
S is a cutset of G ◦ H since vj separates the copy Hj of H from G ◦ H − ({vj } ∪ V (Hj )).
Furthermore, G ◦ H − S has at least two components, i.e. ω(G ◦ H − S) = 1 + ω(G ◦ H −
({vj } ∪ V (Hj ))) ≥ 2, yielding that τ(G ◦ H) ≤ |S|/ω(G ◦ H − S) ≤ 1/2.

Second, let S ⊂ V (G) be a τ -cut of G. Then S is a cutset of G ◦ H and ω(G ◦ H − S) =
ω(G − S) + |S|, and therefore,

τ(G ◦ H) ≤ |S|
ω(G ◦ H − S)

= |S|
ω(G − S) + |S| = |S|/ω(G − S)

1 + |S|/ω(G − S)
= τ(G)

1 + τ(G)
.

Third, let SH ⊂ V (H) be any cutset of H of cardinality |SH | = p and denote by q = ω(H −
SH ). Take any vertex vj ∈ V (G) and set Sj = SH ⊂ V (Hj ). Let us consider the vertex set S =
{vj } ∪ Sj and observe that S is a cutset of G ◦ H . Indeed, ω(G ◦ H − S) = ω(G − vj ) + ω(Hj −
Sj ) ≥ 1 + ω(Hj − Sj ). Thus, it follows that

τ(G ◦ H) ≤ |S|
ω(G ◦ H − S)

≤ 1 + |Sj |
1 + ω(Hj − Sj )

= 1 + p

1 + q
.

Finally, take any cutset SH ⊂ V (H) of H of cardinality |SH | = p and denote by q = ω(H − SH ).
Let S0 = {u1, . . . , u|S0|} ⊂ V (G) be a τ -cut of G and denote by Hi the copy of H joined to
vertex ui in G ◦ H , for i = 1, . . . , |S0|. Let us consider the vertex set S = S0 ∪ ⋃|S0|

i=1 Si , where
Si = SH , for every i = 1, . . . , |S0|. Clearly S is a cutset of G ◦ H and ω(G ◦ H − S) = ω(G −
S0) + |S0|ω(H − SH ). Hence,

τ(G ◦ H) ≤ |S|
ω(G ◦ H − S)

= |S0| + |S0||SH |
ω(G − S0) + |S0|ω(H − SH )

= |S0|(1 + p)

ω(G − S0) + |S0|q
= τ(G)(1 + p)

1 + τ(G)q

= 1 + p

1/τ(G) + q
.

Thus, τ(G ◦ H) ≤ min{1/2, τ (G)/1 + τ(G), (1 + p)/(1 + q), (1 + p)/(1/τ(G) + q)} and the
result holds. �

The next result gives a necessary condition for a τ -cut of G ◦ H to contain vertices of some
copy Hi .



Lemma 3.2 Let G and H be two connected graphs of order m and n, respectively, and let
S = S0 ∪ ⋃m

i=1 Si be a τ -cut of G ◦ H of minimum cardinality. If Sj �= ∅ for some j = 1, . . . , m,

then |Sj |/ω(Hj − Sj ) < 1/2.

Proof From Lemma 3.1, there exists a vertex set SH ⊂ V (H) such that either Si = ∅ or Si = SH ,
for every i = 1, . . . , m. So without loss of generality we may assume that there is an integer k ∈
{1, . . . , m} such that S = S0 ∪ ⋃k

i=1 SH ; that is, Si = SH if i ∈ {1, . . . , k} and Si = ∅ otherwise.
Therefore, it is enough to us to prove that |SH |/ω(H − SH ) < 1/2. To clarify expressions, denote
by ω0 = ω(G − S0) and ωH = ω(H − SH ). By applying Remark 2.1, we know that S0 �= ∅, and
from Remarks 2.2 and 2.3, it follows that k ≤ |S0|. Thus, |S| = |S0| + k|SH | and ω(G ◦ H − S) =
ω0 + kωH + |S0| − k. By applying Proposition 3.1, we know that τ(G ◦ H) ≤ 1/2, which implies
that

|S|
ω(G ◦ H − S)

= |S0| + k|SH |
ω0 + kωH + |S0| − k

≤ 1

2
,

leading to
|SH |
ωH

≤ 1

2
+ ω0 − (|S0| + k)

2kωH

. (4)

Since S0 �= ∅ by Remark 2.1 and k ≥ 1, if S0 is not a cutset of G then ω0 ≤ 1 (i.e. ω0 = 0 if S0 =
V (G), and ω0 = 1 otherwise). Hence, applying inequality ω0 − (|S0| + k) < 0 in Equation (4),
we have |SH |/ωH < 1/2. Thus, suppose that S0 ⊂ V (G) is a cutset of G.

First assume that |S0|/ω0 ≥ 1. This means that ω0 − (|S0| + k) < ω0 − |S0| ≤ 0, yielding in
Equation (4) that |SH |/ωH < 1/2.

Second assume that |S0|/ω0 < 1. Since S0 is a cutset of G, then it is also a cutset of G ◦ H and
ω(G ◦ H − S0) = ω0 + |S0|. Therefore, by using that S is a τ -cut of G ◦ H , it follows that

|S0|
ω0 + |S0| ≥ τ(G ◦ H) = |S0| + k|SH |

ω0 + kωH + |S0| − k
>

|S0| + k|SH |
ω0 + kωH + |S0| . (5)

Combining the first and the last members of Equation (5), we deduce that

|SH |
ωH

<
|S0|

ω0 + |S0| = |S0|/ω0

1 + |S0|/ω0
<

1

2
,

because |S0|/ω0 < 1. This concludes the proof. �

From these previous results, the next theorem follows where the toughness of the corona G ◦ H

of two connected graphs is determined in terms of some parameters of G and H .

Theorem 3.1 Let G and H be two connected graphs of order m and n, respectively. Then the
following assertions hold:

(i) If τ(G) ≥ 1 and τ(H) ≥ 1/2, then τ(G ◦ H) = 1/2.
(ii) If τ(G) < 1 and τ(H) ≥ 1/2, then τ(G ◦ H) = τ(G)/(1 + τ(G)).

(iii) If τ(G) ≥ 1 and τ(H) < 1/2, then τ(G ◦ H) = minSH ∈J (H){ 1+|SH |
1+ω(H−SH )

}.
(iv) If τ(G) < 1 and τ(H) < 1/2, then

τ(G ◦ H) = min

{
τ(G)

1 + τ(G)
, min

SH ∈J (H)

1 + |SH |
1

τ(G)
+ ω(H − SH )

}
.

Proof Let S = S0 ∪ ⋃m
i=1 Si be a τ -cut of G ◦ H . Without loss of generality, we may assume

that V (G) = {v1, . . . , vm}, where the vertices are numbered so that |Si | ≥ |Si+1|, for all i =
1, . . . , m − 1. We may also suppose that S has minimum cardinality over all the τ -cuts of G ◦ H .



First, assume that τ(H) ≥ 1/2. Then by applying Lemma 3.2, we deduce that Si = ∅, for all
i = 1, . . . , m, hence, S = S0. This implies that τ(G ◦ H) = |S|/ω(G ◦ H − S) = |S0|/ω0 +
|S0|. Note that S0 �= V (G), because otherwise, ω0 = 0; that is, ω(G ◦ H − S0) = |S0|, and there-
fore, τ(G ◦ H) = 1, which is a contradiction to Proposition 3.1. Thus, S0 ⊂ V (G), which means
that ω0 ≥ 1, yielding ω(G ◦ H − S0) ≥ 1 + |S0|. If S0 is not a cutset of G, then ω0 = 1, and
therefore, τ(G ◦ H) = |S0|/ω0 + |S0| = |S0|/1 + |S0| ≥ 1/2. If S0 is a cutset of G then ω0 ≥ 2,
and therefore,

τ(G ◦ H) = |S0|
ω0 + |S0| = |S0|/ω0

1 + |S0|/ω0
≥ τ(G)

1 + τ(G)
.

Hence, τ(G ◦ H) ≥ min{1/2, τ (G)/(1 + τ(G))}. Moreover, by Proposition 3.1, we have τ(G ◦
H) ≤ min{1/2, τ (G)/(1 + τ(G))}, leading to

τ(G ◦ H) = min

{
1

2
,

τ (G)

1 + τ(G)

}
=

⎧⎪⎨
⎪⎩

1

2
, if τ(G) ≥ 1

τ(G)

1 + τ(G)
, if τ(G) < 1,

which proves items (i) and (ii).
Second, assume that τ(H) < 1/2. If S1 = ∅, then Si = ∅ for every i = 1, . . . , m, and reasoning

as above, we prove that

τ(G ◦ H) ≥ min

{
1

2
,

τ (G)

1 + τ(G)

}
=

⎧⎪⎨
⎪⎩

1

2
, if τ(G) ≥ 1

τ(G)

1 + τ(G)
, if τ(G) < 1.

(6)

Thus, suppose that S1 �= ∅, then by Lemma 3.1, we may assume that there exists an integer
k ∈ {1, . . . , m} and a non-empty vertex set SH ⊂ V (H) such that Si = SH if i ≤ k, and Si = ∅
otherwise. Further, from Lemma 3.2, it follows that |SH |/ω(H − SH ) < 1/2. Again to clarify
expressions, denote by ωH = ω(H − SH ). Notice that k ≤ |S0| by Remarks 2.2 and 2.3, and
therefore, τ(G ◦ H) = (|S0| + k|SH |)/(ω0 + kωH + |S0| − k). Since S0 is also a cutset of G ◦ H

and S is a τ -cut of G ◦ H of minimum cardinality, we have

|S0|
ω0 + |S0| > τ(G ◦ H) = |S0| + k|SH |

ω0 + kωH + |S0| − k
,

yielding that

|SH |(ω0 + |S0|) − |S0|(ωH − 1) < 0. (7)

The function f (k) = (|S0| + k|SH |)/(ω0 + kωH + |S0| − k) has a derivate

df

dk
= |SH |(ω0 + |S0|) − |S0|(ωH − 1)

(ω0 + kωH + |S0| − k)2
,

and by Equation (7), we deduce that f (k) is decreasing in k. Hence,

τ(G ◦ H) = f (k) ≥ f (|S0|) = |S0|(1 + |SH |)
ω0 + |S0|ωH

. (8)



If S0 is not a cutset of G then ω0 ≤ 1 (ω0 = 0 if S0 = V (G), and ω0 = 1 otherwise), and from
Equation (8), it follows that

τ(G ◦ H) ≥ |S0|(1 + |SH |)
1 + |S0|ωH

= 1 + |SH |
1/|S0| + ωH

≥ 1 + |SH |
1 + ωH

≥ min
SH ∈J (H)

{
1 + |SH |
1 + ωH

}
. (9)

If S0 is a cutset of G then |S0|/ω0 ≥ τ(G), and therefore, from Equation (8), it follows that

τ(G ◦ H) ≥ |S0|(1 + |SH |)
ω0 + |S0|ωH

= 1 + |SH |
ω0/|S0| + ωH

≥ 1 + |SH |
1/τ(G) + ωH

≥ min
SH ∈J (H)

{
1 + |SH |

1/τ(G) + ωH

}
. (10)

(iii) Suppose that τ(G) ≥ 1. Then combining Equations (6), (9) and (10), we deduce that

τ(G ◦ H) ≥ min

{
1

2
, min

SH ∈J (H)

{
1 + |SH |
1 + ωH

}
, min

SH ∈J (H)

{
1 + |SH |

1/τ(G) + ωH

}}

= min

{
1

2
, min

SH ∈J (H)

{
1 + |SH |
1 + ωH

}}
.

Since τ(H) < 1/2, there exists a cutset SH ⊂ V (H) such that |SH |/ωH < 1/2, which implies
that 2|SH | + 1 ≤ ωH . Then

1 + |SH |
1 + ωH

≤ ωH − |SH |
1 + ωH

= 1 + ωH − (1 + |SH |)
1 + ωH

= 1 − 1 + |SH |
1 + ωH

,

which means that (1 + |SH |)/(1 + ωH) ≤ 1/2 and therefore,

τ(G ◦ H) = min
SH ∈J (H)

{
1 + |SH |
1 + ωH

}
.

(iv) Now suppose that τ(G) < 1, then from Equations (6), (9) and (10), it follows that

τ(G ◦ H) ≥ min

{
τ(G)

1 + τ(G)
, min

SH ∈J (H)

{
1 + |SH |

1/τ(G) + ωH

}}
.

�

As a consequence of Theorem 3.1, the toughness of the corona of some families of graphs can
be derived. Let n ≥ 3 be an integer. Let us denote by Pn and Cn the path and the cycle with n

vertices, respectively, by Sn the complete bipartite graph K1,n−1, by W1,n the wheel with n + 1
vertices and by Kn the complete graph of order n.As a consequence of Theorem 3.1, the toughness
of the corona of two graphs, one of them being a complete graph, is deduced. Further, in Table 1,
we can find the toughness of the corona of two graphs belonging to some of these families: stars,
paths, cycles, wheels and complete graphs.



Table 1. The toughness of the corona of some families of graphs.

◦ Sn Pn Cn W1,n Kn

Sm

⎧⎪⎨
⎪⎩

1

m
, if m > n − 2,

2

m + n − 2
, if m ≤ n − 2.

1

m

1

m

1

m

1

m

Pm

⎧⎪⎨
⎪⎩

1

3
, if n < 5,

2

n + 1
, if n ≥ 5

1

3

1

3

1

3

1

3

Cm

2

n

1

2

1

2

1

2

1

2

W1,m

2

n

1

2

1

2

1

2

1

2

Km

2

n

1

2

1

2

1

2

1

2

Corollary 3.1 Let m ≥ 3, n ≥ 3 be two integers and let G and H be two connected graphs.
Then the following assertions hold:

(i) τ(G ◦ Kn) =

⎧⎪⎨
⎪⎩

1

2
, if τ(G) ≥ 1,

τ (G)

1 + τ(G)
, if τ(G) < 1.

(ii) τ(Km ◦ H) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
, if τ(H) ≥ 1/2,

min
SH ⊂J (H)

{
1 + |SH |

1 + ω(H − SH )

}
, if τ(H) < 1/2.

4. Conclusions

To measure the vulnerability of networks more properly, there exist some parameters that focus
not only the difficulty of breaking down the network but also the effect of the damage. In this work,
we have studied the toughness of the corona of two graphs. This family models the structure of
interconnection networks in several fields, where the reliability is one of most important features.
We have determined the value of the toughness of this kind of graphs.
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