
A Parallel Implementation for Computing
the Region-Adjacency-Tree of a Segmentation

of a 2D Digital Image

Fernando Dı́az-del-Ŕıo1, Pedro Real1(B), and Darian Onchis2

1 H.T.S. Informatics’ Engineering, University of Seville, Seville, Spain
fdiaz@atc.us.es, real@us.es

2 Faculty of Mathematics, University of Vienna, Vienna, Austria
darian.onchis@univie.ac.at

Abstract. A design and implementation of a parallel algorithm for com-
puting the Region-Adjacency Tree of a given segmentation of a 2D digital
image is given. The technique is based on a suitable distributed use of
the algorithm for computing a Homological Spanning Forest (HSF) struc-
ture for each connected region of the segmentation and a classical geo-
metric algorithm for determining inclusion between regions. The results
show that this technique scales very well when executed in a multicore
processor.
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1 Introduction

An important high level processing task in image understanding is to find a topo-
logical and structured description of the segmentation previously performed at 
low level processing, mostly independent of size and contrast characteristics of 
the extracted regions. The most usual representations are graph-based and the 
reasoning used in the region-node connectivity calculus involves two topologi-
cal properties: adjacency and inclusion. The Region Adjacency Graph (RAG)
[18–20] can be considered as the germ notion of all these models and it is com-
posed of a set of nodes, one by region of the image, and there is an edge between 
two nodes if and only if the two corresponding regions are neighbors. Within the 
traditional context of square pixel-based 2-dimensional digital images, the most 
usual adjacency relationships between regions employed for the RAG are 4 or 
8-neighborhoods. In order to exclusively highlight the ambient isotopic property 
“to be surrounded by” as adjacency relationship between regions or bound-
aries of regions, the notion of Region-Adjacency Tree (or RAG tree, for short)
(also called homotopy tree, inclusion tree or topological tree) is created [6,20,21]. 
Restricted to binary 2D digital images, the RAG tree contains all the homo-
topy type information of the foreground object (black object) but the converse 
is, in general, not true [21]. Aside from image understanding applications [2],
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RAG trees have encountered exploitation niches in geoinformatics, rendering,
dermatoscopics image, biometrics,... [3,4].

Common operations for modifying RAGs are splitting and merging of regions.
Most of the methods using these split-and-merge techniques are employed
in “improving the quality of initial oversegmentations”. Some split-and-merge
RAG-based methods consider low-level information of the image for the region
merging task [10,12,13,22]. Others take into account not only local knowledge
of the image but also the extraction of “global” information about image models
[1,8,9,23].

The contribution of this paper consists of the design and implementation of
an parallel algorithm for computing the RAG of a given segmentation, based
on a suitable distributed use of the algorithm for computing an HSF structure
for each 4-connected region. The paper has the following sections. Section 2 is
devoted to recall the machinery for computing the structures needed for HSF
construction already given in [7]. Next, a parallel algorithm for constructing
RAG starting from a HSF is showed in Sects. 3 and 4. Section 5 is devoted to
show the advantages of our parallel implementation and to present the scalability
results, and finally the conclusions are summarized.

2 About HSF Framework for RAG Tree Computation

In this paper, we specify an algebraic-topological technique for parallel comput-
ing a RAG of a given segmentation. This modus operandi have already used
in [7,16] for developing a topologically consistent framework for parallel com-
putation in 2D digital image context. Succinctly, starting from a 2-dimensional
abstract cell (cubical) complex C2 analogous of a digital image I in which the
pixels are the 0-cells, we compute in parallel another cell complex D2 topologi-
cally equivalent to the first one, having the same 0-cells but in which the number
of face and coface relationships in the canonically associated partial-order set of
cells is reduced to a “minimum”. Taking into account that C2 is contractible,
D2 will have only one cell (critical 0-cell) with no coface neighbors. In [7], it is
employed the name of Morse spanning forest (MrSF ) for D2. Let us note that
we use the nickname of MrSF instead of that of MSF , due to the fact that
MSF is an usual abbreviation for Minimum Spanning Forest in graph theory.
If the concrete strategy for “cutting” coface connexions used in any process-
ing unit associated P to each 0-cell mainly depends on the localization in P of
the pixels of the “foreground” and the “background” of a given segmentation
S = {Ri}ki=0 of I, the MrSF D2 is, in principle, a good candidate structure
for topologically analyzing S and, in particular, to compute its associated RAG.
A much better and natural strategy for the RAG-problem is to compute a sort
of optimal MrSF (called HSF in [7]) for each region Ri of S and to find an
efficient way for “minimally” connecting those HSF structures (interpreted as
connected components) between them using adjacency relationships. By “min-
imal” connectivity, we mean to use only one edge for connecting two adjacent
connected components (nodes of the RAG). Since we use an object-based digital



image analysis, the design of an HSF framework for 8-connected digital objects
can straightforwardly be done simply by slightly changing the external aspect
of the processing units employed. An important topological property in the 2D
digital setting is that, given a black region-of-interest R of an image, a white
maximal connected region surrounded by R (“no there” or hole of R in homol-
ogy theory) is always 4-connected independently whether R is 4 or 8-connected.
We suppose here that all the regions Ri of S are 4-connected. Although this is,
in principle, a strong topology restriction that almost never is accomplished in
real image segmentation, a suitable mathematical morphological preprocessing
of the image can solve this obstacle.

Algorithms of the next section part from the information structures that con-
tain the HSF and the contours of the regions of interest. They can be computed
(see [7]) on a time complexity order (for a parallel execution) of O(log c), being
c the number of corners detected on a 2D digital image. To begin with, a brief
summary of the extraction of the HSF and the contours follows.

From now on, in order to favor the computational methods and techniques
allowing the practical implementation of a parallel architecture, we reduce the
amount of mathematical results to a minimum.

In [7] the processing was focused on detecting in an exhaustive manner the
outer and inner contours of the different curves that are present at a preseg-
mented image. Thus, global information could be extracted. The implementation
in [7] was essentially a sort of CCL algorithm (Connected-Component Labeling,
see [11,15]) only applied to those pixels that form corners. This process was
divided in three sections. The first part built the MrSF forest and determine
some matrices containing the image corners and their characteristics. The sec-
ond part was devoted to discover the outer and inner contour curves by follow-
ing consecutive corners in vertical and horizontal directions. The result was two
matrices Hcycle, Vcycle, containing the corner tags of the cycles that stood for
the detected curves, and other structures with the information about the sink
and sources cells (for the present work they have been comprised into the vector
crit idx ). This part seeks for the global information relating the different corners
that form the objects inside an image. Finally, a third section finished with the
construction of a HSF for the foreground ROI of a binary image, by finding the
appropriate pairs of sources and sinks, and by doing the arrow reversing process
in parallel for each curve and each line. With previous processing, the contour
information of the different image regions is comprised into two matrices. Matrix
Crow,col,type contains one row per corner and three columns. Column 1 indicates
the row index of the corner (or alternatively the Y coordinate). Column 2 holds
the column index (or alternatively the X coordinate), and the last column con-
tains the type (number of quadrant, with negative sign if it is external to the
current curve, that is, a number among 1, 2, 3, 4, -1, -2, -3, -4). The matrix with
the information of closed curves is Hcycle. This matrix can be reduced to have
one row per curve and as many columns as corners have each curve. The numbers
contained in the elements of this matrix are indexes to the rows of Crow,col,type.
Finally vector crit idx indicates the row index of each critical cell (according to



the order given by Matrix Crow,col,type). Two counters are obtained by previous
algorithms: nof curves, which is the number of curves detected, and the vector
nof corn curve, whose elements contain the number of corners of each curve.

In order to clarify this notation, a basic image with two closed curves (each
one with a hole) and five curves (one of them is the image border) is depicted
in Fig. 1. In this case, nof curves is 5 and the five elements of nof corn curve
contains 4. The elements of these matrices are given in Fig. 2. One of the rows
of Hcycle includes its corner sequence (16,11,10,5); in particular the first row. Its
critical 0-cell has been represented by corner 5. Similarly for the other curves.

Fig. 1. A simple image with three curves (one of them is the image border). The crosses
of the different segments with a dotted vertical line that parts from critical cell (tagged
as 3) serve to detect inclusions.

An important fact of Hcycle is that the corner tags are stored in a sequential
order following a “contour” along the curve. This will permit us to find the
number of times that a set of segments move in one direction or in the opposite.
Moreover, the first hop of this contour is always a horizontal segment, which is
important to extract a set of only horizontal pairs of corners (segments).

3 Parallel Computation of the Inclusion Relations
for the MrSF Structures

Using these matrices, the parallelization of an inclusion searching algorithm can
be done in an efficient way, as depicted by the pseudo code of Algorithm 1 (see
Fig. 3). Our implementation is inspired by the classical ray-crossing algorithm
for the point in polygon problem [14]. However in our case, this problem can



Fig. 2. Input matrices for a simple image with three curves.

be computed more efficiently because instead of arbitrary polygons, only hor-
izontal and vertical concatenated segments exist. Thus only simple computer
operations like comparisons are sufficient to detect crossings. Furthermore, the
parallel processing becomes more evident.

Taking into account previous considerations, the codification style and the
notation of Algorithm 1, is different from the usual iterative/procedural conven-
tions to describe a pseudo-code. Most studies use an OpenMP-like notation or
the for each paradigm to express more clearly the thread parallelism that can be
exploited (see references along this work). As our aim is to describe the inher-
ent parallelism that can be exploited for extracting the RAG Tree, our notation
follows that of OCTAVE/MATLAB, so time complexity orders can be easily
computed.

The last stage to compute the RAG Tree consists of the conversion of matrix
Tinc into another simplified matrix TTM that holds the topological tree (also in
a matrix form). This is done by Algorithm 2 (Fig. 4) in a few steps.

The first line computes the number of columns of the TTM, which is given
by those curves that have no other inside, by counting the number of columns
of Tinc that are empty. If the level of “depth” of a curve is the number of curves
that it encloses, then the maximum level of “depth” of all the curves plus one
gives the number of rows (tree levels) of the TTM (see step 1). Step 2 contains
the key point that will serve to order the rows of Tinc, in order to compute the
RAG tree: each row of matrix Cidx contains the right sequences. This is due that



Fig. 3. Algorithm 1: Pseudo code for the algorithm that computes the inclusion relation
of a set of curves.



the minimum row coordinates of a group of nested curves identify the order of
inclusions (when sorting them).

Next line reorders Tinc using these sequences Cidx, meanwhile step 4 adds
the own curve numbers in a new column. Finally the last step 5 extracts those
lines that are the leaves of the RAG tree and transpose the result to obtain
TTM. Thus, those curves that do contain any other curve are forgotten in the
final TTM matrix.

Fig. 4. Algorithm 2: Pseudo code for the algorithm that computes the inclusion relation
of a set of curves.

4 An Example of RAG Tree Parallel Computation

In order to explain those Algorithms, let us examine the case of curve 5, whose
critical cell is tagged with a 3 (Fig. 1). The searching of the curves that surround
any other is based on detecting the crosses of a vertical line with the critical
cell of each curve. In Fig. 1, the vertical line is depicted on the column 4, where
critical cell of curve 5 was placed by the HSF construction [7].



First step extracts the tags of both extremes of any possible segment, which
give us:

Fextreme = (16 10 ; 2 12 ; 1 13 ; 4 14 ; 3 15)
Sextreme = (11 5 ; 7 17 ; 6 18 ; 9 19 ; 8 20)
After that, those tags are converted into matrices Cleft, Crigth, which are

filled with the column indexes of all the pair of corners that represent horizontal
segments. In our case:

Cleft = (1 13 ; 7 11 ; 8 10; 3 7; 4 6)
Crigth = (13 1; 11 7; 10 8; 7 3; 6 4)
Step 4 extract the tag of the critical cell of this curve, that is crit cell

(5)=3. Coordinates r crit cell=10 and c crit cell=4 are obtained by accessing
to Crow,col,type. Step 5 gives us the indexes over Cleft and Crigth (for each curve)
of those segments that cross the vertical line on clockwise (CW) or anticlockwise
(AW) directions. In our case, the find function returns:

CWidx = (1; Empty matrix; Empty matrix; 1; Empty matrix)
AWidx = (2; Empty matrix; Empty matrix; 2; Empty matrix)
Matrices ECWidx, EAWidx are provided for those cases where the column

coordinate is the same for the critical cell and a segment extreme. For those
cases, the proper corners that determine this crossing are selected (step 6). At
next step 7, the tags of the crosses are found, by indexing on Fextreme and
Sextreme. For our example, CWidx tag =(10; Empty matrix; Empty matrix; 14;
Empty matrix); AWidx tag =(6; Empty matrix; Empty matrix; 4; Empty matrix)

The row coordinates of previous tags CWidx tag and AWidx tag are found by
accessing the first column of Crow,col,type in the operations of step 8. This gives
us:

CWrow =(13; Empty matrix; Empty matrix; 7; Empty matrix)
AWrow =(1; Empty matrix; Empty matrix; 11; Empty matrix)
The first two operations of step 9 count the number of crosses (non zero

elements). Function nnz returns the values:
sup crosses = (1 ; 0 ; 0 ; 1 ; 0)
inf crosses = (1 ; 0 ; 0 ; 1 ; 0)

The other operation saves the minimum row coordinates of all the segments,
which will be used to find the order in which a curve is surrounded by others
(see next algorithm). Finally step 10 computes the vector inclusion, that is, the
absolute of the element-by-element product (sup crosses .* inf crosses), because
sup crosses and inf crosses can be 1 or -1 when a segment crosses the vertical
line. Note that a curve include the current cell, if and only if there is one cross
with this vertical line above this cell and only one below it. Four our case, the
fifth row of inclusion tells us that curves 1 and 4 surround the current curve 5:

inclusion (5, :) = (1 ; 0 ; 0 ; 1 ; 0)
This vector is multiplied element-by-element by the numbers (1: nof curves),

so at step 11 the matrix Tinc is marked with these numbers. In our example,
the fifth row is set to (1 0 0 4 0). In addition, the matrix Tinc min row is filled
with the minimum row coordinates of all the segments of surrounding curves.
At the same time, these values serve to fill a vector rows to be deleted with the



number of times that a curve include any other. This vector will help to delete
those rows that must not appear at the final RAG tree. In our example:

Tinc =
⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
1 0 0 0 0
1 2 0 0 0
1 0 0 0 0
1 0 0 4 0

⎞
⎟⎟⎟⎟⎠

This means that curve 2 is surrounded by 1 (the image borders, in row 1),
curve 3 by 1 and 2 (in row 3), curve 4 by 1, and curve 5 by 1 and 4 (row 7).

Using Algorithm 2, it is obvious that the resultant matrix for this example
TTM results:

⎛
⎝

1 1
2 4
3 5

⎞
⎠

5 Implementation and Testing Results

A complete implementation in OCTAVE/MATLAB has been built following
previous pseudo codes. In order to check its scalability, a non-fully functional
implementation of Algorithm 1 (because its time computing is very much bigger
than that of Algorithm 2) has been done in C++ using OpenMP directives.
Using previous notation, the next advantages are done evident:

(a) It can be easily demonstrated that Algorithm 1 scales well whit the num-
ber of Processing Elements of the target parallel architecture (like multi or
manycore, GPUs, SIMD kernels, ...). This also eases the codification for a
parallel computer. For similar reasons, those sentences that can be executed
in parallel are grouped in the same step (using lines preceded with letters).

(b) OpenMP codes can be written directly through this notation, in most of the
cases by converting the matrix processing into nested loops, and preceding
the outer loop (usually devoted to the rows) with the directive #pragma
omp parallel for.

(c) The memory access pattern (which is in most occasions [5] a critical point
for the performance that can be achieved in GPUs) can be clearly observed.

(d) Matrix operations that cannot be done in an element-by-element manner
(like matrix inversions, matrix multiply, etc.) are avoided.

(e) Only plain matrices have been used, preventing complex data structures
(trees, chained lists, stacks, etc.), very inefficient when running on massive
data parallel computer architectures.

(f) Finally, Algorithms have no conditional sentences. The avoidance of condi-
tional sentences in the hot spot zones prevents the so-called thread diver-
gence for GPUs, which is one the main reasons why the performance on this
platforms diminishes [5].



Two final considerations must be done: (1) the only for loop encountered
in this algorithm can be avoided in a parallel implementation. In fact its itera-
tions are fully independent, because any critical cell can be processed in parallel
using the same input matrices. The reason to insert the loop for is the avoid-
ance of complications in the notation (as the use of tensors and indexations
that are not supported by OCTAVE/MATLAB). (2) The only procedures that
are not strictly (element-by-element) parallel are those of precompiled functions
like find, nnz, max, etc. The non-strictly parallel sections of these functions are
reduction operations, which can be coded in a binary tree fashion and present a
time complexity order of O(log p), being p the number of elements involved in
the procedure.

Fig. 5. A 300× 300 fragment of a real H & E stained lung tissue sample taken from
an end-stage emphysema patient.

For a modest 4-core desktop PC, scalability is almost perfect. Additional
tests have been carried out in a server with an Intel Xeon E5 2650 v2, whose
main characteristics are: 2.6 GHz, 8 cores (up to 16 threads), 8× 32 KB data
caches, Level 2 cache size 8 × 256 KB, Level 3 cache size 20 MB, maximum band-
width to RAM: 59.7 GB/s. For this machine, all tests behave similarly: execution
times scale very well for 8 threads (the number of real cores), meanwhile some
additional speedup can be achieved above 9 threads, as usual for simultaneous
multi-threading technologies. Due that the effects of multitasking in this server
are relevant, the OpenMP guided scheduling was preferred.

Timing and speed results (baseline time is that of one thread) are represented
in Fig. 6 for the following image from Wikimedia [17]: a 300× 300 fragment
of a real H and E (haematoxylin and eosin) stained lung tissue sample taken
from an end-stage emphysema patient (Fig. 5, left). This image is segmented
(Fig. 5, right) by converting into gray and then posterizing it for the intervals
[0,59], [60,119], [120,179], [180,255]. This implementation received input from the
output of algorithms in [7], which return a total of 750 curves, 20370 corners (a
considerable number, w.r.t to the 90000 pixels of the original image).



Fig. 6. Scalability testing for an Intel Xeon E5 2650 v2. Left: time vs. number of
threads. Right: Speedup vs. number of threads

6 Conclusions

One important aspect of the RAG tree computation in the algorithm presented
here is that we have adopted the MrSF structures so as to determine in a par-
allel fashion which regions are included or surrounded by others, transforming
exhaustively a classical geometric algorithm. From a topological perspective, the
intuition seems to lead to the conclusion that the notion of RAG is independent
of the 2-dimensional embedding of the image I and it can be efficiently computed
in parallel using exclusively global homology information of each region and the
local topology of the 1-cells of the cracks between regions (without need to turn
to geometric algorithms). To give a correct answer in that direction would allow
us to appropriately extend in a topological consistent way the notion of RAG to
segmentations of n-dimensional (n ≥ 3) digital images in terms of 0 and n − 1
homology generators of the different regions.
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