
An Approach for Debugging Model Transformations
Applying Spectrum-Based Fault Localization

Javier Troya, Sergio Segura, José Antonio Parejo, and Antonio Ruiz-Cortés

Department of Computer Languages and Systems
Universidad de Sevilla, Spain

{jtroya, sergiosegura, japarejo, aruiz}@us.es

Abstract. Model transformations play a cornerstone role in Model-Driven En-
gineering as they provide the essential mechanisms for manipulating and trans-
forming models. The use of assertions for checking their correctness has been
proposed in several works. However, it is still challenging and error prone to lo-
cate the faulty rules, and the situation gets more critical as the size and complexity
of model transformations grow, where manual debugging is no longer possible.
Spectrum-Based Fault Localization (SBFL) is a technique for software debugging
that uses the results of test cases and their corresponding code coverage informa-
tion to estimate the likelihood of each program component (e.g., statements) of
being faulty. This paper describes a proposal for applying SBFL for locating the
faulty rules in ATL model transformations. The approach aims at automatically
detecting the transformation rule that makes an assertion fail.

Keywords: Model Transformation, Debugging, Spectrum, Fault Localization

1 Introduction
Model transformations (MTs) are the cornerstone of MDE [2], as they provide the
essential mechanisms for manipulating and transforming models. They are an excel-
lent compromise between strong theoretical foundations and applicability to real-world
problems, and most MT languages are composed of model transformation rules.

It is important in MDE to maintain and test MTs as it is done with source code in
classical software engineering. However, checking whether the output of a MT is correct
is a manual and error-prone task, known as the oracle problem. In order to alleviate the
oracle problem, the formal specification of MTs has been proposed by the definition
and use of contracts [5,1], i.e., assertions that the execution of the MTs must satisfy.
These assertions can be specified on the models resulting from the MTs, the models
serving as input for the MTs, or both, and they can be tested in a black-box manner.

However, even when using the assertions as oracle to test if MTs are correct, it is still
challenging to debug them and locate what parts of the MTs are wrong. The situation
gets more critical as the size and complexity of MTs grow, where manual debugging is
no longer possible, so there is an increasing need to count on methods, mechanisms and
tools for debugging them.

Spectrum-Based Fault Localization (SBFL) is a popular technique used in software
debugging for the localization of bugs [6]. It uses the results of test cases and their
corresponding code coverage information to estimate the likelihood of each program

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157761332?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Javier Troya, Sergio Segura, José Antonio Parejo, Antonio Ruiz-Cortés

component (e.g., statements) of being faulty. A program spectrum details the execution
information of a program from a certain perspective, such as branch or statement cov-
erage. SBFL entails identifying the part of the program whose activity correlates most
with the detection of errors.

This papers proposes to apply SBFL for debugging ATL model transformations. We
follow the approaches in [5,1] and use the previously described contracts (assertions)
as oracle function to determine the correctness of MTs, as it is explained in the next
section. Then, in Section 3 we describe our next steps.

2 Approach
Let us use as running example the classical Class2Relational model transformation1,
which is composed of six transformation rules. Let us also consider we have the three
OCL assertions shown in Listing 1.1 that are satisfied for the original Class2Relational
model transformation. These OCL assertions check (i) if the number of instances of
type DataType and Type is the same in the source and target models, respectively, (ii)
if there is a Column in the target model for every Attribute of type DataType with its
same name, and (iii) if there is a Column in the target model for every Attribute of type
Class with its same name concatenated with ‘Id’. Finally, let us consider a mutant of
the model transformation where in the third rule, named DataTypeAttribute2Column, a
fault has been introduced, causing the second OCL assertion to fail.

Listing 1.1: OCL assertions for the Class2Relational MT.
1 SrcDataType.allInstances()->size()=TrgType.allInstances()->size()
2 SrcAttribute.allInstances()->select(a|a.type.oclIsKindOf(SrcDataType))->forAll(

a|TrgColumn.allInstances()->exists(c|c.name=a.name))
3 SrcAttribute.allInstances()->select(a|a.type.oclIsKindOf(SrcClass))->forAll(a|

TrgColumn.allInstances()->exists(c|c.name=a.name+’Id’))

For applying SBFL with the aim of locating the faulty rule, a so-called coverage
matrix and an error vector have to be created. For this, we need a set of test cases
(input models), namely a test suite, that trigger the model transformation and produce
a set of output models, so that we can check if the OCL assertions hold for the <
input, output > models pairs. Input modes should have a certain degree of variability
among them so that different models exercise different transformation rules.

The coverage matrix for our running example is shown in the left-hand side of
Table 1. Horizontally, the table shows the transformation rules in which we aim to locate
bugs. Vertically, the table shows 10 test cases: automatically generated input models. A
cell is marked with “•” if the transformation rule of the row has been exercised by the
test case of the column. The information about the rules triggered by a given test case
can be collected by inspecting the trace model, e.g., using Jouault’s TraceAdder [4]. The
final row depicts the error vector with the outcome of each test case, either successful
(“S”) or failed (“F”). In the example, the result of executing the MT with tc1 and tc10
makes the assertion fail.

Once a coverage matrix and error vector are constructed, a number of techniques can
be used to rank the transformation rules according to their suspiciousness, that is, their

1 https://www.eclipse.org/atl/atlTransformations/
Class2Relational/ExampleClass2Relational[v00.01].pdf

An Approach for Debug Model Trans Applying Spectrum-Based Fault Localization 3

Table 1: Tarantula [3] suspiciousness values for the Class2Relational MT when the
second OCL assertion fails

T. Rule tc1 tc2 tc3 tc4 tc5 tc6 tc7 tc8 tc9 tc10 NCF NCS Suspiciousness Rank

tr1 • • • • • • • • • • 2 8 0.5 5
tr2 • • • • • • • • • • 2 8 0.5 5
tr3 (BUG) • • 2 0 1 1
tr4 • 1 0 1 1
tr5 • • 1 1 0.8 4
tr6 • • • 2 1 0.8 3

Test Result F S S S S S S S S F

probability of containing a fault. A popular fault localization technique is Tarantula [3],
which for a program statement is computed as (NCF /NF)/(NCF /NF + NCS/NS),
where NCF is the number of failing test cases that cover the statement, NF is the total
number of failing test cases, NCS is the number of successful test cases that cover the
statement, and NS is the total number of successful test cases. The suspiciousness score
of each statement is in the range [0,1], i.e., the higher the suspiciousness score of each
component, the higher the probability of having a fault. The values of NCF , NCS and
the Tarantula suspiciousness value for each statement are given in the twelfth, thirteenth
and fourteenth columns of Table 1, respectively. The values for NF and NS are are 2
and 8, respectively. The last column in the table indicates the position of the statement
in the suspiciousness-based ranking where top-ranked statements are more likely to be
faulty. In the example, the faulty rule tr3 is ranked first.

It is noteworthy that suspiciousness techniques may often provide the same value
for different statements, being these tied for the same position in the ranking, e.g., rules
tr3 and tr4 in Table 1. Under this scenario, different approaches are applicable such as
measuring the effectiveness in the best and worst scenarios, using an additional tech-
nique to break the tie, or using some simple heuristics such as alphabetical ordering [6].

3 Highlights and Next Steps

An important aspect of this approach is that it can be fully automated, so that given a
MT, a set of assertions and a set of source models, our approach indicates the violated
assertions and uses the information of the MT coverage to rank the transformation rules
according to their suspiciousness of containing a bug. Figure 1 exemplifies this process,
where it can be seen that a rank for rules suspiciousness is generated for each non-
satisfied OCL assertion. The user can pick any of these ranks in order to locate and fix
the faulty rule. Then, the approach can be executed again with a partially fixed model
transformation, so that less assertions are now likely to fail, until all OCL assertions are
satisfied.

Another strong point of the approach is that it can be applied to other model trans-
formation languages as long as they are composed of model transformation rules and
the execution results can be stored in traces.

4 Javier Troya, Sergio Segura, José Antonio Parejo, Antonio Ruiz-Cortés

Model
Transformation

Source Models

OCL Assertions

SBFL
applied to

Model
Transformations

any
failure?

se
t

o
f

n
o

n
-s

a
ti

sf
ie

d
O

C
L

a
ss

er
ti

o
n

s

OCLi

OCLj

…

trm

trn

trl

…

trn

trm

trp

…

Rules ranked by
suspiciousness

for OCLi

Rules ranked by
suspiciousness

for OCLj

Fixed
Model

Transformation

User locates and
fixes the faulty rules

no

yes

Debugging
ends

…

Fig. 1: Debugging of a MT applying our SBFL approach

We plan to study in depth how useful SBFL is for locating faults in model trans-
formations. Indeed, Tarantula is not the only technique, so we want to study different
techniques and determine which ones are more effective in the context of model trans-
formations, using for instance the EXAM score [7]. Also, we would like to apply this
approach in several model transformations and to study the results when several faults
are injected in more than one transformation rules. We also want to investigate how the
test cases influence the results. For instance, we want to study the influence of a varia-
tion in the size of the test suite and in the variability of the input models composing the
test suite. Finally, we aim at comparing our approach with related approaches [1].

Acknowledgement This work has been partially supported by the European Commis-
sion (FEDER) and Spanish Government under CICYT project BELI (TIN2015-70560-
R), and the Andalusian Government project COPAS (P12-TIC-1867).

References

1. Burgueño, L., Troya, J., Wimmer, M., Vallecillo, A.: Static Fault Localization in Model Trans-
formations. IEEE Tansactions on Software Engineering 41(5), 490–506 (May 2015)

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation approaches. IBM
Systems Journal 45(3), 621–646 (2006)

3. Jones, J.A., Harrold, M.J.: Empirical Evaluation of the Tarantula Automatic Fault-localization
Technique. In: Proc. of the 20th IEEE/ACM International Conference on Automated Software
Engineering. pp. 273–282. ASE ’05, ACM, New York, NY, USA (2005)

4. Jouault, F.: Loosely Coupled Traceability for ATL. In: Workshop Proc. of ECMDA (2005)
5. Vallecillo, A., Gogolla, M.: Typing model transformations using tracts. In: Proc. of 5th Int.

Conf. on Theory and Practice of Mod. Trans. (ICMT 2012). pp. 56–71. Springer (2012)
6. Wong, W.E., Gao, R., Li, Y., Abreu, R., Wotawa, F.: A Survey on Software Fault Localization.

IEEE Transactions on Software Engineering 42(8), 707–740 (2016)
7. Xie, X., Chen, T.Y., Kuo, F.C., Xu, B.: A Theoretical Analysis of the Risk Evaluation Formulas

for Spectrum-based Fault Localization. ACM Tr. Softw. Eng. Meth. 22(4), 31:1–31:40 (2013)

