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Abstract 
Several authors have proposed some methoh for applying path 
following in specijic cases to mobile robots ([3J [9], [ I l l ,  etc.). 
When we hy to extend the path following approach to the general 
problem several dsy7culties arise. In this paper we present a 
generalized technique to apply path following to a mobile robot with 
nonholonomic constraints. As an application example, we expose the 
case of mobile robots with a higher degree of maneuverability than 
the typical car-like robots. In particular we consider a robot that can 
turn around itself making a zero-radius turn; a case still not resolved 
as far as we know. Finally we propose a suitable control law for this 
example that ensures asymptotical convergence. 

1 Introduction 
The most extended systems in automatic control theory are 
servosystems. Here we track a mobile system at the time it 
moves; i.e. position, velocity or, in general, any magnitude in 
which we are interested, is the instantaneous reference that our 
system must follow. In figurefig. l a  we show this case for the 
state coordinates q(t). the desired coordinates qdLF(t), and the 
error coordinates defined as e,,(t)=q(t)-qdes(t). In servosystems 
this is the only possibility we have, because the reference 
trajectory is collected as we do the tracking. 
On the other hand, in mobile robots it is usual that the 
trajectory is memorized or previously generated by a path 
generator module [fdiazl]. For our purposes both cases are the 
same, and the term memorizedpath or merely path is used for 
both of them. A reference or desired path to be followed is 
described by a single parameter, namely r ,  and it can be 
expressed as a vector of state coordinates qk(r) .  Furthermore, 
we must emphasize the importance that convergence to a path 
acquires in mobile robots, as convergence to a fixed point qo, 
can not be achieved through a smooth feedback stabilization 
control law (a direct result of Brockett’s theorem [ 11). 
When we try to track a memorized path, the tracking 
methodology can be very different, as we know a priori the 
whole trajectory. Thus we can find several possibilities to do 
the tracking. Of course the classical servosystem tracking can 
be done just by identifying the parameter r(t) associated to the 
path with time, that is r(t)=t. Another similar possibility called 
trajectoly tracking (U) is based in a more general assumption 
than simple servosystems (seefig. Ib): the parameter r(t) is a 
generic function of time. Therefore the error coordinates are 
e,(t)=q(t)-qd-(r(t)). Then we can go through the stored 
trajectory with the most appropriate scale for r(t), for example 
r=at. Using an asymptotically stable control law (e.g. [SI), it is 
guaranteed that the system will converge to the desired 

trajectory in a deterministic time (except for the inherent 
perturbations that it may suffer). 
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Fig. IC:  Path Following 

Although TT is straightforward, it is not the only method (nor 
the most suitable) for following memorized paths. During the 
last years several alternatives have been proposed. The best 
established in literature and most suitable for many situations 
in which time is not a critical parameter (this is the case for 
most cases in industrial mobile robots) is path following (PF). 
This is based in some relation between actual system’s state 
q(t) and the memorized path. This relation will give us the 
desired point qda(r) of memorized path to be tracked. The real 
system should try to follow this point instead of the one given 
by the other approach (seefig. I C ) .  The error coordinates are 
also e,(t)=q(t)-qda(r). Using this approach, it is not guaranteed 
that the system will reach a point of the desired trajectory in a 
deterministic time. 

The virtues of PF can be understood considering this example: 
if big perturbations force the system to be at rest, for TT the 
desired point will move unavoidably. This means that errors 
will grow up to some value that may introduce instability. On 
the other hand, if PF is used, the desired point will be the same 
in spite of these perturbations. This allows the system to 
overcome large perturbations avoiding possible unstable states. 
Moreover, the extraction of an asymptotically stable law using 
PF is not more difficult than using TT, as we can see in the 
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mentioned literature and also in the example of section IV. 
Thus interest in PF is growing rapidly. 
There have been several trials to apply PF (we describe them 
below) in specific cases, but when we try to generalize PF 
several problems arise. In the next sections we will try to solve 
these problems, clarifying them with a complete example. 

2 Definitions and Robot Model 
Let's consider a general mobile robot as shown infig. 2 and let 
q=(X, Y, 4' be its state coordinates, which represent the 
Cartesian position (x, V E @  of a certain point PO (typically 
the midpoint between the rear wheels) with respect to a fixed 
extrinsic coordinate system %(O, i, j )  and the orientation #E(- 

zfl  of the robot with respect to the X axis. We will choose 
u=(v, U)'€@ as the pair of control variables for our system 
which represent the linear velocity of point PO and the angular 
velocity of the robot (other pair of variables such as torques or 
voltages supplied to the motors, are analogue for the tracking 
study, as showed by [2]). 
For these vector variables the state equation of the mobile 
robot are the well-known equations (that are non-linear in q 
and linear in U ) :  

q=B(q)u ; B =  ri4 sen4 0 11 ; U =  (I); Cf] 
To study the tracking of a memorized reference path 
q k ( r )  =(Xda(r), Yd,(r), 4,,,(r))' let us define another intrinsic 
coordinate system 2?{qdes(r(t)). t, n] linked to the path. t is the 
unitary vector tangent to the planar path in the desired point 
qks(r(t)) and n the normal to it'. Let (em e,,)€@ be the position 
errors of point Po relative to these axis and e&(-zn] the 
robot orientation error, so e,(f)=(e, e,,, e$' will be our relative 
error vector2. Let udes=(vdes(r), wdes(r))' be the desired control 
state expressed as a function of the descriptor parameter r .  
At this point it is important to define exactly which paths 
qd,(r)=(Xd,(r). Yk(r ) ,  q5d,(r))r are valid. We can not choose 
an arbitrary function on r and assign it to the three desired 
state coordinates. These desired coordinates must have some 
properties to guarantee that the tracking is possible. First the 
domain of r must be infinite (for example the positive real line 
R') in order to guarantee that the reference trajectory does not 
end. This must be done to ensure the possibility of 
convergence, because, as it is well known for a mobile robot, 
Brockett's theorem [ 11 prevents feedback stabilization3 of the 
robot to a fixed point. Second, and for the same reason, the 
reference trajectory can not contain singular points where the 
inputs are null, i.e. udes=O. Finally, the path can be made by a 

' The vectors i and n exists only when the linear velocity vhs at this point of 
the virtual robot that went through the reference path was not zero; if it were 
null, r can be chosen parallel to the virtual robot orientation, as the 
nonholonomic constraint requires the two vectors to be parallel. 
* An analogous coordinate system was used in [Kanay90]. There the system 
was linked to the robot itself. 

We mean smooth control laws, so that we elude non-smooth laws for rcasons 
of continuity on the control variables. 
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robot like the studied one, and this implies that (X&(r), Yd,(r), 

must respect the nonholonomic constraints of our 
mobile robot. 

e' J \ d=0.25m. R=0.16m 
e*= 4- 4de,  

X 
W 

jig. 2: extrinsic and intrinsic robot coordinates. 

Using the above relative variables and coordinates linked to 
the path, and by simple calculations, the following state 
equations can be easily found [6] :  

0 w , ( ~  0 e, CO&,,) 

In its more general form if we define errors in a natural 
fashion, that is e, = R(q,,)(q - qa,) , then the matrix form of 

the above equation can be expressed as: 
= Bdcs(eq)Uder(f)+B(e,)u (3) 

3 The General Method for Path Following 
Previous studies. During the last decade there has been a great 
research effort to develope a tracking based in a PF. This has 
lead to several good approaches that have made emphasis in 
diverse aspects of PF according to the particular characteristics 
of the analyzed system or the reference paths to be tracked. 
The most important can be summarized in the following 
categories: 
1. In [3] and [9] the desired point in the path is obtained 

through a normal projection along the vector that we have 
called n. Therefore this projection chooses the point of the 
reference path that has null e, coordinate (see fig. 2). They 
have to prohibit paths containing circles with small radius 
(we will call turns with null radius and infinite curvature 
"zero-radius turns") to ensure that the normal projection 
exists and is unique. A similar path following was used in 
Navlab [12]. As Navlab is a car-like robot, it cannot make 
zero-radius turns, so these paths were not considered. 

In [ll] the projection point chosen by the authors is the 
one that minimizes the euclidian distance between the real 
and the reference points PI (see fig. 2). Using point PI they 
avoid paths with curvature tending to infinite. But this 
strategy fails when the reference path is a turn around point 
Po. In this case any actual configuration (having different 
orientations) whose point PI is on the desired position for PI 
will have zero distance. That is, the couple (XI, YI) does not 
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represent the whole state of a mobile robot, although these 
coordinates always change for every trajectory. This 
example shows us that the whole state of the robot must be 
considered to construct a generic tracking. 

It is important to mention that previous studies have not given 
an exact definition or construction of PF as far as we know; 
they have specified a particular method, suitable for their 
requirements, that can be called PF. Conversely, as our goal in 
this paper is to construct a general approach to PF, and 
considering the experience extracted from previous works, we 
must have in mind the following two statements. First we must 
consider the whole robot’s state (represented here by (X, K 4) 
for simplicity, and usually called the robot posture). Second, 
we must contemplate all the possible reference paths that can 
be followed by the robot, including zero-radius turns. 
General Dath followinP characteristics. As a first step and in 
order to get a general construction of PF, we are going to 
extract the generic characteristics of path following. According 
to these studies and the intuitive behavior mentioned at the 
Introduction, the main characteristics that must rule PF and 
that differentiate it from TT, can be summarized as follows: 
1. We only must consider the global shape of the path to do 

the following. The desired trajectory evolution (governed by 
r )  must not play any role in the track as it does in TT. 

In opposition to TT (where the desired posture is exactly 
determined by a rigid law like r=r(f)), in PF we must choose 
some relationship to determine the desired posture. We will 
call this relationship “projecting function” as it projects the 
actual posture to the reference path. We will denote it as 

If the robot stops, the reference or goal point must also 
stops, as the parameter r does not grow by itself. The 
progress of r must not be independent (as in TTj but 
dependent on the real robot movement, that is i equation 
must be driftless. 

The existence of the rigid law r=r(t) in TT implies the 
reference evolution to be qdes(r(f)), and consequently 
“pulling” or “dragging” the robot to reach the reference. On 
the other hand, in PF the reference path can not “pull” (or 
“drag”) the robot: the robot must move independently by 
some condition (of course, meanwhile a control law must 
ensure convergence to the path). We must impose a motion 
in the real system to guarantee it moves or progresses. We 
will call this condition “motion exigency” and we will 
denote it as fmoreXrg(u)=O. 

A direct result of what is explained before is that there is 
no time exigency in the following. This means that we can 
not ensure that the robot will reach a reference point in a 
predictable period of time. 

Path followinsJ construction. TT’s construction is elementary. 
It requires only choosing the most suitable relation r=r([j, for 
a deterministic tracking in the system. On the contrary PF 
construction is not so bare because it implies a special 
relationship between the actual point and the global path. 
Paradoxically, due to the more laborious character of PF, it 
permits more flexibility than TT. 

2. 

f,*,O=O. 
3. 

4. 

5 .  
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[STEP 1: projection funetio? 
. f p r o ,  (e,, r)=o 
........................................................... ..J 

2 error coordinates 

, ............................................................. 1 I STEP 2: motion exigency I 
1 ................ f*:!::!!.?!!:o .................. .i 

, 1 2 erro;cm&inates 1 
fig. 3. General path following construction scheme. 

Some methods for PF construction have been developed in the 
references mentioned in this section, but they only apply to 
specific cases. Conversely, and based on the previous 
characteristics, we can straightforwardly find a PF 
construction based in two generic steps (see Jig. 3). In this 
scheme we begin with a mobile robot that has three state 
coordinates (three error coordinates eq expressed relative to the 
reference path) and two degrees of freedom U (DOF). 
Although we present the case for a mobile robot; the case for a 
generic nonholonomic system can be easily deduced. 
Pirst step: “projecting function”. This is derived as a 
consequence of characteristics 1 and 2 of PF. Once a distance 
criterion is chosen, a “projecting function”f,,i0 =O relates real 
posture with global path. This gives us a projecting point on 
the desired path: it is the desired posture qh(r(f)) at this 
instant of time. At the same time the projection is an 
holonomic constraint between error coordinates; so it supposes 
the elimination of one error coordinate. As the projection must 
be stated between error coordinates and the desired path, it 
depends on actual errors eq and on the memorized path shape 
(in general, parameter r);  that is fpruj(eq, r)=O. As we are 
talking about a geometric projection, vector U can not play a 
role in this step, because the real robot velocity does not 
influence on a geometric projection. Consequently the 
projection introduces the following coordinate transformation: 

Points { e q }  that obey &,(eq, r)=O define a surface (two- 
dimensional in our case) where the robot is placed. Hence 
robot posture is now given by only two error coordinates 
ep=(el, e2) instead of the three eq=(ex, er e@) on a TT. 
A classical example of projecting function is the normal 
projection described in [3] and [9], equivalent to making e, 
null. That is, the first error coordinate e, is eliminated and the 
robot posture is expressed by only two: ep=(ep e@) (error 
coordinates are called @, @ in these references). The two- 
dimensional surface is the e,, axis extended for all the possible 
robot orientations. This simple method for eliminating one of 
the error coordinates can not always be used, as we show in 
the example of the next section. 
It is important to remark that parameter r is at this time the 
third state coordinate4, and we should mention it to specify the 

/o, 91, 929 931 /qdes(r), r, eh e2/ ; ep=(el, 

‘ In ‘IT r gives us no state because r is determined only by time through the 
function r=r(t). 



whole robot posture, now given by (r, el, e2). But r is not an 
error coordinate, that is, it does not play any role in the 
control or in the stabilization problem, that is centered only in 
making e,(t)-+O, regardless of r. At this step we can say that 
we have isolated parameter r from the path convergence 
problem, and that we have a system with two degrees of 
freedom and two state variables (forgetting r), where smooth 
stabilization is possible. This assertion does not contradict the 
above mentioned impossibility of feedback stabilization to a 
fixed posture in nonholonomic systems, because we only 
stabilize two coordinates with this PF convergence, neglecting 
the third coordinate r .  In other words, we can stabilize e,,(t)+O 
but not e,(t)+O. 
The addition of a projecting functionf,,i(e, r)=O gives us the 
way in which parameter r varies. Differentiation of this 
function lead us to5: 

Now state equation (3) can be substituted, and using the 
“chain-law” f = f‘ f , we solve for i and have finally: 

i fL’ 
‘ p’ B(e, ,r)u 

d e- 

Now we have solved the problem of finding a closed 
expression for the variation of parameter r in an elegant way. 
This is clearly a PF, because variation of r does not depend 
implicitly on time. In the equation (4) there may be some 
operation restrictions; for example if denominator is null, 
variation of r is undefined. This case must be analyzed for 
each application and we will study it in depth for the example 
of section IV. 
The optimum projection depends on the mobile robot structure 
and even on the application, but we can state some general 
conditions for a “good” projecting function to be coherent: 
1. A projecting point can always be found for any system’s 

state q and for any valid reference path, that is: V(X,Y,Q)) 
E @x(-z 

Uniqueness of the goint on the path q&(r) must be 
ensured (at least locally ). 

If the actual robot state is the same as a posture of the 
path: q(t)=qdes(rJ, then the projected r must be r,. That is 

fproy has a zero for eq=O:fpmy(O, r)=O Vr. 
It would be desirable that the analytic equations could 

have a closed form, to help the finding of a control law 
whose stability is analytically demonstrable. 

Second steD: “motion exieencv”. Finally, as we described in 
PF characteristic 4, we need to imposed a “motion exigency” 
fmoreX,g(u)=O to guarantee that the robot moves. Although the 
form of this function depends on the application, we must 
fulfill the following conditions: 

3 r , ~  31/fpr(q-qdes(rJ, rJ =O 
2. 

3. 

4. 

1. 
2. 

No solution at the origin u = O  so U is never null; 
It is desirable that fmoreXig(u)=O is an even function on its 

components7. This ensures that the robot will approach the 
path through the most suitable inputs (negative or positive), 
mindless of the direction it must take on the path (increasing 
or decreasing r). This is particularly important when errors 
are big. 

To help the control law to converge to the path, it would 
be desirable that corn onents of U behave symmetrically, that 
is the total motion [U I should split identically between v 
and w .  

In the current mobile robot literature most motion exigencies 
(not called with this term) are applied to car-like robots, so it is 
usual to have v=cte, which is intuitive for cars. For robots with 
higher maneuverability others authors have preferred the 
exigency given by I F,,,, I = d e ,  that is I w I I v I =Cree, to avoid 
slippage. As the last one has an indetermination for null w or v, 
and our (2,O) robot does not have motion restrictions, we will 
use the adequate “motion exigency“ given by: 

3. 

(5) 
i=l 

where Kmv is the whole motion applied to the system and bi is 
the scale factor for each input. 

4 An Example Application: The Case Of A 
(2,O) Mobile Robot. 

One of the most extended mobile robot configurations is that 
with degree of maneuverability 2 and 0 steering wheels (a 
(2,0)-robot according to the definition of [2] ) .  The typical 
topology of these (2,O)-robot include two driver motors at each 
rear wheel, that can turn independently forward or backward. 
Furthermore it is one of the robots in which trajectories are 
more complicated, as it can not have complete maneuverability 
(that is, it is not omnidirectional) but it can make zero-radius 
turns. So it is a very interesting problem to apply our path 
following construction to these robots. As our group has been 
interested during the last years in the improvement of electrical 
wheelchairs ([4][5][7]) that incorporate this configuration, we 
have studied the complications that this topology introduces. 
First steD: “woiecting function”. Maneuverability in these 
robots is very high, and they have no additional movement 
restrictions (except for the inherent nonholonomic constraint). 
Thus we can choose the projecting point as that in the path that 
is nearest to the robot, i.e. the one which distance is minimal. 
As the three error coordinates must play a role in the distance, 
a “good” election for the distance dq can be: 

i=l 

where Ki are the scale factors between the different errors to 
guarantee dimensional homogeneity. In the case of our robot 
this leads to: 

’ Here derivation respect to a vector holds for a summation. 

since it can reach the same posture as many times as it wishes. 
Global uniqueness is impossible for a mobile robot that is fully controllable, 

’ We are assuming here that the robot motors have not a special structure or 
the application does not need to march in a unique direction. A car would be 
for example this case, because its rear direction is limited. 
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d:(r,t) = e: +e;  + Kief 
To choose the minimal distance point we “freeze” actual robot 
posture (that is u=O) and “move” along the desired path (that is 
we vary r )  looking for the point with a local minimum: 

lu=O 

where we omit simple calculations (using (2)) and use the 
“chain-law” j -  = f’ i  . Here (‘) holds for differentiation respect 
to r and (‘) respect to 1. So. (7) is our f,,(e,(t),r)=O, where 
vdes(r), wdes(r) are the input control profiles of desired path. 
This projection is fully intuitive, because it always chooses the 
nearest point to the actual robot posture. 
As we described in section 111, differentiation of this projecting 
function gives us the new equation for the variation of 
parameter r: 

r =  w&s(r>cose+i + K i w q g s ( r )  (8) 
v igs ( r )  -w&j<r)vdgs<r)ey + Ki&s(r) - Kie#wies(r) - exvies(r> 

As this projection has been obtained through a generic PF 
construction, we can get some of the classical projections as 
particular cases. For example the normal projection used in 
[3][9], is found by doing K,=O (you should remind that normal 
projection to a plane curve coincides with minimal Euclidean 
distance, given by the distance dq when K,=O [lo]). In effect 
the nullity of K, and the use of the same parameter of these 
authors (characterized by vdes(r)=I), leads to: 

Once we have chosen this projection we should confirm if it 
verifies the conditions of the above section to be considered a 
“good” projecting function. All of these conditions except 
number 2 are straightforwardly satisfied. Uniqueness is 
equivalent in our case to the non-nullity of denominator of 
equation (4) [6]. A deep study is made in [6] and its final result 
is that local uniqueness is reached under certain non-severe 
condition?. These conditions are two bounds for K, and 
curvature derivative of the desired path ~ ; ~ ~ ( r ) ,  that can be 
easily satisfied if errors are not unbearable and desired paths 
are not abrupt. In opposition to these non-severe conditions, 
normal projection must avoid paths containing circles with 
small radius to ensure that it exists and is unique, that is, it is 
far more restrictive for the feasible reference paths. 
Second steD: “motion exieencv”. In the case of the (2, 0)- 
robot, we have only two degrees of freedom; so a very suitable 
motion exigency is the one mentioned before: 

(9) 
where K,,,,, is the whole velocity applied to the system and b, 
is the scale for the angular speed, that give us how much the 
system can turn. 
In conclusion we have reduced the system just to two state 
variables (not explicitly defined but obtained through the 
application of a “projecting” constraint given by equation (7) 

v2(t) + b i d ( t )  = K:,, > 0 

to the three errors e,,), and one degree of freedom (resulting 
from the use of (9) to vector input U) .  In these variables we 
have condensed what we need to converge to a generic path 
through a path following. 
Control law. Although control law selection is far from our 
objectives, it is convenient to show the behavior of our system 
and the way to get to an asymptotically stable control law. We 
will use Lyapunov’s second method method with the quadratic 
error function as the Lyapunov function (which matches with 
the semidistance): 

(10) 

Differentiating with respect to time and using state equations 
(2) we have: 

V = v(ex cos(e,) + ey sen(e,))+ Kie+,w 

Now we impose (as our control law) this derivative V to be 
negative semi-definite9 to ensure convergence, having: 

(1 1) 
v = (ex cos(e,) + ey sen(e+,)).I + (K,e, ) K p  = 

= -k;(ex cos(e,) + ey sen(e,)p + r:Kiei] 

Equation (1 1) represents a line in the plane of the normalized 
control inputs (v, K p ) .  If we choose, for convenience, b,=K, 
in the motion exigency (9), this equation will represent a 
circle. The intersection of circle (9) and line (11) will give us 
the requested values for v and w (if it does not exist, circle’s 
nearest point to the line is chosen). Asymptotic convergence of 
the proposed law is demonstrated in [6] (it can be obtained, as 
usual for these kind of laws in mobile robots, through 
Barbalat’s lemma [9]). The intersection of circle and line (that 
is, the control law) reduces to a first order differential equation 
when e,+O or e x 4 .  In these cases, the parameters Z,, Z, play 
the role of time constant. 
Path followine evaluation. Even when asymptotic 
convergence is ensured, simulation is always a good way to 
verify and observe the control behavior. The proposed 
reference paths where a smooth PF control law must be 
evaluated have to be valid (see section 2). Hence a car-like 
robot or our (2,O) robot can not go through a piecewise path 
including curvature discontinuities (e.g. a straight line plus a 
circle); nevertheless the pieces should be linked by the path 
planning to ensure curvature continuity at least (for example 
through the addition of clothoids or similar curves). As we 
have shown analytically the generality of our projection 
function, then every path complying with the curvature 
continuity is identical for evaluating our PF. We have selected 
two very interesting examples: 1) approaching to a straight 
line, where typical convergence is showed, 2)  converging to a 
zero-radius turn, where our PF shows its generality. The values 
for constant parameters have been chosen to ensure a smooth 
convergence, as 5=0.5s, 2,=0.5s. The whole motion is 
K,,,,,=5Ocm/s, K,,,,,=0.5 d s .  The constants bo=K, are 0.25m. 

1 1 
2 2 

. V = - d i  ( r ,  t )  = -(ex2 + e: + Kie:) 

Note that Vcan never be negative definite because the existence of the 
* Mainly the non-severe condition is due to nonholomic nature of the system. nonholonomic constraint, see [Diazgla] for a demonstration. 
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In the first case we have selected big initial errors to prove the 
good convergence of the method in presence of extreme 
conditions (see fig. 4) and to compare it with TT. In PF the 
error e, must always be zero according to the projecting 
function (7) and the solid line for the error ey gives us the real 
robot trajectory. We have used for TT the control law of [8] 
tuning its constants so it behaves in a similar fashion for srnall 
errors (KX=20s-’; Ky=6.Ocm-‘; KB=3.2cm-’) (its real trajectory 
is the dashed line). Note that in PF the robot begins the 
tracking in reverse direction in the first transient, in order to 
reduce the errors faster, and parameter r decreases too. In the 
end this will imply that PF method will reach less distance in 
the desired path. This case will never happen in a pure TT, 
where r=t, and the reference robots “pulls” the real one and it 
will advance the same as the reference trajectory. This is a 
well-known advantage of PF frequently commented in the 
literature [11][3], that reduces oscillations in the end. 
Moreover input commands in PF are limited by our motion 
exigency while in TT they are not. If they were in TT, its 
response would be even poorer. 

I v  Initial 

.... 

fig. 4: PF to a line (X axis) under big initial errors. 

-*..... -. ”..... 
e-. 

*tqctual 
1.5 Wfr,(TT) 

-0.1 --0.1 
fig. 5: PF to a zero-radius turn(e,(O) =-0.03m, e,(O) =-0. Im). 

In the second example the desired trajectory is the ‘vertical 
axis, because reference robot turns around its point Po (seefig. 
5). The real robot movement would be given by the projection 
on plane AY. As in the previous case, although initial errors 
were big, PF chooses the nearest point on the desired 
trajectory, i.e. that with zero e )  (according to projecting 
function (7)). Note that in PF input controls v, w are split in the 
most convenient form to get a fast convergence. In TT 
convergence is slower because constants were tuned for the 

tracking of a line. If constants were tuned for this last case then 
convergence to a line would be slower. 

5 Conclusions. 
We present a technique to construct path following in mobile 
robots (that has been shown by several studies to be more 
advantageous than trajectory tracking). It consists of two steps: 
choosing a “projecting function” to relate actual posture to 
desired path as a function of errors and intrinsic descriptor 
parameter, and imposing a “motion exigency” to ensure robot 
advances on the path. These steps have been obtained based on 
the general path following characteristics that we have 
previously extracted. We also stated the conditions that both 
steps must satisfy to be coherent. Thereafter we corroborate 
our proposition with a (2,0)-robot (according to the definition 
of [2]) that can make zero-radius turns, a case that has never 
been solved, as far as we know, using path following. Finally 
we present simulation results under big initial errors to exhibit 
the good and fast convergence of our path following approach. 
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