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ABSTRACT 

Complete solid-solution cermets based on titanium-tantalum carbonitride using a 

starting nominal composition with 80 wt.% of (Ti0.8Ta0.2)(C0.5N0.5) and 20 wt.% of Co 

were performed by pressure-less sintering at 1550 ºC for different times (from 0 to 180 

min) in an inert atmosphere. Chemical and phase analyses were conducted using X-ray 

diffraction (XRD), elemental analysis and energy dispersive X-ray spectrometry (EDX). 

The binder mean free path and the contiguity of the carbonitride particles were used to 

rationalise the microstructural effects of the mechanical behaviour. Mechanical 

characterisation included determining the Vickers hardness, the fracture toughness 

(conventional indentation microfractures, IM), the dynamic Young's modulus 

(ultrasonic technique), the biaxial strength (ball on three ball) and a detailed 

fractographic examination. Finally, the experimental findings were combined with a 

theoretical fracture mechanics analysis to estimate the critical processing flaw sizes. 

Binder-less carbonitride clusters, pores and coarse carbonitride grains were the main 

defects observed and were responsible for the fractures. 

Keywords: complete solid-solution cermet; titanium carbonitride; mechanosynthesis; microstructure; 

mechanical behaviour. 
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 2 

1. INTRODUCTION. 

Cermets based on titanium carbonitride (TiCN) attract the attention of 

researchers due to their high hardness at high temperature, thermal conductivity, 

chemical, thermal and wear resistances and low friction coefficient to metals [1-5]. 

They have been successfully applied to new developments in the field of cutting tools 

and improve the surface finishing compared to WC–Co hard metals, ensuring excellent 

chip and tolerance control and the dimensional accuracy of the work pieces [1-3, 5, 6]. 

 Many studies have been reported on phase composition modifications by the use 

of cermet additives, such as binary carbides and transition metals in the binder alloy, to 

modulate the microstructure and, consequently, the mechanical properties [7-10]. 

Particularly, TaC and NbC are added to enhance high-temperature hardness and thermal 

shock resistance, and Mo2C and WC are added to increase sinterability and fracture 

strength. The presence of these binary carbides induces a core-rim microstructure in the 

ceramic grains during liquid phase sintering [11]; this is the result of the formation of 

complex carbonitride solid solutions containing Ti and other transition metals, such as 

Nb, Ta, Mo and/or W, which reprecipitate on the undissolved TiCN particles. 

 It has been proven that these complex carbonitride solid solutions are 

responsible for the desirable properties of cermets [12]. For this reason, the use of 

complete solid-solution cermets (CSCs) [13], i.e., cermets containing ceramic particles 

without the core-rim microstructure but with the chemical composition of the rim phase, 

has been proposed to encourage further improvement of the mechanical properties. 

Using CSCs would avoid the presence of the interface between the core and rim that 

generates residual stresses and crack propagation [14]. 
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 3 

 To date, few reports have focused on this issue because the manufacture of CSS 

cermets requires the use of complex transition metal carbonitrides (not a mixture of 

binary carbides) as the raw ceramic material, and the synthesis of these solid solutions is 

a difficult task. However, previous work has shown that a mechanochemical process, 

mechanically induced self-sustaining reaction (MSR), is a suitable method to obtain 

these complex carbonitrides with stoichiometric control [15]. Recently, the MSR 

procedure has been successfully applied in the development of CSS cermets [16]. 

 The aim of this work was to carry out an exhaustive characterisation of the 

mechanical properties of CSC cermets with a starting nominal composition of 80 wt.% 

(Ti0.8Ta0.2)(C0.5N0.5) and 20 wt.% Co. To the best of our knowledge, this is the first time 

a study was conducted on the influence of the microstructure on the mechanical 

behaviour of this type of cermet. The microstructure of the CSC cermets was modified 

by changing the sintering time of the pressure-less procedure used, and a comprehensive 

microstructural and mechanical characterisation was performed for each cermet. The 

following mechanical characteristics were measured: Vickers hardness, fracture 

toughness (conventional indentation microfracture), dynamic Young's modulus (non-

destructive ultrasound technique) and biaxial strength (ball on three balls). Furthermore, 

the experimental findings were combined with a detailed fractographic examination to 

estimate the nature and size of the critical processing flaws. 
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 4 

2. EXPERIMENTAL. 

2.1. Processing of samples. 

Titanium powder (99% in purity, < 325 mesh, Strem Chemicals), tantalum 

powder (99.6% in purity, < 325 mesh, Alfa-Aesar), graphite powder (< 270 mesh, Fe ≤ 

0.4%, Merck), cobalt powder (99.8% in purity, < 100 mesh, Strem Chemicals) and 

nitrogen (H2O and O2 ≤ 3 ppm, Air Liquide) were used by MSR to synthesise the CSC 

powdered cermets with a composition of 80 wt.% (Ti0.8Ta0.2)(C0.5N0.5) and 20 wt.% Co. 

This method takes advantage of the strong exothermic character of carbonitride 

formation to promote self-propagating reactions during milling. The details of the 

powder synthesis can be found in a previous work [16]. 

 Powdered cermets were compacted by uniaxial pressing at 2 tons for 5 min and 

by subsequent cold isostatic pressing at 200 MPa for 10 min to yield cylinders of 12 

mm in diameter and 20 mm in height. The green compacts were sintered at 1550 ºC in a 

horizontal tubular furnace (Type IGM1360 model no. RTH-180-50-1H, AGNI) under 

an inert atmosphere (Ar, H2O ≤8 ppm and O2 ≤ 2 ppm, Linde) for different sintering 

times: 0 min, 30 min, 60 min, and 180 min. The heating and cooling rates were 10 

ºC/min between room temperature and 1000 ºC and 5 ºC/min between 1000 ºC and 

1550 ºC. 

 

2.2. Chemical, microstructural, and physical characterisation. 

 Cross sections of the sintered cermets were grounded and polished using 

diamond as the abrasive during several steps. The polished surfaces underwent X-ray 

diffraction (XRD), which was obtained with a Panalytical X’Pert Pro instrument 

equipped with a θ/θ goniometer using Cu Kα radiation (40 kV, 40 mA), a secondary Kβ 
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filter, and an X’Celerator detector. The diffraction patterns were attained by scanning 

from 20º to 80º (2θ) in step-scan mode with 0.02º steps and a counting time of 275 

s/step. Silicon powder (Standard Reference Material 640c, NIST) was used for the 

calibration of the diffraction line positions. 

 Scanning electron microscopy images were obtained on a Hitachi S-4800 SEM-

FEG microscope on the polished cermet surfaces. The microstructural parameters were 

evaluated by image analysis (IA) with the Image-Pro Plus 6.2 software, using 5 pictures 

of X2k for each polished cermet. The main parameters estimated by this method were 

the following: i) the particle size distribution of the carbonitride phase, L; ii) the fraction 

of the binder phase, FB; iii) the contiguity of the carbonitride particles, C; iv) the binder 

mean free path, λ; and iv) the porosity content [17-19]. 

 The transition metal content in the ceramic and binder phases was measured by 

energy dispersive X-ray spectrometry (EDX) with detectors coupled in the Hitachi 

microscope. The carbon and nitrogen content in the cermets was determined by 

elemental analysis made by an LECO elemental analyser (mod.CNHS-932). 

 Bulk density measurements were carried out using Archimedes’ method with 

distilled water impregnation. This method was chosen for its experimental simplicity 

and reasonable reliability (ASTM C373- 88) [20]. 

 

2.3. Mechanical testing. 

 The measurement of the dynamic Young’s modulus was performed with a 

Krautkramer USM 35® flaw detector from the longitudinal and transverse propagation 

velocities of acoustic waves. To evaluate longitudinal waves, a Panametric S-NDT® 4 
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MHz ultrasonic transducer was used with an ultrasonic couplant (Sonotrace grade 30®). 

For transverse waves, a Panametric S-V153® 1.5 MHz shear wave transducer was used 

with a shear wave couplant (Panametrics-NDT
TM

) [21]. The wave velocities through 

samples were measured by minimising the delay times of the transducers by following 

an iterative measurement protocol. The dynamic Young’s modulus was calculated from 

equation 1: 

( )
22

222 43

TL

TLT

d
vv

vvv
E

-

-
= r  (1) 

 

where r is the density (g/cm
3
), and VL and VT are the longitudinal and transverse 

velocities, respectively. 

 Hardness was measured at three different loads (1 kgf, 3 kgf and 5 kgf) using a 

Vickers diamond pyramidal micro indenter (Zwick 3212) on the polished cermet 

surfaces. Ten indentations were made for each load. The fracture toughness was 

evaluated by the indentation microfracture (IM) method using the equations from Shetty 

et al. [22, 23]. 

 The flexural strength was measured under uniaxial stress using the ball on three 

balls test (B3B-test) [24-28], where a disc specimen is supported on three balls and 

loaded symmetrically by a fourth ball. In this loading situation, the three-point support 

guarantees three well-defined point contacts. At the midpoint of the disc surface 

opposite of the loading ball, a biaxial tensile stress state exists, which is used for the 

biaxial strength testing. This test has been recognised to be tolerant for imperfect disc 

flatness, an imperfection in other small geometries or some misalignment [24, 25]. 

Furthermore, the friction is significantly smaller than in the commonly used bending 

tests. For these reasons, the B3B-test can also be used for the as-sintered and small 
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 7 

specimens. The biaxial flexural test was carried out at room temperature using an 

electromechanical universal testing machine. The load application rate was 100 N/s. 

The tensile loaded surfaces of the B3B specimens (disks of 1 mm in thickness and 12 

mm in diameter) were carefully machined, grounded and polished to avoid surface 

damage. At least three samples were evaluated for each sintering time. 

 After mechanical testing, selected specimens were taken and subjected to a 

detailed fractographic examination by scanning electron microscopy, paying special 

attention to discern the origin, nature, geometry, and size of the strength-limiting flaws, 

as well as the fracture micromechanisms associated with the different sintering times. 

Finally, a comparison of the estimated and experimentally determined critical flaw sizes 

using the IM method and measurements of the defects by fractography was made within 

the framework of the Linear Elastic Fracture Mechanics (LEFM). 
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3. RESULTS AND DISCUSSIONS. 

3.1. Chemical and microstructural characterisation. 

 The XRD diagrams corresponding to the cermets sintered at 1550 ºC for 

increasing times are shown in figure 1. For all samples, the ceramic phase is ascribed to 

a titanium-tantalum carbonitride of the general formula TayTi1-yCxN1-x, in accordance 

with the reference diffraction patterns of titanium and tantalum carbides and nitrides. 

The fact that the ceramic phase reflections remained at the same 2q position regardless 

of the sintering time suggested a constant chemical composition of the carbonitride 

solid solution. Combining titanium and tantalum quantification by EDX analysis 

(average of 30 measurements in different ceramic particles) with carbon and nitrogen 

quantification by elemental analysis (assuming that carbon and nitrogen only come from 

the ceramic phase), it was possible to estimate the following chemical composition for 

the ceramic phase: Ta0.15Ti0.85C0.67N0.33. 

 Careful examination of the XRD reflections corresponding to the binder and 

indexing and comparing them to the reference diffraction patterns Co2Ti (05-0719), 

Co2.2Ta0.8 (15-0031), Co0.745Ta0.255 (38-07359) and CoTa (42-1212) showed that the 

binder was composed of intermetallic solid solutions belonging to the Ti-Ta-Co ternary 

system. The presence of titanium and tantalum in the binder was confirmed by EDX 

measurements and explains the slight difference between the chemical composition of 

the ceramic phase and the starting stoichiometry. The existence of the binder in 

intermetallic phases, which were formed during the sintering process, has been 

previously reported [16, 29]. In cermets sintered for 0, 30 and 60 min, the presence of 

two different binder phases was observed: a major phase with a hexagonal structure 

(P63/mmc) and a 1:2 (TixTa1-xCo2) stoichiometry and a minor phase with a 
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 9 

rhombohedral structure (R-3m) and a 1:1 (TixTa1-xCo) stoichiometry. However, only the 

hexagonal structure phase was present in the cermet sintered for 180 min. 

 SEM images were used to characterise the microstructure and evaluate some 

microstructural parameters in the sintered cermets. The representative micrographs 

shown in figure 2 confirm that the cermets did not have the characteristic core–rim 

microstructure. The particle size distribution of the ceramic phase was determined by 

the image processing software using the linear intercept method [30]. The growth of the 

ceramic particles was controlled primarily by coalescence phenomena, thus producing 

larger particles with a wider size distribution with increasing sintering time. Moreover, 

cermets sintered for 180 min showed a bimodal size distribution as a result of the 

coalescence and agglomeration of the largest ceramic particles. 

 C and λ were calculated and are shown in table 1. While C decreased with 

increasing sintering time, l increased; in both cases, this was due to the growth of 

ceramic particles, which gave rise to larger particles as the sintering time was 

prolonged. 

 To assess the quality of the sintering process, the porosity of the cermets was 

also determined by image processing and is shown in the tables in figure 2. The 

expected decrease of porosity with sintering time was observed up to a 60 min sintering 

time due to increasing densification. However, after 180 min of sintering, the porosity 

was significantly larger. The microstructure of this cermet, shown in figure 2d, is 

characterised by large ceramic agglomerates with trapped pores, which was the 

consequence of an enhanced ceramic coalescence accompanied by a slight loss of 

molten binder through gravity that was observed during the long sintering process. The 

determination of the volume fraction of the binder phase by image processing confirmed 

a slightly lower binder content in this cermet (see attached tables in figure 2). 
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 10 

 

3.2. Mechanical characterisation. 

 The dynamic Young’s modulus, measured by a non-destructive ultrasound 

technique (figure 3a), showed an increase of stiffness with sintering times up to 60 min, 

in accordance with the decreasing porosity trend with sintering time [31]. The 

significantly low value of the Young’s modulus observed in the cermet sintered for 180 

min was due to the increase of porosity previously mentioned. Furthermore, the slight 

variation in the binder composition observed for this cermet can also affect the value of 

the Young’s modulus. Additionally, the logarithm of the Young´s modulus was plotted 

against the porosity (figure 3b), according to Ryshkevitch equation [32], to obtain a 

Young’s modulus for a fully dense material. This value was approximately 682 GPa, 

which is a higher value than those reported in the literature for cermets [5, 33] and hard 

metals with similar binder contents [34]. 

 The Vickers hardness of cermets measured at 1, 3 and 5 kgf is shown in figure 

3c. The effect of the indentation load on the hardness was significant. A general trend of 

an increasing hardness with a decreasing load, especially at 1 kgf, was observed. The 

assumption that the hardness is independent of the load is only valid in homogeneous 

and continuous media. Hardening due to the strain gradient plasticity in two-phase 

materials with a different hardness (the binder and the ceramic are not polished with 

same velocity) is observed when the length scales of the imposed deformation gradients 

are comparable to the microstructure length scale of the material [35-37]. On the 

microscale, the microstructure of the material can be considered an inhomogeneity, and 

only when the volume affected by the indentation is large enough can the material 

behave homogeneously. Moreover, the elastic recovery of the indentation after 
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 11 

unloading, which is independent of the magnitude of the indentation, has a larger 

influence at lower loads. 

 The low hardness value found at 3 and 5 kgf for the cermet sintered for 0 min 

was due to the high porosity and the poor neck quality between the binder and ceramic 

phases as a result of a deficient densification. The high hardness value at 1 kg was not 

representative; the detrimental effect of porosity was not observed due to the small size 

of the indentation mark. The low-porosity cermets sintered for 30 min and 60 min 

showed higher and similar hardness at 3 and 5 kgf. Finally, the high hardness value 

observed at 3 kgf for the cermet sintered for 180 min was attributed to the presence of 

the large ceramic agglomerates mentioned above (see figure 2d) that contributed 

significantly to the hardness. 

 Furthermore, figure 3c shows that the hardness tended to decrease with sintering 

time as a consequence of the increased l, i.e., the contribution of the binder phase to the 

hardness. The failure in this expected trend for some loads in cermets sintered for 0 and 

180 min was the direct consequence of their microstructural features, such as the 

existence of porosity/lack of cohesion and the presence of large ceramic agglomerates, 

respectively. 

 The evaluated fracture toughness (KIc) using the IM method from the 

indentations at 5 kgf is shown in table 1 and figure 3d. This method has proved to be 

applicable for many relatively low-toughness cemented carbides. The low values 

observed were attributed to the presence of a brittle intermetallic phase (and not a tough 

metal) acting as a binder. Figure 3d and table 1 show that KIc increased with l (or 

decreased with C). The effective operation of the ductile ligament bridging (constrained 

binder) and the crack deflection (carbide size effect) are prominent toughening 

mechanisms that are directly related to the microstructural parameters l and C. The 
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most relevant toughening mechanism is the shielding due to the ductile ligament 

bridging behind the crack tip. In this case, the enhancement to the toughness is mostly a 

result of the increased energy in the constrained plastic stretching of the binder 

ligaments. The toughness increases with the crack extension up to a maximum steady-

state level, KIc, corresponding to the bridging length where the ligament zone is fully 

developed (R-Curve behaviour). 

 The biaxial flexural strength behaviour was analysed in terms of contiguity 

(figure 3e). The sintering time reduces the porosity, improves the neck quality and 

makes softer pore contours. The poor quality of the necks and the high porosity for the 

cermet with no soaking time at the maximum sintering temperature explain their 

reduced strength. Cermets sintered for 30 and 60 min showed the expected trend. The 

lower flaw sizes obtained at 60 min would explain the improvement in biaxial strength. 

However, the cermet sintered for 180 min had a lower mechanical strength, despite the 

role played by the toughening mechanisms (higher l). This is associated with the 

increased porosity located within the large ceramic agglomerates and is in agreement 

with the larger flaw size observed in this case. 

 Figure 4 shows examples of the defects that caused the fractures; the defects 

were related to the typical heterogeneities inherent to the pressure-less processing used: 

binder-less carbonitride clusters in figure 4a, pores in figures 4b and 4d, and coarse 

carbonitrides in figure 4c. A detailed analysis using a larger magnification of the 

fracture surface was carried out to discern the associated micromechanisms. Dimple 

ductile rupture in the interdispersed metallic binder and transgranular cleavage in the 

carbonitride particles were the most relevant fractographic features (highlighted with 

circles or arrows in figure 5, respectively). As the binder mean free path increased with 

the sintering time, the microstructure interactions involving large carbonitrides 
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exhibited a transgranular character, as observed from the river pattern features. The 

results showed an acceptable agreement between the estimated and experimentally 

measured critical flaw sizes. This assertion is sustained through a fracture mechanics 

analysis combining a fracture toughness evaluation, a biaxial strength measurement and 

a fractographic examination. 
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4. CONCLUSIONS. 

 CSC cermets based on titanium-tantalum carbonitride as the hard phase and 

intermetallic Ta-Ti-Co as the binder phase were fabricated via pressure-less sintering 

from powders obtained through a mechanochemical process. The microstructure of 

these cermets was varied by modifying the soaking time from 0 to 180 min at the 

sintering temperature (1500 ºC), and a complete mechanical characterisation was carried 

out. The following conclusions were drawn from this work: 

· CSC cermets have a granular microstructure similar to that of conventional WC-

Co and their mechanical behaviour can be explained as a function of the key 

two-phase microstructural parameters, l and C. 

· The mechanical characterisation showed that the hardness tended to decrease 

with l, whereas the indentation toughness and the flexural strength tended to 

increase. 

· The best combination of mechanical properties was found in the cermet sintered 

for 60 min because an adequate densification and microstructure were reached. 

Reducing the sintering time resulted in cermets with higher porosity and 

deficient cohesion between ceramic and binder phases. Extending the sintering 

time induced the formation of large ceramic agglomerates, which deteriorate the 

mechanical properties. 

· The low indentation toughness observed for all cermets was due to the presence 

of a brittle intermetallic phase acting as binder. 

· The fractographic examination showed that the presence of binder-less 

carbonitride clusters, pores and coarse carbonitride grains were the main defects 
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that induced fractures and the low flexural strength. A good agreement between 

the estimated and experimentally measured critical flaw sizes was found. 

· Dimple ductile rupture in the binder and transgranular cleavage in the ceramic 

particles were the main fracture micromechanisms observed. 
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FIGURE CAPTIONS. 

 

Figure 1. X-ray powder diffraction diagrams of cermets sintered at 1550 ºC for 

increasing times: (a) 0 min, (b) 30 min, (c) 60 min, and (d) 180 min. 

(●) Ti0.85Ta0.15C0.67N0.33, Fm3m; (○) TixTa1-xCo2, P63/mmc; (♦) TixTa1-xCo, R-3m.  

 

Figure 2. SEM micrographs and some microstructural parameters of cermets sintered at 

1550 ºC with increasing sintering time: (a) 0 min, (b) 30 min, (c) 60 min, and (d) 180 

min. 

 

Figure 3. Physical and mechanical properties of sintered cermets: (a) porosity and 

Young’s modulus as a function of sintering time, (b) estimation of Young’s modulus for 

a fully dense cermet, (c) Vickers hardness as a function of sintering time and applied 

load, (d) Vickers hardness and indentation toughness, KIC, as a function of binder mean 

free path, and (e) biaxial flexural strength as a function of ceramic contiguity. 

 

Figure 4. Low-magnification SEM micrographs of the fractured surfaces of the sintered 

cermets generated by the biaxial flexural strength tests (ball on three balls), showing the 

defects that caused the fractures: (a) 0 min, (b) 30 min, (c) 60 min, and (d) 180 min. 

 

Figure 5. High-magnification SEM micrographs of the fractured surfaces of the sintered 

cermets, showing the different existing flaws (ductile dimples, marked with circles; 

transgranular cleavage, marked with arrows) susceptible to cause the chaotic fracture: 

(a) 0 min, (b) 30 min, (c) 60 min, and (d) 180 min. 
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Table I. Microstructural and mechanical parameters of sintered cermets. 

Sintering 

time 

(min) 

C 
λ 

(µm) 

Ed 

(GPa) 

HV5 

(GPa) 

KIc 
(I)

  

(MPa m
1/2

) 

σBFS 

(MPa) 

Critical flaw size, 2a (µm) 

Estimated 
(II)

 

Experimental 
(III)

 

0 0.59 0.90 228 9.6 3.6 281 257 229 

30 0.51 1.04 446 11.0 4.2 319 272 252 

60 0.47 1.15 644 10.4 4.2 354 221 236 

180 0.41 1.44 321 10.4 5.2 307 451 446 
(I)

 IM ; 
 (II)

 Y = 2/p ; 
(III)

 SEM 
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