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Abstract. This paper presents a new proposal for reducing bloat in Genetic 
Programming. This proposal is based in a well-known parallel evolutionary 
model: the island model. We firstly describe the theoretical motivation for this 
new approach to the bloat problem, and then we present a set of experiments 
that gives us evidence of the findings extracted from the theory. The experi-
ments have been performed on a representative problem extracted from the GP 
field: the even parity 5 problem. We analyse the evolution of bloat employing 
different settings for the parameters employed. The conclusion is that the Island 
Model helps to prevent the bloat phenomenon. 

1   Introduction 

When an evolutionary algorithm is applied to a difficult problem, a large number of 
individuals is usually required for making up the population, and very frequently, a 
large number of generations have to be computed in order to find a successful solu-
tion for the problem. Therefore, the computational effort required for solving difficult 
problems is sometimes prohibitive.  

It is also well known that in Genetic Programming (GP) – one of the members of 
EAs’ family – individuals tend to increase their size as population evolves. This 
growth is not necessarily correlated with increases in the fitness of the evolved pro-
grams, and many times individuals increase their size while fitness doesn’t improve. 
The problem is that individuals require computing time to be evaluated; and given 
that individuals undergo the problem of increasing their size as they are evolved, 
generations will take progressively longer time to be computed, which is a big con-
cern for GP researchers. 

The above describe problem is usually known as the bloat phenomenon, and has 
been frequently studied during the last few years [3, 4, 5, 6, 13, 14]. As said above, 
bloat has a large impact in the search process. 

Besides presenting several studies that aims at offering reasons for the bloat [13, 
14], researchers try to offer alternatives for controlling that problem. In [3] some of 
these proposals are described: firstly, by placing a universal upper limit either on tree 
depth or program length; secondly, by incorporating a penalty which is proportional 
to program size; and finally, tailoring the genetic operations. 
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On the other hand, given that any EA requires long time for solving difficult prob-
lems, some approaches taken from parallel computing field have also been applied to 
alleviate the problem. These approaches try to apply some degree of parallelization to 
the basic algorithm. There are important differences in the way it can be done, and the 
kind of EA employed. For instance, Cantú-Paz [10] studied how to apply parallelism 
to Genetic Algorithms (Gas), and also presented some theoretical results involved in 
the parallel version of the algorithm. Also Fernández et al [7, 8, 9] have studied Paral-
lel GP, and the importance of some key parameters that are only employed in the 
parallel algorithm, such as synchrony, migration frequency, granularity and so on. 

All of the above referred studies employ the well-known Island model for the par-
allel algorithm. The idea behind this model is simple: Divide the entire population of 
individuals into smaller ones, so that each sub-population is computed in a different 
processor. Populations may sometimes exchange good individuals. The results have 
shown that the Island Model improves fitness quality of individuals while also saves 
computing time because of the use of several processors [7, 8, 10]. 

Nevertheless, for the time being, the Island model has always been analysed with 
the idea of improving quality of solutions and for saving computing time, and only 
once a report on the evolution of bloat when using the model for GP has been pre-
sented [9], although no hypothesis for the reason of the behaviour observed was pro-
vided.  

In this paper we continue the study on the bloat phenomenon, employing this non-
traditional point of view: Instead of focusing on the kind of genetic code that causes 
bloat (such as non-operating instructions in programs, subprograms functionally 
equivalent  to instructions, etc. [14]) we show that the island based algorithm can also 
help to prevent the bloat of individuals in GP, while we also provide a reason for this 
behaviour. The island models could be thus considered as a new technique for pre-
venting bloat when looking for solutions by means of GP. 

A set of experiments is presented for supporting the theoretical motivation that de-
scribes the advantages of the Island Model.  

This paper is structured in the following way: Section 2 describes the theoretical 
motivation that justify why Island Models are of interest when fighting bloat. Section 
3 briefly describes the problem studied, while Section 4 shows the results we have 
obtained in a set of experiments. Finally, section 5 presents our conclusions and future 
work. 

2   Motivation 

Langdon and Poli have established that programs size increases on average at less 
than O(timeα) with α ∈ [1.2,2], and it will approach a square power law, O(t2), as the 
programs get bigger (see  [5,6])  In this section, for simplicity, we assume the later 
O(t2) for the increase of programs size (although other α values within the range will 
not change the main conclusion). We also consider that programs sizes are measured 
be counting the number of nodes contained in the tree. 

When a generational evolutionary algorithm is employed, time can be measured by 
means of the number of generations computed, so that time and generations have 
similar meanings. When generations are computed time runs. Therefore, we could 
formulate O(g2) as an equivalent expression to O(t2) (g being generation computed). 
We can then write: 



O(t2)=O(g2) (1)

‘=’ sign according to big-Oh notation. 
We also know that individuals grow when crossover and mutation operators are 

applied. A GP algorithm lacking both operands -that only apply selection and copy of 
individuals- will evolve to a population of identical individuals, all of them copies of 
any of the individuals making up the initial population. This is because no variation 
operator is employed. In this condition, the bloat phenomenon is not present, because 
individuals can not change their size (the only difference between the size of indi-
viduals at the end of the algorithm is due to the difference between the individual that 
has dominated the population and the remaining ones). Nevertheless this cannot be 
considered bloat. 

Therefore, bloat only exists when variation operators are applied to produce new 
individuals, and may thus appear larger ones. The more new individuals we produce 
(crossover and mutation operators are then applied), the more opportunities for bloat. 
We could thus say that bloat approach O(i2) i being the number of new individuals 
produced per generation, and according to equation (1): 

O(t2)=O(g2)= O(i2) (2)

If the number of individuals created per generation is proportional to the number of 
individuals in the population, which is usually the case, we could instead employ the 
expression O(n2) -n being the number of individuals in the population- for the limit on 
bloat growth. This can only be stated if mutation and crossover are applied a number 
of times proportional to the size of populations. Summarising we have the following 
expression: 

Bloat(n) = O(t2) = O(g2) = O(i2) = O(n2) (3)

The first idea obtained from the above expression is that different population sizes 
should produce different bloat values. 

By analysing these results and those presented for the island model in [9], and con-
sidering that bloat(n)= O(n2), being n the size of the population, we can ask the fol-
lowing question: what would happen if we distribute all of the individuals among 
several subpopulations?   If we employ x subpopulations, we would have n/x indi-
viduals per subpopulation. What we will try to analyse now is whether such distribu-
tion change the bloat evolution. 

The big-Oh notation from equation 3 tells us that the bloat equation for a popula-
tion with n individuals is a second degree polynomial function: 

( ) cbnannbloatnOnbloat ++=⇒= 22 )()( (4) 

By bloat(n) we mean a function that measure the number of nodes obtained with a 
population of size n on a given problem. If the number of individuals in the popula-
tion n is not very small, then we can write: 

bnannbloat +≈ 2)( (5) 

We are studying the bloat evolution when individuals are distributed among a set of 
populations, so that the total number of individuals n remains unaltered, but we em-
ploy n/x individuals in each of the x populations. The total bloat for each of the sub-



populations is bloat(n/x);  if we consider that the bloat phenomenon occurs 
similarly in every subpopulation, employing equation 5 we can add up to obtain the 
total bloat: 
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Let’s now make an assumption, and then we will try to check if it can be satisfied. 
Let’s consider that the island model does not affect the evolution of bloat, i.e. the total 
bloat obtained when adding the bloat for each of the subpopulation correspond with 
the bloat obtained when using only one population. If this is true, the following ex-
pression must be true: 

( ) )(nbloatbloatx x
n =⋅  (7)

But, if we substitute in both terms of the expression employing equation 5, we obtain: 
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and equivalently: 
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2
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x
an =  (9)

And this can only be true for x=1 i.e. employing the panmictic model. Nevertheless 
we first stated that we employ the island model, so that x>1. So, the left part of ex-
pression (9) will become smaller as new populations are added to the model. Given 
this contradiction, we infer that the initial assumption of an equivalent global rate of 
bloat in the Island Model is false. 

Once we have seen that bloat rate is different when using the Island Model, and 
given the left part of equation (9), we conclude that as more subpopulations we use, a 
smaller bloat we will obtain. This statement is in agreement with results obtained in 
[9], in which the Island Model was applied to study bloat, although no clue for the 
behaviour observed was provided. 

In the following sections we revisit the Island Model, for analysing again bloat 
evolution in a very well-know problem employed in GP studies: the even parity 5 
problem. We try to see if the predictions from the theory confirmed by experimenta-
tion. 

3   Experiments 

We have employed a well-known GP problem, the even parity 5 problem [2], with 
several settings in order to make comparisons. The goal in the even parity 5 problem 
is to generate a Boolean function that gives us the parity of a set of 5 bits. The Parallel 
GP tool employed is described in [12]. 

Experiments have been performed in a cluster of PCs running a distribution of 
Linux specially suited for clusters [1]. We show the averages values obtained over 50 
runs for each of the experiments. 

Table 1 shows the setting used in the experiments with the evenp-5 problem. The 
maximum depths have been established identically in all of the experiments, so that 
differences we may found will not be due to differences in this parameter. On the 



other hand, Table 2 provides the parameter specifically employed when using the 
Island Model (See [7] for a whole description of the model). The number of subpopu-
lations is different for each of the experiments performed, and this information is 
provided within the graphs. 

Table 1. Parameters for the  Evenp Problem. 

Crossover Probability 98.0 
Creation Probability 1.0 

Max. Depth For Creation 6 
Max. Depth For Crossover 17 
Swap Mutation Probability 1.0 

Selection 
10 individuals per  

Tournament 

Table 2. Parameters for the Island Model. 

Generations between Migration 10 
% of the population that migrate 10% 

Synchrony Asynchronous model

4   Results 

4.1   Panmictic Model 

Before analysing results obtained with the Island Model, we have performed a couple 
of experiments to check the validity of Equation (3). The equation tell us that the 
bloat phenomenon must change with the size of the population, so we have firstly 
performed an experiment employing different population sizes when using the evenp-
5 problem and the panmictic model. 

Figure 1 presents the results that we have obtained for the evenp-5 problem. We 
have performed 50 experiments for each of the curve, and then we have computed the 
average length per generation. We notice that when we increase the size of the popu-
lation, the average length is larger. So, the first idea extracted from equation (3) is 
confirmed by results obtained. 

The second idea that can be extracted from equation (3) is simple: if we change the 
number of genetic operations applied per generation, or equivalently, the number of 
new individuals created per generation, we may change the bloat rate. We have thus 
performed another experiment that helps us to confirm this idea for the panmictic 
model. 

The experiment is simple: suppose we don’t create each generation a number of 
new individuals proportional to the size of the population n, but we create instead a 
number of new ones proportional to n/2 or proportional to n/4. Equation (3) tell us 
that bloat obtained is proportional to the number of new individuals created, and this 
time, this value would not be equivalent to the size of the population. 

Figure 2 shows the evolution of the average length of individuals that have been 
obtained in experiments following the idea described above. Each curve corresponds 
to an experiment in which a number of new individuals are created (a percentage of 
the size of the population). We can easily observe that bloat is smaller when the num-



 

ber of new individuals created reduces (a smaller number of crossover and mutation 
operations are applied). Its interesting to see that bloat is not present when no indi-
viduals are created, as we could expect (curve labelled as “without evolution”). Sev-
eral population sizes have been employed with similar results. 
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Fig. 1. Length Evolution in the even parity 5 problem, with different populations’ sizes. The 
bigger population, the larger bloat. 
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Fig. 2. Length Evolution in the evenp-5 problem  Size of population= 1024. Percentage values 
means the number of new individuals over the size of the population created each generation. 

Table 3, numerically shows the average size of individuals in different number of 
generations. These results numerically show the same results provided in figures 1 
and 2. Nevertheless, they help to verify quantitatively  how different rates of creation 
of individuals change the rate of bloat. We can notice that no bloat occurs when no 
new individuals are created. 



Table 3. Length evolution in the evenp problem. 

Generations % new in-
div. 2000 1000 500 100 

100.00% 2002.4 1483.8 1057.5 474.6 
50.00% 1514.8 1074.9 760.1 335.2 
25.00% 1091.2 789.6 548.1 258.5 
12.50% 746.5 533.8 353.1 148.4 
6.25% 541.0 374.2 270.6 38.2 
3.13% 368.3 262.4 179.3 7.4 
1.56% 263.6 169.4 64.0 5.1 
0.78% 180.4 75.6 11.8 5.0 
0.39% 65.1 10.4 5.3 5.0
0.00% 5.0 5.0 5.0 5.0

4.2   Island Model 

The next step was to analyse the island model. We want to maintain the classical 
setting, by generating a number of new individuals per generation proportional to the 
size of the population. We want to compare bloat evolution with that observed within 
the panmictic model. 

Several experiments have been performed for the evenp-5 problem, employing dif-
ferent population sizes for both the panmictic model, and also employing the Island 
Model and 2, 4, 10 and 20 subpopulations (equally distributing all of the individuals 
among the subpopulations employed in each experiment). Figure 3 shows the average 
length value obtained over 50 runs in a couple of experiment that employs 100 indi-
viduals, while figure 4 has been obtained employing 2500 individuals. We can see 
that bloat reduces as a larger number of subpopulations are employed to distribute the 
global population.  

Fig. 3. Length evolution in the evenp-5 problem when using the Island Model. 

We have not tried to study in this paper which is the best number of island to be 
employed in a given experiment. This problem has been addressed before, and no 



 

perfect recipes exist [7]. Nevertheless, the above presented results make evident a 
new advantage of the Island Model that to our best knowledge has not been presented 
for GP before. 

Fig. 4. Length evolution in the ant problem when using the Island Model. 

The results obtained with the Island Model in the problem, confirms the prediction 
of the theoretical model employed in section 2: the bloat rate reduces when individu-
als are distributed among a set of subpopulations. This is a new advantage for the 
Island Model: Not only it find better fitness quality, but also reduces the bloat phe-
nomenon. 

The above mentioned advantage of the Island Models is now added to another im-
portant feature of island-based GP: it can be easily computed on multiprocessor sys-
tems: we just have to distribute populations among processors, and both advantages 
helps together to save computing effort when GP is applied to solve optimization 
problems.  

5   Conclusions 

A new approach for reducing the bloat problem is presented in this paper. We have 
first employed a theoretical model that predicted the different rate of code growth 
when the island model is employed in Genetic Programming. The model suggests that 
distributing individuals among a number of subpopulation will reduce the bloat phe-
nomenon, and this reduction is larger when more subpopulations are employed. 

The even partiy 5 problem has been employed as a benchmark for experimenting 
the evolution of code growth. We also shown that results obtained are coherent with 
those predicted by the model. 

We have studied the evolution of bloat in panmictic models, when the number of 
genetic operations applied each generation (and also the number of new individuals 
created) is not the same as the size of the population. By means of this experiments 
we have presented evidences that make us to be confident about the predictions of the 
theory on the Island Model. 



Finally, the study has focussed on the Island Model. We have first seen that bloat 
depends on the size of the subpopulations, and then we have performed several tests 
employing the Island Model, that have experimentally shown in a well-known GP 
problem that distributing a population into several ones of smaller size helps to pre-
vent the bloat phenomenon. 

In the future, we will present a larger report including a wider set of both test and 
real-life problems corroborating conclusions presented in this paper. 
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