
Control of Bloat in Genetic Programming
by Means of the Island Model

Francisco Fernández de Vega1, German Galeano Gil1,
Juan Antonio Gómez Pulido2, and Jose Luis Guisado1

1 Centro Universitario de Mérida, University of Extremadura
C/ Calvario, s/n. 06800 Mérida, Spain
{fcofdez,ggaleano}@unex.es

2 Escuela Politécnica, University of Extremadura,
Cáceres, Spain

jangomez@unex.es
http://atc.unex.es/pacof

Abstract. This paper presents a new proposal for reducing bloat in Genetic
Programming. This proposal is based in a well-known parallel evolutionary
model: the island model. We firstly describe the theoretical motivation for this
new approach to the bloat problem, and then we present a set of experiments
that gives us evidence of the findings extracted from the theory. The experi-
ments have been performed on a representative problem extracted from the GP
field: the even parity 5 problem. We analyse the evolution of bloat employing
different settings for the parameters employed. The conclusion is that the Island
Model helps to prevent the bloat phenomenon.

1 Introduction

When an evolutionary algorithm is applied to a difficult problem, a large number of
individuals is usually required for making up the population, and very frequently, a
large number of generations have to be computed in order to find a successful solu-
tion for the problem. Therefore, the computational effort required for solving difficult
problems is sometimes prohibitive.

It is also well known that in Genetic Programming (GP) – one of the members of
EAs’ family – individuals tend to increase their size as population evolves. This
growth is not necessarily correlated with increases in the fitness of the evolved pro-
grams, and many times individuals increase their size while fitness doesn’t improve.
The problem is that individuals require computing time to be evaluated; and given
that individuals undergo the problem of increasing their size as they are evolved,
generations will take progressively longer time to be computed, which is a big con-
cern for GP researchers.

The above describe problem is usually known as the bloat phenomenon, and has
been frequently studied during the last few years [3, 4, 5, 6, 13, 14]. As said above,
bloat has a large impact in the search process.

Besides presenting several studies that aims at offering reasons for the bloat [13,
14], researchers try to offer alternatives for controlling that problem. In [3] some of
these proposals are described: firstly, by placing a universal upper limit either on tree
depth or program length; secondly, by incorporating a penalty which is proportional
to program size; and finally, tailoring the genetic operations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157760486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

On the other hand, given that any EA requires long time for solving difficult prob-
lems, some approaches taken from parallel computing field have also been applied to
alleviate the problem. These approaches try to apply some degree of parallelization to
the basic algorithm. There are important differences in the way it can be done, and the
kind of EA employed. For instance, Cantú-Paz [10] studied how to apply parallelism
to Genetic Algorithms (Gas), and also presented some theoretical results involved in
the parallel version of the algorithm. Also Fernández et al [7, 8, 9] have studied Paral-
lel GP, and the importance of some key parameters that are only employed in the
parallel algorithm, such as synchrony, migration frequency, granularity and so on.

All of the above referred studies employ the well-known Island model for the par-
allel algorithm. The idea behind this model is simple: Divide the entire population of
individuals into smaller ones, so that each sub-population is computed in a different
processor. Populations may sometimes exchange good individuals. The results have
shown that the Island Model improves fitness quality of individuals while also saves
computing time because of the use of several processors [7, 8, 10].

Nevertheless, for the time being, the Island model has always been analysed with
the idea of improving quality of solutions and for saving computing time, and only
once a report on the evolution of bloat when using the model for GP has been pre-
sented [9], although no hypothesis for the reason of the behaviour observed was pro-
vided.

In this paper we continue the study on the bloat phenomenon, employing this non-
traditional point of view: Instead of focusing on the kind of genetic code that causes
bloat (such as non-operating instructions in programs, subprograms functionally
equivalent to instructions, etc. [14]) we show that the island based algorithm can also
help to prevent the bloat of individuals in GP, while we also provide a reason for this
behaviour. The island models could be thus considered as a new technique for pre-
venting bloat when looking for solutions by means of GP.

A set of experiments is presented for supporting the theoretical motivation that de-
scribes the advantages of the Island Model.

This paper is structured in the following way: Section 2 describes the theoretical
motivation that justify why Island Models are of interest when fighting bloat. Section
3 briefly describes the problem studied, while Section 4 shows the results we have
obtained in a set of experiments. Finally, section 5 presents our conclusions and future
work.

2 Motivation

Langdon and Poli have established that programs size increases on average at less
than O(timeα) with α ∈ [1.2,2], and it will approach a square power law, O(t2), as the
programs get bigger (see [5,6]) In this section, for simplicity, we assume the later
O(t2) for the increase of programs size (although other α values within the range will
not change the main conclusion). We also consider that programs sizes are measured
be counting the number of nodes contained in the tree.

When a generational evolutionary algorithm is employed, time can be measured by
means of the number of generations computed, so that time and generations have
similar meanings. When generations are computed time runs. Therefore, we could
formulate O(g2) as an equivalent expression to O(t2) (g being generation computed).
We can then write:

O(t2)=O(g2) (1)

‘=’ sign according to big-Oh notation.
We also know that individuals grow when crossover and mutation operators are

applied. A GP algorithm lacking both operands -that only apply selection and copy of
individuals- will evolve to a population of identical individuals, all of them copies of
any of the individuals making up the initial population. This is because no variation
operator is employed. In this condition, the bloat phenomenon is not present, because
individuals can not change their size (the only difference between the size of indi-
viduals at the end of the algorithm is due to the difference between the individual that
has dominated the population and the remaining ones). Nevertheless this cannot be
considered bloat.

Therefore, bloat only exists when variation operators are applied to produce new
individuals, and may thus appear larger ones. The more new individuals we produce
(crossover and mutation operators are then applied), the more opportunities for bloat.
We could thus say that bloat approach O(i2) i being the number of new individuals
produced per generation, and according to equation (1):

O(t2)=O(g2)= O(i2) (2)

If the number of individuals created per generation is proportional to the number of
individuals in the population, which is usually the case, we could instead employ the
expression O(n2) -n being the number of individuals in the population- for the limit on
bloat growth. This can only be stated if mutation and crossover are applied a number
of times proportional to the size of populations. Summarising we have the following
expression:

Bloat(n) = O(t2) = O(g2) = O(i2) = O(n2) (3)

The first idea obtained from the above expression is that different population sizes
should produce different bloat values.

By analysing these results and those presented for the island model in [9], and con-
sidering that bloat(n)= O(n2), being n the size of the population, we can ask the fol-
lowing question: what would happen if we distribute all of the individuals among
several subpopulations? If we employ x subpopulations, we would have n/x indi-
viduals per subpopulation. What we will try to analyse now is whether such distribu-
tion change the bloat evolution.

The big-Oh notation from equation 3 tells us that the bloat equation for a popula-
tion with n individuals is a second degree polynomial function:

() cbnannbloatnOnbloat ++=⇒= 22)()((4)

By bloat(n) we mean a function that measure the number of nodes obtained with a
population of size n on a given problem. If the number of individuals in the popula-
tion n is not very small, then we can write:

bnannbloat +≈ 2)((5)

We are studying the bloat evolution when individuals are distributed among a set of
populations, so that the total number of individuals n remains unaltered, but we em-
ploy n/x individuals in each of the x populations. The total bloat for each of the sub-

populations is bloat(n/x); if we consider that the bloat phenomenon occurs
similarly in every subpopulation, employing equation 5 we can add up to obtain the
total bloat:

()xn
x

i
x
n bloatxbloat ·)(

1
∑

=

= (6)

Let’s now make an assumption, and then we will try to check if it can be satisfied.
Let’s consider that the island model does not affect the evolution of bloat, i.e. the total
bloat obtained when adding the bloat for each of the subpopulation correspond with
the bloat obtained when using only one population. If this is true, the following ex-
pression must be true:

())(nbloatbloatx x
n =⋅ (7)

But, if we substitute in both terms of the expression employing equation 5, we obtain:

bnan
x
nb

x
nax +=

+ 2

2

2

(8)

and equivalently:

2
2

an
x
an = (9)

And this can only be true for x=1 i.e. employing the panmictic model. Nevertheless
we first stated that we employ the island model, so that x>1. So, the left part of ex-
pression (9) will become smaller as new populations are added to the model. Given
this contradiction, we infer that the initial assumption of an equivalent global rate of
bloat in the Island Model is false.

Once we have seen that bloat rate is different when using the Island Model, and
given the left part of equation (9), we conclude that as more subpopulations we use, a
smaller bloat we will obtain. This statement is in agreement with results obtained in
[9], in which the Island Model was applied to study bloat, although no clue for the
behaviour observed was provided.

In the following sections we revisit the Island Model, for analysing again bloat
evolution in a very well-know problem employed in GP studies: the even parity 5
problem. We try to see if the predictions from the theory confirmed by experimenta-
tion.

3 Experiments

We have employed a well-known GP problem, the even parity 5 problem [2], with
several settings in order to make comparisons. The goal in the even parity 5 problem
is to generate a Boolean function that gives us the parity of a set of 5 bits. The Parallel
GP tool employed is described in [12].

Experiments have been performed in a cluster of PCs running a distribution of
Linux specially suited for clusters [1]. We show the averages values obtained over 50
runs for each of the experiments.

Table 1 shows the setting used in the experiments with the evenp-5 problem. The
maximum depths have been established identically in all of the experiments, so that
differences we may found will not be due to differences in this parameter. On the

other hand, Table 2 provides the parameter specifically employed when using the
Island Model (See [7] for a whole description of the model). The number of subpopu-
lations is different for each of the experiments performed, and this information is
provided within the graphs.

Table 1. Parameters for the Evenp Problem.

Crossover Probability 98.0
Creation Probability 1.0

Max. Depth For Creation 6
Max. Depth For Crossover 17
Swap Mutation Probability 1.0

Selection
10 individuals per

Tournament

Table 2. Parameters for the Island Model.

Generations between Migration 10
% of the population that migrate 10%

Synchrony Asynchronous model

4 Results

4.1 Panmictic Model

Before analysing results obtained with the Island Model, we have performed a couple
of experiments to check the validity of Equation (3). The equation tell us that the
bloat phenomenon must change with the size of the population, so we have firstly
performed an experiment employing different population sizes when using the evenp-
5 problem and the panmictic model.

Figure 1 presents the results that we have obtained for the evenp-5 problem. We
have performed 50 experiments for each of the curve, and then we have computed the
average length per generation. We notice that when we increase the size of the popu-
lation, the average length is larger. So, the first idea extracted from equation (3) is
confirmed by results obtained.

The second idea that can be extracted from equation (3) is simple: if we change the
number of genetic operations applied per generation, or equivalently, the number of
new individuals created per generation, we may change the bloat rate. We have thus
performed another experiment that helps us to confirm this idea for the panmictic
model.

The experiment is simple: suppose we don’t create each generation a number of
new individuals proportional to the size of the population n, but we create instead a
number of new ones proportional to n/2 or proportional to n/4. Equation (3) tell us
that bloat obtained is proportional to the number of new individuals created, and this
time, this value would not be equivalent to the size of the population.

Figure 2 shows the evolution of the average length of individuals that have been
obtained in experiments following the idea described above. Each curve corresponds
to an experiment in which a number of new individuals are created (a percentage of
the size of the population). We can easily observe that bloat is smaller when the num-

ber of new individuals created reduces (a smaller number of crossover and mutation
operations are applied). Its interesting to see that bloat is not present when no indi-
viduals are created, as we could expect (curve labelled as “without evolution”). Sev-
eral population sizes have been employed with similar results.

Length of several evenp problems

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

generations

Le
ng

th
s

2000 ind.
1000 ind.
200 ind.
50 ind.

Fig. 1. Length Evolution in the even parity 5 problem, with different populations’ sizes. The
bigger population, the larger bloat.

Lengths of evenp problem (1024 indv.)

0

500

1000

1500

2000

0 500 1000 1500 2000

generations

Le
ng

th

100.00%
50.00%
25.00%
12.50%
6.25%
3.13%
1.56%
0.78%
without evolution

Fig. 2. Length Evolution in the evenp-5 problem Size of population= 1024. Percentage values
means the number of new individuals over the size of the population created each generation.

Table 3, numerically shows the average size of individuals in different number of
generations. These results numerically show the same results provided in figures 1
and 2. Nevertheless, they help to verify quantitatively how different rates of creation
of individuals change the rate of bloat. We can notice that no bloat occurs when no
new individuals are created.

Table 3. Length evolution in the evenp problem.

Generations % new in-
div. 2000 1000 500 100

100.00% 2002.4 1483.8 1057.5 474.6
50.00% 1514.8 1074.9 760.1 335.2
25.00% 1091.2 789.6 548.1 258.5
12.50% 746.5 533.8 353.1 148.4
6.25% 541.0 374.2 270.6 38.2
3.13% 368.3 262.4 179.3 7.4
1.56% 263.6 169.4 64.0 5.1
0.78% 180.4 75.6 11.8 5.0
0.39% 65.1 10.4 5.3 5.0
0.00% 5.0 5.0 5.0 5.0

4.2 Island Model

The next step was to analyse the island model. We want to maintain the classical
setting, by generating a number of new individuals per generation proportional to the
size of the population. We want to compare bloat evolution with that observed within
the panmictic model.

Several experiments have been performed for the evenp-5 problem, employing dif-
ferent population sizes for both the panmictic model, and also employing the Island
Model and 2, 4, 10 and 20 subpopulations (equally distributing all of the individuals
among the subpopulations employed in each experiment). Figure 3 shows the average
length value obtained over 50 runs in a couple of experiment that employs 100 indi-
viduals, while figure 4 has been obtained employing 2500 individuals. We can see
that bloat reduces as a larger number of subpopulations are employed to distribute the
global population.

Fig. 3. Length evolution in the evenp-5 problem when using the Island Model.

We have not tried to study in this paper which is the best number of island to be
employed in a given experiment. This problem has been addressed before, and no

perfect recipes exist [7]. Nevertheless, the above presented results make evident a
new advantage of the Island Model that to our best knowledge has not been presented
for GP before.

Fig. 4. Length evolution in the ant problem when using the Island Model.

The results obtained with the Island Model in the problem, confirms the prediction
of the theoretical model employed in section 2: the bloat rate reduces when individu-
als are distributed among a set of subpopulations. This is a new advantage for the
Island Model: Not only it find better fitness quality, but also reduces the bloat phe-
nomenon.

The above mentioned advantage of the Island Models is now added to another im-
portant feature of island-based GP: it can be easily computed on multiprocessor sys-
tems: we just have to distribute populations among processors, and both advantages
helps together to save computing effort when GP is applied to solve optimization
problems.

5 Conclusions

A new approach for reducing the bloat problem is presented in this paper. We have
first employed a theoretical model that predicted the different rate of code growth
when the island model is employed in Genetic Programming. The model suggests that
distributing individuals among a number of subpopulation will reduce the bloat phe-
nomenon, and this reduction is larger when more subpopulations are employed.

The even partiy 5 problem has been employed as a benchmark for experimenting
the evolution of code growth. We also shown that results obtained are coherent with
those predicted by the model.

We have studied the evolution of bloat in panmictic models, when the number of
genetic operations applied each generation (and also the number of new individuals
created) is not the same as the size of the population. By means of this experiments
we have presented evidences that make us to be confident about the predictions of the
theory on the Island Model.

Finally, the study has focussed on the Island Model. We have first seen that bloat
depends on the size of the subpopulations, and then we have performed several tests
employing the Island Model, that have experimentally shown in a well-known GP
problem that distributing a population into several ones of smaller size helps to pre-
vent the bloat phenomenon.

In the future, we will present a larger report including a wider set of both test and
real-life problems corroborating conclusions presented in this paper.

References

1. Philip M. Papadopoulos, Mason J. Katz, and Greg Bruno, NPACI Rocks: Tools and Tech-
niques for Easily Deploying Manageable Linux Clusters ,. Concurrency and Computation:
Practice and Experience. Volume 15, Issue 7-8, Date: June - July 2003, Pages: 707-725.

2. J.R. Koza: “Genetic Programming. On the programming of computers by means of natural
selection”. Cambridge MA: The MIT Press. 1992.

3. W. Langdom and R. Poli. “Fitness causes bloat”. In P.K. Chawdhry et. Al., editors. Soft
Computing in Engineering Design and Manufacturing, pp 13-22. Springer London, 1997.

4. W. Banzhaf, W. B. Langdon, “Some Considerations on the Reason for Bloat”, In Genetic
Programming and Evolvable Machines, 3, 81-1, 2002.

5. W.B. Langdom, Riccardo Poli. Foundations of Genetic Programming. Ed. Springer, 2001.
“Convergence and bloat”. Pp 193-217

6. W. B. Langdon, “Quadratic Bloat in Genetic Programming”, In proceedings of the 2000
Genetic and Evolutionary Computation Conference. 2000.

7. F. Fernández, "Parallel and Distributed Genetic Programming models, with application to
logic synthesis on FPGAs", PhD Thesis. Universidad de Extremadura, February 2001.

8. F. Fernández, M. Tomassini, L. Vanneschi, "An Empirical Study of Multipopulation Ge-
netic Programming", . Genetic Programming and Evolvable Machines, Vol. 4. 2003. pp.
21-51. Kluwer Academic Publishers.

9. G. Galeano, F. Fernández, M. Tomassini, L. Vanneschi, “Studying the Influence of Syn-
chronous and Asynchronous Parallel GP on Programs Length Evolution”. In Proceedings
of Conference on Evolutionary Computation 2002.

10. Erick Cantú-Paz. “Efficient and Accurate Parallel Genetic Algorithms “. Kluwer Aca-
demic PublishersISBN 0-7923-7221-2. Volume 1 of the Book Series on Genetic Algo-
rithms and Evolutionary Computation

11. W.F. Punch: “How effective are multiple populations in Genetic Programming”. Genetic
Programming 1998: Proceedings of the Third Annual Conference, J. R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, D. Goldberg, H. Iba and R. L.
Riolo (Eds),Morgan Kaufmann, San Francisco, CA, 308-313, 1998.

12. M. Tomassini, F. Fernández, L. Vanneschi, L. Bucher, “An MPI-Based Tool for Distrib-
uted Genetic Programming”. In Proceedings of IEEE International Conference on Cluster
Computing CLUSTER2000, IEEE Computer Society. Pp.209-216. 2000.

13. T. Soule, Exons and code growth in genetic programming, In J. A. Foster et al (eds.)
LNCS 2278. pp. 142-151. Aril 2002.

14. S. Luke « Modification Point Depth and Genome Growth in Genetic Programming ». Evo-
lutionary Computation. Spring 2003. Vol 11, Num 1. pp 67.

https://www.researchgate.net/publication/220701707

	1 Introduction
	2 Motivation
	3 Experiments
	4 Results
	4.1 Panmictic Model
	4.2 Island Model

	5 Conclusions
	References

