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1 Algorithms & Complexity Lab, Department of Computer Science,
University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines
fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph

2 Research Group on Natural Computing, Department of Computer Science
and Artificial Intelligence, University of Seville,
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

{mdelamor,marper}@us.es

Abstract. In this paper we present our results in adapting a Spiking
Neural P system (SNP system) simulator to a high performance graphics
processing unit (GPU) platform. In particular, we extend our simulations
to larger and more complex SNP systems using an NVIDIA Tesla C1060
GPU. The C1060 is manufactured for high performance computing and
massively parallel computations, matching the maximally parallel na-
ture of SNP systems. Using our GPU accelerated simulations we present
speedups of around 200× for some SNP systems, compared to CPU only
simulations.
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1 Introduction

P systems are by nature distributed, parallel, and non-deterministic computing
models defined within Membrane computing, which is a research area initiated
by Gheorghe Păun in 1998 [16]. The objective, as with other disciplines of Natu-
ral computing (e.g. DNA/molecular computing, quantum computing, etc.), is to
obtain inspiration from the way nature computes to provide efficient solutions
to the limitations of conventional models of computation e.g. a Turing machine.
Membrane computing can be thought of as an extension of DNA or molecular
computing, zooming out from the individual molecules of the DNA and includ-
ing other parts and sections of living cells in the computation, introducing the
concept of distributed computing as well [16].

P systems are abstractions of the compartmentalized structure and parallel
processing of biochemical information in biological cells. There are several P
sytem variants defined in literature, each one based on the abstraction of differ-
ent aspects (or ingredients) from cells, and that many of them have been proven
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to be computationally complete [5]. There are three general classifications of P
systems considering the level of abstraction: cell-like (a rooted tree where the
skin or outermost cell membrane is the root), tissue-like (a graph connecting
the cell membranes) and neural-like (a directed graph, inspired by neurons in-
terconnected by their axons and synapses). The last type refer to Spiking Neural
P systems (in short, SNP systems), where the time difference (when neurons
fire and/or spike) plays an essential role in the computations [11]. An interesting
result of P systems is that they are able to solve computationally hard problems
(e.g. NP-complete problems) usually in polynomial, often linear time, but usually
requiring exponential space as trade off [16].

Due to the nature of P systems, they are yet to be fully implemented in
vivo, in vitro, or even in silico. Thus, practical computations of P systems are
driven by silicon-based simulators. There are several simulators for P systems
implemented over different software and hardware technologies [7]. In practice,
P system simulations are limited by the physical laws of silicon architectures,
which are often inefficient or not suitable when dealing with P system features,
such as massive parallelism. However, in order to improve the efficiency of the
simulators, it is necessary to exploit current technologies, leading to solutions in
the area of High Performance Computing (HPC), such as accelerators or many-
core processors. In this respect, Graphics Processing Units (GPUs) have been
consolidated as accelerators thanks to their throughput-oriented and highly-
parallel architecture [9].

Several simulators for P systems have been developed over highly parallel plat-
forms, including reconfigurable hardware as in FPGAs [14], CPU-based clusters
[6], as well as in NVIDIA corporation’s Compute Unified Device Architecture
(CUDA) enabled GPUs [4,3]. These efforts show that parallel devices are very
suitable in accelerating the simulation of P systems, at least for transition and ac-
tive membrane P systems [3,4]. Efficiently simulating a Spiking Neural P (SNP)
system, the P system variant of interest in this work, would thus require new
efforts in parallel computing. Since SNP systems have already been represented
as matrices due to their graph-like properties [18], simulating them in parallel
devices such as GPUs is the next natural step. Matrix algorithms are well known
in parallel computing literature, including GPUs [8], due to the highly paralleliz-
able nature of linear algebra computations mapping directly to the data-parallel
GPU architecture.

An SNP system simulator using CUDA was presented in [1] and [2]. These
previous works however were executed in GPUs of workstations only, hence we
intend to do better. We adapt and analyse the performance of this simulator on a
high-end GPU NVIDIA Tesla C1060, designed ground-up for parallel computing
and HPC, by simulating SNP systems of different sizes. A final simulator for
SNP systems using CUDA would allow the designers to check their models, and
perform other complex computations such as computing backwards.

This paper is organized as follows: Section 2 and 3 provide backgrounds for
CUDA and SNP systems, respectively. The design of the simulator and simula-
tion results are given in Section 4 and 5, respectively.



2 GPU Computing and NVIDIA CUDA

As many-core based platforms, GPUs are massively data-parallel processors
which have high chip scalability in terms of processing units (cores, threads),
and high bandwidth with internal GPU memories. The architectural difference
between CPUs and GPUs is the reason why the latter offer larger performance in-
crease over CPU only implementation of parallel code working on large amounts
of input data [12]. The main advantages of using GPUs are their low-cost, low-
maintenance and low power consumption relative to conventional parallel clus-
ters and setups, while providing comparable or improved computational power
[10]. For example, the latest GPUs of NVIDIA with 512 cores are readily avail-
able at consumer electronics stores for around $500. GPUs can be programmed
using a framework introduced by NVIDIA in 2007 called CUDA [12]. CUDA is
a programming model and hardware architecture for general purpose computa-
tions in NVIDIA’s GPUs [12]. The programmer can use CUDA for free of charge
(including the compiler, driver, SDK, libraries, etc), and is easy to learn because
it’s an extension of the C language.

CUDA implements a heterogeneous computing architecture, where two differ-
ent parts are often considered: the host (CPU side) and the device (GPU side).
The host part of the code is responsible for controlling the program execution
flow, transferring data to and from the device memory, and executing specific
codes, called kernel functions, on the device. The device acts as a parallel co-
processor to the host. The host outsources the parallel part of the program as
well as the data to the device, since it is more suited to parallel computations
than the host. The kernel code is executed in the device by a set of threads.
They are organized into a three-level hierarchy, from highest to lowest: a grid
of thread blocks, blocks of threads, and threads which can share data through
shared memory and can perform simple barrier synchronization [12,15].Using
kernel functions, the programmer can specify the GPU resources: up to 65,535
blocks and up to 512 threads per block.

3 Spiking Neural P Systems

Now we first formally define SNP systems as computing models. An SNP system
without delay, of degree m ≥ 1, is of the form

Π = (O, σ1, . . . , σm, syn, in, out),

where:
[1.] O = {a} is the alphabet made up of only one object a, called spike; [2.]

σ1, . . . , σm are m number of neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
(a) ni ≥ 0 gives the initial number of spikes (a) contained in neuron σi; (b)

Ri is a finite set of rules of the following forms:



(b-1) E/ac → ap, are Spiking rules, where E is a regular expression over a,
c ≥ 1, and p ≥ 1 number of spikes are produced (with the restriction c ≥ p),
transmitted to each adjacent neuron with σi as the originating neuron, and
ac ∈ L(E); ak → ap, is a special case of (b-1) where L(E) = {ac}, k = c, p = 1;
(b-2) as → λ, are Forgetting rules, for s ≥ 1, such that for each rule E/ac → ap

of type (b-1) from Ri, as /∈ L(E); [3.] syn = {(i, j) | 1 ≤ i, j ≤ m, i �= j } are
the synapses i.e. connection between neurons; [4.] in, out ∈ {1, 2, . . . , m} are the
input and output neurons, respectively.

The system works as follows: At any given time, a σi (neuron) should use
exactly one rule only, if and only if the condition ac ∈ L(E) is met. This condition
means as long as the multiplicity of spikes is in the language generated by the
regular expression E, a rule (or several of them) is (are) applicable. The rule to
be used or applied is chosen non-deterministically. If a spiking rule is used, after
rule application c spikes are consumed in the σi, producing p number of spikes
to all other σj such that (i, j) ∈ syn. If a Forgetting rule is applied, s number of
a are removed from σi and no a or spike is produced. A global clock is followed
by the system. Parallelism is at the system level, although each neuron works
sequentially.

Fig. 1. Π1 generates the set N - {1}. Π1 outputs are the time differences between the
first spike of σ3 and its succeeding spikes. A total ordering of the neurons is seen (σ1

to σ3) including a total ordering of the rules (1 to 5).

We designate the SNP system shown in Figure 1 as Π1 [18].For our simulations
we use 2 additional systems: Figure 8 in [11] and Figure 14 in [11] which we
designate as Π2 and Π3 respectively.

Next we present the matrix representation of an SNP system and its com-
putations. This representation makes use of the following vectors and matrix
definitions:

Configuration vector. Ck is the vector containing all spikes in every σ on the kth
computation step/time. C0 is the initial Ck of the system.

Spiking vector. Sk shows, at a given Ck, if a rule is applicable (having value 1 )
or not (having value 0 instead).

Spiking transition matrix. MSNP is a matrix comprised of aij elements where
aij is given as: −c if rule ri is in σj and is applied consuming c spikes; p if rule



ri is in σs (s �= j and (s, j) ∈ syn and is applied producing p spikes in total; 0
if rule ri is in σs (s �= j and (s, j) /∈ syn. The spiking transition matrix MΠ1 is
shown in equation (1).

MΠ1 =

⎛

⎜
⎜
⎜⎜
⎝

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

⎞

⎟
⎟
⎟⎟
⎠

(1)

Equation (2) provides the configuration vector at the (k + 1)th step:

Ck+1 = Ck + Sk · MΠ (2)

For Π1 C0 =< 2, 1, 1 >. and we have the S0 =< 1, 0, 1, 1, 0 > given its C0. Note
that a second alternative S′

0 =< 0, 1, 1, 1, 0 >, is possible if we use rule (2) over
rule (1) instead (but not both at the same time). V alidity in this case means
that only one among several applicable rules is used and thus represented in the
Sk. The C0, S0 for Π2 and Π3 can be similarly shown.

4 Parallel SNP System Simulation on GPU

We designate the improved SNP system simulator in this paper as snpgpu-sim4
which is an update to snpgpu-sim3 produced in [2]. Among the improvements
of snpgpu-sim4 over snpgpu-sim3 include the use of multiple thread-blocks to
accomodate matrices more than 512 elements, and a more streamlined part of
the simulation code for handling the relationships between Ri, Ck, and Sk. This
section will further expound on these, among other things.

The simulator takes in 3 inputs: Mf , C0f , and Rf which are the file counter-
parts of M , C0, and Ri, respectively. Skf is the file counterpart of Sk, which is
produced by the simulator itself once it is run. PyCUDA was used in addition to
conventional Python and CUDA C languages. PyCUDA is a Python wrapper for
NVIDIA CUDA C and C++, enabling programmers to create GPU software us-
ing Python, and has been used for high performance computing [13]. The inputs
are text files with delimiters, between rule to another rule in a σ and between
σs themselves. The elements of M are entered in row-major order format into
the file, and are mapped onto each thread of a thread block, within the block
grid as shown in Figure 3.

Figure 2 shows an instance of host-device interaction. The host functions se-
quentially and calls the kernel function/s. The device is split up into a grid of
thread blocks, each with their own threads, and operate on the data in a single
program, multiple data (SPMD) programming style [12]. The simulation algo-
rithm is shown in Algorithm 1, which also indicates where a specific part of the
simulation runs on (either host or device parts). Part I loads the 3 initial inputs
and the succeeding inputs from their file counterparts, checking for formatting
and pre-processing them for Part II. Part II, from Part I’s outputs and from



Fig. 2. Diagram showing a single run of the simulation flow. The host runs sequentially
while the device is made up of a grid of thread blocks, each with their own threads
operating in paralel.

Require: Input files: Ck, M, r.

I. (HOST) Load input files.Mf , Rf are loaded once only. C0f is also loaded once,
then Ckfs afterwards.

II. (HOST) Determine if a rule in Rf is applicable based on the number of spikes
present in each σ seen in Ckf . Then generate all valid and possible spiking
vectors in a list of lists Skf .

III. (DEVICE) Run kernel function on all valid and possible Skfs from the
current Ckf . Produce the next file configuration counterparts of Ck + 1s and
their corresponding Skfs.

IV. (HOST+DEVICE) Repeat steps I to IV, till at least one of the two Stopping
criteria is encountered.

Algorithm 1. Overview of SNP system simulation algorithm

Ckf and Rf , produces all the valid and possible Skfs. Part II produces all
valid and possible Skf files as follows: For each ni of σi, the {1,0} strings are
produced on a per neuron level. For example, for Π1 we have n1 = 2 for σ1. Now
we have σ1 strings ‘10’ (choose to use R1 instead of R2) and ‘01’ (choose to use
R2 over R1). We only have one string for σ2, the string ‘1’, since σ2 has only
one rule and it is readily applicable. Neuron σ3 produces only one string also,
‘10’, since only one rule is applicable given its n3 = 1. Only R4 is used in σ3

and not R5. Once all the neuron level {1,0} strings are produced, the strings are
exhaustively paired up with the other strings in the other σs from left to right as
the ordering is important. The output therefore of Part II in this example given
Ck =< 2, 1, 1 > are (1,0,1,1,0) and (0,1,1,1,0). Elements of the input files are
treated as strings up to this point, because of the the concatenation and regular
expression checking processes, among others.

Part III now treats the input elements as integral values. Equation 2 is per-
formed in parallel such that each thread is either adding or multiplying a (matrix
or vector) element. Once the Ck+1 are produced by the device, the results are



moved back to the host. Part IV then checks whether to proceed or to stop based
on 2 stopping criteria for the simulation: (I) if a zero vector (vector of zeros)
is encountered, (II) if the succeeding Cks have all been produced in previous
computations. Both (I) and (II) make sure that the simulation halts and does
not enter an infinite loop.

Fig. 3. Different representations of a given matrix X: (a) original matrix form (b)
linear array in row-major order form, (c) using CUDA thread blocks in a single thread
block grid. The linear array shows how the array’s elements are laid out: a (4× 4) grid
made up of (2 × 2) thread blocks. Each thread in a thread block computes a unique
element of the array in parallel, and all of them execute the same kernel function.

5 Simulation Results and Observations

The simulations in this paper were executed using an Intel Xeon E5504 quad
core CPU running at 2 GHz per core (there are two of these CPUs so there are
effectively 8 cores). Each core has a 4MB cache. The GPU is an NVIDIA Tesla
C1060 high performance GPU with 240 streaming-processor (SP) cores organized
as 30 streaming multiprocessor (SMs) and has 4GB of memory for storing data
used by the kernel functions. A 64-bit Ubuntu 10.04 Linux operating system
was used to host the simulations. A sequential i.e. CPU only version of snpgpu-
sim4 was created and compared to snpgpu-sim4. We designate this CPU only
simulator as snpcpu-sim4. snpcpu-sim4 is identical to snpgpu-sim4 except for the
computation of equation (2). Figure 4 shows the running times of the simulators
with Π1 as the SNP system.

The run times per SNP system are shown using three different time measure-
ments: the real time, user time, and sys time taken using the Ubuntu Linux com-
mand time, based on the Unix command of the same name. The real time is the
time that has elapsed during the run of the program (a ‘wall clock’ time measure-
ment). The user time is the time spent by the program running in the CPU while
in user mode. The sys time is the total CPU time used by the OS on behalf of the
program that is being measured, and while the process is in kernel mode. A pro-
gram or process in kernel mode means the process can use system calls or services
such as allocating memory for itself, including hardware access (a more privileged



execution mode) while being in user mode means the program is usually restricted
to its initial resources only (less privileged execution mode) [17].

In Figure 4 we see the large improvement of snpgpu-sim4 over snpcpu-sim4, as
expected. As expected also, snpcpu-sim4 used up more time from the CPU as seen
in the real and sys times. It’s worth mentioning that snpgpu-sim4 used a bit more
of the CPU in the user times (though still significantly less than snpcpu-sim4 ) be-
cause snpgpu-sim4 still needed some work from the CPU to process the inputs.
Another noteworthy point is that with all three runtime figures (Figure 4 to 6) the
user run time is significantly far less compared to the other two time measurements
because it only measures the time used by the program alone in the CPU, and no
other programsare involved in the timemeasurement.Table 1summarizes averages
of the kernel function runtimes and the CPU counter parts of the kernel functions
as well as the average speedups. The maximum size, in terms of the number of neu-
rons (Cknum) and rules (Rnum) of a system, that the current setup can simulate is
given by Cknum = 4GBytes/(16Bytes + 4Bytes× Rnum).

Fig. 4. Runtime graph of snpgpu-sim4 versus snpcpu-sim4 for Π1 showing (a) real, (b)
user, and (c) sys times usage

Fig. 5. Runtime graph of snpgpu-sim4 versus snpcpu-sim4 for Π2 showing (a) real, (b)
user, and (c) sys times usage



Fig. 6. Runtime graph of snpgpu-sim4 versus snpcpu-sim4 for Π3 showing (a) real, (b)
user, and (c) sys times usage

Table 1. Summary of averages: kernel and CPU times, and speedup. All time mea-
surements are in seconds, except for KRTA which is in microseconds. RTSA is Real
Time Speedup Average, UTSA is User Time Speedup Average, STSA is System Time
Speedup Average. KRTA is the Kernel Runtime Average, the amount of time the kernel
function spent running inside the GPU/device. CRTA is the CPU Runtime Average,
the amount of CPU time used by the CPU only (i.e. sequential) counterpart of the
kernel function.

RTSA UTSA STSA KRTA CRTA

Π1 156.1439811343 3.5999180999 178.3754195194 107.33688871 μs 3.8535563

Π2 3.2014649226 0.9619771863 4.3513513514 216.442000587 μs 3.938559

Π3 67.0445847755 8.4018691589 192.8963174046 153.418998544 μs 3.9137748
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