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Abstract  

In response to nitrogen deficiency some cyanobacteria develop heterocysts, a terminally 

differentiated cell type, specialized for the fixation of atmospheric nitrogen. In Nostocales 

this differentiation process is controlled by two major regulators, NtcA and HetR, but 

additional unknown factors are likely to be involved as well. In the context of a genome-

wide search for potential non-coding RNAs, we identified an array of 12 tandem repeats 

that is transcribed in high amounts when cells enter conditions that trigger cell 

differentiation and switch to nitrogen fixation. The main accumulating transcript, which 

we suggest designating NsiR1, has properties similar to regulatory non-coding RNAs. In 

Anabaena sp. PCC 7120, it is about 60 nt in length, has a very distinct predicted 

secondary structure and is expressed very early and transiently after nitrogen step-

down. Moreover, its expression requires HetR and NtcA, and is restricted to cells that 

are differentiating into heterocysts, clearly placing NsiR1 within the regulon that controls 

the switch to nitrogen fixation and heterocyst formation. The genomic arrangement of 

NsiR1, located upstream of hetF, a gene whose product is involved in heterocyst 

formation, is conserved in all five Nostocales whose genomes are completely 

sequenced. Additionally, we detected NsiR1 expression in 19 different heterocyst-

forming cyanobacteria. Our data suggest that every repeat is a complete transcriptional 

unit furnished with a cell-type specific promoter and a Rho-independent terminator, that 

gives rise to a very high NsiR1 transcript level. NsiR1 is the first known bacterial non-

coding RNA that is specifically upregulated in response to nitrogen step-down. 

 

Keywords: cell differentiation, cyanobacteria, non-coding RNAs, heterocysts, nitrogen 

fixation
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Introduction 

Cyanobacteria are oxygen-producing photosynthetic organisms that are responsible for 

over half of the global nitrogen fixation in both aquatic and terrestrial environments.1,2 

Nitrogenase, the enzyme that transforms dinitrogen into ammonium, is extremely 

sensitive to oxygen.3 Therefore, nitrogen-fixing cyanobacteria spatially or temporally 

separate nitrogen fixation from oxygenic photosynthesis.2,4 In some filamentous 

cyanobacteria such as Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120; 

from here on Anabaena 7120), nitrogen fixation occurs in heterocysts, specialized cells 

that create a local microaerobic environment.5 The developmental program that results 

in the differentiation of a vegetative cell into a heterocyst requires the sequential 

activation of a large number of genes involved in regulatory, structural, or enzymatic 

aspects of heterocyst differentiation and function (recent reviews6-10) and depends on 

two major regulators, NtcA, the global nitrogen control protein11,12 and HetR13,14, a 

positive-acting factor that exhibits protease15,16 and DNA binding17 activities in vitro. This 

process is further modulated by a plethora of additional regulators, one of them HetF, 

controlling the level of HetR,18 and additional unknown factors are likely to participate in 

this process. 

The genomes of heterocyst-forming cyanobacteria are unusual in the fact that up to 

1.5% of their intergenic sequences (7.5% in Nostoc punctiforme19) comprise tandem 

repeats that are at least 20 nt in length.19,20 Tandem repeats are very well studied and 

occur at a high frequency in eukaryotic non-coding regions,21 with eukaryotic 

microsatellites being one of the best-characterized classes. In contrast, tandem repeats 

have seldom been reported in bacteria22 and, except for the class of Clustered Regularly 
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Interspaced Short Palindromic Repeats (CRISPR),23 have not been functionally 

characterized. CRISPR-derived non-coding RNAs guide antiviral defense in 

prokaryotes,24 illustrating that some bacterial direct repeats are biologically highly 

relevant.  

Processes leading to the differentiation of eukaryotic cells are frequently controlled by 

regulatory RNA molecules such as miRNAs,25 whereas not a single such case has yet 

been reported for bacteria. However, regulatory RNAs in bacteria are well known to 

control adaptive responses to virtually all possible stress conditions.26  

Here, we present a widely conserved tandem array of sequence repeats that become 

expressed upon nitrogen deprivation specifically in cells that are differentiating into 

heterocysts. These repeats are located upstream of hetF, whose product is required for 

the differentiation of heterocysts in Anabaena 712018,27 and Nostoc punctiforme28, as 

well as for the establishment of a functional symbiosis between Nostoc punctiforme and 

the bryophyte Anthoceros punctatus.29 The main transcript originating from the repeats 

has properties typically associated with regulatory non-coding RNAs and also showed 

up in a genome-wide search for such elements focusing on possible Rho-independent 

terminators in intergenic regions. We detected this transcript in 19 different 

cyanobacteria belonging to the classes Nostocales and Stigonematales, and 

characterized it in more detail in Anabaena 7120.   

 

Results 

A genome-wide prediction of possible Rho-independent terminators identifies a 

distinct set of conserved direct repeats upstream of hetF  
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To identify non-coding RNAs that could potentially be involved in the differentiation of 

heterocysts, a genome-wide prediction of Rho-independent terminators within all 

intergenic regions of Anabaena sp. PCC 7120 was carried out. Such a strategy has 

previously been productive for the discovery of unannotated transcripts in intergenic 

spacers of the cyanobacterium Synechocystis sp. PCC 680330 and resulted herein in the 

prediction of 678 possible Rho-independent terminators (Supplementary Table 1). 

Several of these are just transcriptional terminators of annotated protein-coding genes, 

such as element i1848_1 (positions 4519541-4519575 in the genome sequence), which 

is located 29-64 nt directly downstream of psbA (alr3742) and therefore identified as its 

Rho-independent terminator. Other elements are located further away or in inverse 

orientation with respect to neighboring annotated genes. One such example is element 

i18_1 (positions 56491-56529), which is in the same orientation as the two adjacent 

genes, however, 208 nt downstream from the closest gene. Indeed, element i18_1 is the 

terminator of previously identified ncRNA Yfr1.31  

Closer inspection of those predicted elements located proximal to genes involved in 

heterocyst differentiation, identified a whole series of closely spaced possible 

terminators situated upstream of the heterocyst differentiation gene hetF, but in the 

reverse orientation (Figure 1). The sequence of these predicted terminators (i1605_2 to 

i1605_12 in Supplementary Table 1) is, in eight cases, identical. In fact, these elements 

belong to a series of direct sequence repeats, which are conserved and found at a 

corresponding position in the genomes of all other sequenced Nostocales (Figure 1). 

The repeat sequences present in the different cyanobacteria are not identical, with the 

highest divergence found between Anabaena 7120 and Nostoc azollae, and exhibit a 
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higher degree of conservation towards the second half of each repeat (an alignment of 

all 51 repeat sequences from sequenced filamentous strains is shown in Supplementary 

Figure S1). For each strain, the peripheral repeats are less conserved than the central 

ones. In phylogenetic analyses, the central repeats 3-9 exhibit a tendency to cluster 

species-specifically together, whereas the location of repeats, 1, 10, 11 and 12 is 

consistent with the phylogenetic relationships among the investigated species 

(Supplementary Figure S2).  

In the genome of Anabaena 7120, the repeats start on the reverse strand 225 nt 

upstream of the annotated reading frame for hetF. Repeats 3-9 are 133-134 nt long and 

are almost identical (Figure 2), whereas repeats 1, 2, and 10-12 are less conserved, as 

observed in the interspecies comparison. Repeats 1, 2, and 12 each include a short 

sequence insertion that is not present in the other repeats, and thus they are slightly 

longer than repeats 3-11 (Figure 2). Due to the proximity to hetF, an overlap between 

the repeats and the hetF  

the hetF transcriptional start site (TSS) at position -403 with respect to the hetF start 

codon. Thus, the hetF  overlaps repeat 1 and part of repeat 2 (Figures 1 and 2).  

 

The direct repeats upstream of hetF are transcribed as a small non-coding RNA 

and its expression is under the control of NtcA and HetR  

The association of the repeats with hetF points to a possible role related to heterocyst 

differentiation. Therefore, expression of the region was determined under a nitrogen 

step-down time course. Indeed, a rapidly induced and abundant transcript of about 60 nt 
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was observed upon nitrogen deprivation, with a maximum expression observed 10 - 12 

h after nitrogen step-down (Figure 3a), several hours before heterocyst differentiation is 

complete (20-24 h after N step-down under these conditions). As the expression of this 

RNA was induced under nitrogen depletion, we designated it as Nitrogen Stress Induced 

RNA 1 (NsiR1). Two less abundant bands of ~200 and ~53 nt were co-induced with 

NsiR1. In a longer time course, the expression of NsiR1 and of co-induced bands 

decreased as heterocyst maturation progressed (Figure 3b). The expression of NsiR1 

was further analyzed in mutants of the two major regulators governing responses to 

nitrogen deficiency in Anabaena 7120, the global nitrogen regulator NtcA (strain 

CSE211) and the cell differentiation regulator HetR (strain 21632). Compared to the wild-

type, the ntcA mutant displayed very weak NsiR1 expression (only visible in 

overexposed images; Figure 3c), whereas the hetR mutant showed no expression at all 

(Figures 3a and 3c). As similar repeats are detectable in all 5 Nostocales for which a 

genome sequence is available (Figure 1), we evaluated the expression of NsiR1-like 

RNAs in additional heterocyst-forming cyanobacteria belonging to the cyanobacterial 

sections IV and V senso Rippka et al. (1979).33 In all cases a small RNA in the range of 

~53 to ~70 nt was detected (Supplementary Figure S3), suggesting the presence of an 

NsiR1-like transcript in, altogether, 19 different species. 

In the primer extension assays carried out with primer T4 (location of primers in Figure 

2) and using total RNA from Anabaena 7120, two extension products of 94 nt (less 

abundant) and 155 nt (more abundant) were obtained (Figure 3d) that fit two previously 

established criteria for NsiR1 transcripts, namely, they were transiently induced upon 

nitrogen step-down and were absent in a hetR mutant but barely detectable in an ntcA 
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mutant (cf. Figures 3a and 3c). mapped 72 and 133 nt 

. This finding indicates that the major  

corresponds 

primer. The identification of these two extension products was confirmed using a 

different primer (see position of primer 9 in Figure 2). In this case, the sizes of the 

products were 100 nt (less abundant) and 161 nt (more abundant), leading to the same 

r subtracting the length of the primer (Figure 3d). It 

should be taken into account that, because both primer T4 and 9 are complementary to 

sequences in all repeats, the primer extension products could correspond, in principle, 

to transcripts originating at any of the 12 repeats found in the chromosome of Anabaena 

7120. Precise determination of TSS for the promoter of one particular repeat requires 

the analysis of gfp transcripts originating from promoter-probe vectors, as shown below 

in Figure 5. 

 

Expression of NsiR1 is specific for (pro)heterocysts 

To further characterize expression of NsiR1, a fragment containing all 12 repeats 

(except for the last terminator, see white triangle in Figure 2) was cloned under the 

copper-inducible promoter of the petE gene from Anabaena 7120. As a reporter of 

transcription, a gfp gene, coding for the green fluorescent protein (GFP), was inserted 

downstream of the repeats, yielding pCSAM207 (Figure 4a). For comparison, control 

cell lines were constructed carrying promoter-probe plasmid pCSAM201 (containing a 

promoterless gfp) or plasmid pCSAM202 (containing a PpetE::gfp fusion) (Figure 4a). 
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After conjugation into Anabaena 7120, the control strain bearing promoter-probe 

plasmid pCSAM201 showed very low, background fluorescence, whereas the strain 

bearing plasmid pCSAM202 showed strong expression of GFP in all cells of the 

filaments in the presence of copper, which induces transcription from the petE promoter, 

but not when the cells were grown in the absence of copper. This GFP fluorescence was 

observed both in the presence and in the absence of combined nitrogen (not shown).  

Surprisingly, the strain bearing plasmid pCSAM207 (transcriptional fusion of all 12 

repeats to gfp under petE promoter control) exhibited, despite the presence of copper, 

very weak expression of gfp when combined nitrogen was present (not shown), but 

showed strong cell-specific fluorescence upon nitrogen deprivation (Figure 4b). 

Moreover, the observation of filaments at different time points after nitrogen step-down 

indicated that GFP fluorescence appeared exclusively in specific cells that were 

becoming heterocysts (proheterocysts), as well as in mature heterocysts. Based on 

these observations, we concluded that transcripts initiated at the petE promoter in 

pCSAM207 did not include the gfp gene and that multiple arrays of the predicted 

terminators within the repeats were indeed terminating those transcripts. Interestingly, 

these data suggest the presence of nitrogen-regulated, cell-specific promoter(s) within 

the repeats, whose transcriptional activity reaches the gfp gene. In order to further test 

this possibility, a fragment containing repeats 10, 11, and 12 (without the last terminator, 

see Figure 2) was inserted into the promoter-probe vector pCSAM201 yielding 

pCSAM208 (Figure 4a). pCSAM208 was transferred into the wild-type strain and mutant 

derivatives CSE2 (ntcA) and 216 (hetR). As shown in Figure 4c, cell-specific GFP 

fluorescence was observed in the wild-type strain bearing plasmid pCSAM208, but not 
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in any of the two mutant strains, confirming that the expression from the NsiR1 

promoter(s) was cell-specific and controlled through NtcA and HetR.  

 

Predicted NsiR1 secondary structure and model for NsiR1 transcription  

Because, as mentioned above, primers complementary to the repeats can anneal to any 

of them, and in order to precisely define the TSS for one single particular repeat, 

of gfp transcripts were analyzed in strains bearing pCSAM207. Consistent with the data 

obtained by fluorescence microscopy, gfp transcripts were not detected in samples from 

ammonium-

(see TSS (11) and TSS (12) in Figure 2) in repeats 11 and 12 (located closer to the gfp 

gene), could be readily identified in samples obtained after 6-8 hours upon nitrogen 

depletion (Figure 5a). In fact, the position of both TSSs is consistent with the TSS 

previously estimated for transcripts originating at the repeats present in the chromosome 

(Figure 3d). Additionally, extension products corresponding to positions located around 

the predicted terminator for repeat 11 were observed. These signals could have resulted 

from premature stops of the primer extension at the secondary structure of the 

terminator stem-loop. However, processing of long transcripts covering more than one 

 

that could correspond to transcripts starting upstream from repeat 11 were observed.  

transcripts. All sequences obtained resulted from transcripts corresponding to the 

conserved repeats (repeats 3-9) and ended with 5, 6, or 7 uridine residues after the 
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predicted terminator loop. Anabaena yielded an 

NsiR1 sequence of 

-(U)GGUAGAUGCACCCUGAUAACUAACUCCCCUAGCUGGCUAACACCGACUGG

GGGCUUUUU(UU)- -9. 

This sequence fits the observed length of the most abundant NsiR1 band in northern 

blots. The predicted secondary structure of NsiR1 is shown in Figure 6a. It consists of a 

short stem-loop at the 5' end, the predicted Rho-

and a likely unpaired region in between. A prediction for a consensus secondary 

structure based on the 59-62 nt region that is conserved in all available Nostocales (see 

alignment in Supplementary Figure S1) is presented in Supplementary Figure S4.  

The observation that both northern hybridization with an oligonucleotide probe (Figure 3) 

and primer extension analysis (Figures 3d and 5a) identify precursors that are longer 

than one NsiR1 unit, suggested that some read-through occurs in the repeat-internal 

terminators. Based on all available data, we suggest a simple model for the transcription 

of NsiR1 (Figure 6b). Note that, although only three repeats are included in Figure 6b, 

this model can be extended to include all 12 repeats. The model depicts a situation in 

which, for example, three arbitrarily chosen consecutive repeats are mostly transcribed 

as single NsiR1 molecules. In addition, a minor proportion of transcripts that are not 

terminated at the corresponding terminator might actually end at the terminator for the 

next repeat (leading to transcripts of about 200 nt, as those observed in northern blots). 

Such molecules would contain two NsiR1 units and might eventually be processed by 

RNases recognizing the terminator loop as substrate. In fact, signals that can be 

interpreted as premature stops in primer extension assays but might also result from 
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such processing were observed in primer extension experiments carried out both with 

oligonucleotides for the repeats (cf. bands of 94 and 100 nt in Figure 3d) and for the gfp 

gene in pCSAM207 (band marked with an asterisk in Figure 5a).  

 

Discussion 

Filamentous cyanobacteria exhibit complex developmental alternatives. The 

differentiation of akinetes, hormogonia and heterocysts requires precise regulatory 

circuits leading to alternative transcriptional patterns under certain growth conditions 

and/or in specific cells of filaments. The molecular mechanisms leading to cell-specific 

expression of genes whose products are involved in early steps of differentiation are, to 

a large extent, unknown. The initiation of heterocyst differentiation is controlled by a 

regulatory loop established by NtcA, the global nitrogen regulator, and HetR, a master 

regulator of cellular differentiation. In response to nitrogen deficiency, induction of the 

expression of ntcA and hetR is mutually dependent on each other34 and takes place 

mostly in cells that are in the process of differentiation.13,35 Because non-coding RNAs 

are frequently involved in regulation of processes leading to cell differentiation of 

eukaryotic cells, we have carried out a genome-wide search in order to identify non-

coding RNAs that could be involved in the process of heterocyst differentiation. The 

search strategy was focused on the prediction of Rho-independent terminators within all 

intergenic regions of Anabaena 7120. We have previously used such a simple strategy 

in the unicellular cyanobacterium Synechocystis sp. PCC 6803, and in that case, further 

rigorous testing of the prediction results by using tiling microarrays indicated that this 
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approach is relatively successful for the discovery of unannotated transcripts originating 

from intergenic spacers, whereas it is only partially productive for the identification of cis-

antisense RNAs.30 Accordingly, we expect the number of 678 predicted elements in 

Anabaena 7120 to be an underestimation of the real number of Rho-independent 

terminators in this organism, whereas the number of false positives is probably low. In 

the following we focused on a series of repeated elements located in the intergenic 

region all3545-hetF that are transcribed as a short non-coding RNA that we have named 

NsiR1.  

In a recent survey of the occurrence of certain repeats in the Nostocales, eight families 

of repeats were described.19 Those repeats are small, in the range of 21 to 27 nt, 

dispersed, and NsiR1-encoding repeats do not belong to this class. Another class of 

repeats that has recently gained substantial attention are CRISPRs.23 Several CRISPRs 

were identified in Anabaena 7120,36 but the NsiR1 region does not belong to any of 

them. The observation that the structure of the NsiR1 region is strikingly similar within 

the available genome sequences of heterocystous cyanobacteria and that NsiR1-like 

transcripts are detected in 19 different strains suggests that NsiR1 plays some functional 

role in these cyanobacteria. When comparing the repeat sequences of Anabaena 7120 

with those available from other Nostocales, the alignment can be split into two 

segments. The second half (65-70 nt) of each repeat is highly conserved (Figure 2 and 

Supplementary Figure S1) while the first half shows various levels of conservation. 

According to northern blots the major product of transcription of the repeated elements 

corresponds to the highly conserved second half of the repeats, consistent with the 

results of primer extension assays, which suggest, at least for repeats 11 and 12, that 
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there is one, centrally located, TSS per repeat

transcripts are in fact terminated at the predicted Rho-independent terminators located 

at the end of each repeated segment. Therefore, the recognition sequences for the 

transcriptional machinery would likely be located within the first half of the repeated 

elements. Because these sequences exhibit different degrees of sequence divergence, 

it is possible that some repeats are not transcribed or become activated under 

conditions that were not tested herein. In fact, transcription from repeat 10 was not 

observed in strains bearing pCSAM207. Expression of NsiR1 takes place specifically in 

cells that are in the process of differentiation, and the identified promoters are regulated 

by NtcA and HetR. However, similar to other heterocyst-specific promoters that depend 

on both NtcA and HetR,34,37 no sequences matching the consensus for NtcA-activated 

promoters (for a review see Luque and Forchhammer (2008))38 could be identified 

upstream of the TSS(s), suggesting that the observed regulation is likely mediated by 

some NtcA-regulated factor rather than by NtcA itself. 

The abundance of NsiR1 is very high during the first steps of heterocyst differentiation. 

While it is not yet clear why such a high concentration of this RNA is required, one 

possibility is that the effect of gene dosage has driven the amplification of the NsiR1 

region in order to generate a high amount of NsiR1 during a short time window early in 

the differentiation process. It is worth noting that the attempts to overexpress NsiR1 from 

the copper-inducible petE promoter did not significantly increase NsiR1 levels (not 

shown). We observed that, even at time-points in which NsiR1 expression is highest, gfp 

transcript levels in filaments bearing pCSAM202 (in which gfp is transcribed from the 

petE promoter in all cells of the filaments) are similar to those observed in filaments 
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bearing pCSAM207 (in which gfp is transcribed from TSS (11) and TSS (12) specifically 

in differentiating cells, that account for less than 10 per cent of all cells). Thus, the 

cumulative transient per-cell transcription from the up to 12 NsiR1 promoters per 

chromosome is likely to be much higher than that from the petE promoter in our 

constructs.  

The observed regulation and cell-specific expression, together with the observation that 

the position of NsiR1-encoding repeats is conserved, strongly points to a function of 

NsiR1 in the context of heterocyst development. However, the targets of NsiR1 are 

completely unknown at present. Unfortunately, because, at least in Anabaena 7120, 

repeat 1 overlaps with  of hetF, it is not possible to delete all NsiR1-encoding 

repeats without simultaneously altering expression of hetF, a gene whose encoded 

protein is involved in the regulation of cellular levels of HetR.18 Regulation of gene 

expression through antisense RNA has previously been described in Anabaena 7120, 

contributing to the control of furA expression, which codes for the ferric uptake regulator 

FurA.39 In the unicellular cyanobacterium Synechocystis sp. PCC 6803, the antisense 

RNA IsrR controls the expression of the isiA gene under a variety of stress conditions.40 

More recently, the number of experimentally confirmed antisense RNAs in 

Synechocystis rose to 73.30 Therefore, it is one possibility that the sequence 

complementarity between NsiR1 and the hetF is functionally relevant.  

Another possibility is that NsiR1 acts on one or several mRNAs in trans. The correct 

computational prediction of the targets of bacterial sRNAs still constitutes a major 

challenge since these targets are frequently encoded far away, at different genomic loci, 

and some sRNAs have single targets whereas others control several different mRNAs. 
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The interacting sequence elements are frequently only short sequence stretches of 

imperfect similarity, which can reside in any part of the sRNA and can even be formed 

through the joining of sequence elements from two separate domains (for a recent 

review see Backofen and Hess (2010).41 Nevertheless, several algorithms have been 

designed for target prediction, from these sRNATarget42 and IntaRNA43 have been 

employed here. There are 167 mRNAs identified as potential targets by both programs 

with stringent parameters (Supplementary Table S3). From these 61 have an annotation 

with a relation to nitrogen metabolism and six, HetP, HepA, HepB, PatB, NifN and NtcA, 

with a demonstrated implication in heterocysts differentiation. However, such predictions 

need to be taken with caution and are likely to contain many false-positives41. 

Nevertheless they provide a starting point for rigorous experimental analysis in the 

future.   

NsiR1 is the first known non-coding RNA present in bacteria that is induced in a cell-

type-specific manner under nitrogen deprivation. Its dependence on NtcA and HetR 

establishes that NsiR1 belongs to the regulatory network that leads to heterocyst 

differentiation. The precise position of NsiR1 within this network constitutes a 

challenging subject for further research. 

 

Materials and Methods 

Strains and growth conditions  



   17  

Wild-type Anabaena 7120 and mutant derivatives CSE211 and 21632 were grown 

photoautotrophically at 30ºC in BG110C (BG1133 lacking NaNO3 and supplemented with 

10 mM NaHCO3) containing 6 mM NH4Cl plus 12 mM N-tris (hydroxymethyl) methyl-2-

aminoethanesulfonic acid (TES)-NaOH buffer (pH 7.5), bubbled with a mixture of CO2 

and air (1 % v/v), and supplemented with 2 g·ml
-1 of streptomycin and 2 g·ml

-1
 of 

spectinomycin in the case of strain CSE2. Exconjugants containing replicative plasmids 

were selected and maintained on BG11 solidified with 1% Difco agar in the presence of 

5 g·ml-
1
 of streptomycin and 5 g·ml

-1
 of spectinomycin (SmSpR plasmids) or 50 g·ml

-1
 

of neomycin (NmR plasmids). Other filamentous cyanobacteria were cultivated in BG11 

33. All media used contained 0.3 M Cu2+, except for the experiment shown in Fig. 4b, in 

which regular BG110 was further supplemented with 0.3 M CuSO4 (to achieve a final 

concentration of 0.6 M Cu2+). 

RNA analysis  

Cells growing exponentially (~3-5 g of chlorophyll a·ml-1) in BG110C plus NH4Cl were 

harvested at room temperature and either processed directly (time 0) or washed and 

resuspended in BG110C and further incubated as indicated in each experiment. 

Samples were collected by filtration or centrifugation and stored frozen. RNA was 

isolated and analyzed by northern hybridization as previously described34; 44 with the 

following modifications: membranes were pre-hybridized for 45 min at 65 °C in 50% 

deionized formamide, 7% SDS, 250 mM NaCl, 120 mM phosphate buffer pH 7.2. 

Following the addition of probe, the membranes were incubated overnight at the same 

temperature (transcript probe) or 48 ºC (oligonucleotide probe), after which they were 
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washed with the following three buffers for 10 min each (buffer 1: 2X SSC, 1% SDS; 

buffer 2: 1X SSC, 0.5% SDS; buffer 3: 0.1X SSC, 0.1% SDS). Images of radioactive 

filters were obtained and analyzed using a Cyclone storage phosphor system and 

OptiQuant image analysis software (Packard). Primer extension was carried out as 

described45 using 15 µg of RNA per sample. The oligonucleotides used as primers were 

T4, primer 9 and GFP4 (sequences in Supplementary Table S2, positions in Figures 2 

and 5).  

Rapid amplification of cDNA ends (RACE)  

described by Steglich et al. (2008).44 

Sequences of all primers and linkers used are included in Supplementary Table S2. For 

prime RACE_RT_hetF was used for cDNA synthesis, and a linker-specific 

primer together with was employed for subsequent PCR  

RACE, linker- -1 was used for cDNA synthesis, and linker-

-2 together with NsiR1-specific primer 3 were used for PCR. 

Relevant bands were extracted from gels, cloned into E. coli, and sequenced.  

Prediction of ncRNA candidates  

The prediction was based on the identification of Rho-independent terminators as 

described in Georg et al. (2009)30 using the program Rnall.46 Such a terminator consists 

of the characteristic GC-rich hairpin followed by a U-rich region, the so called U-tail. The 

terminator can be subdivided into a proximal (first five bases) and a distal part (four 

bases after the proximal part). In order to increase stringency of the prediction we 

applied several filters according to the following rules: 1. At least four G-C or G-U pairs; 
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2. At most two nt spacer between stem and U-

pur

distal region; 6. No multiloops and at most 1 bulge loop with at most 3 unpaired 

nucleotides. 7. Free energy of the stem-loop at most -7.4 kcal/mol. Rules 1-5 were taken 

from Lesnik et al. (2001)47 and rules 6 and 7 were defined by us. Free energies were 

calculated by RNAshapes48 as Rnall provides a heuristic structure prediction, leading to 

artifacts in the computed free energy. 

Biocomputational prediction of possible targets for NsiR1 

For every protein-coding gene, the sequence of the coding region and 100 upstream 

nucleotides was analyzed for its possible recognition by NsiR1 using the algorithm 

IntaRNA with a window length of 140 and, otherwise, default parameters.43 All hits were 

ordered according to the calculated free energy values gained by the formation of 

mRNA:NsiR1 duplexes in kcal/mol. Only those hits with values lower than -10 kcal/mol 

were considered further. In parallel, the program sRNATarget42 provided at 

http://ccb.bmi.ac.cn/srnatarget/ was employed, using default parameters. For 

sRNAtarget, a minimum score of 0.5 was required (maximum is +1.0).  

Plasmids  

All replicative plasmids constructed are derivatives of vector pDUCA7.32 Plasmid 

pCSAM200 is a NmS/SmR/SpR derivative in which the PstI fragment containing part of 

the npt gene has been replaced with a PstI fragment containing the C.S3 cassette (PstI-

excised from a plasmid containing C.S3 cloned in the unique HindIII site of polylinker 

http://ccb.bmi.ac.cn/srnatarget/
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L.EHE2; nomenclature of Elhai and Wolk (1988)49), cloned in the same orientation as 

npt. A BamHI fragment containing a gfp gene plus corresponding Shine-Dalgarno 

sequence (thus suitable for transcriptional fusions) was excised from plasmid 

pAM195650 and cloned into the BamHI site of pIC20R51 rendering pCSAM170. The 

orientation of the gfp gene in this construct is the same as that of the -galactosidase 

gene. An EcoRI fragment containing the gfp gene and the complete polylinker of 

pCSAM170 was cloned into the unique EcoRI site of plasmids pCSAM200 or pDUCA7, 

yielding SmR/SpR promoter-probe vector pCSAM201 or NmR promoter-probe vector 

pCSAM211, respectively. The promoter region of the petE gene was amplified using 

oligonucleotides petE1 (containing a ClaI site) and petE2 (containing a HindIII site) 

(Supplementary Table S2) and chromosomal DNA from Anabaena 7120 as template. 

The resulting ClaI-HindIII fragment was cloned between the ClaI and HindIII sites of the 

polylinker of pCSAM170, resulting in pCSAM173, in which the gfp gene is located 

downstream of the PpetE. An EcoRI fragment containing the PpetE::gfp construct and the 

complete polylinker of pCSAM173 was cloned into the unique EcoRI site of plasmid 

pCSAM200 rendering pCSAM202. A fragment containing all 12 repeats was amplified 

by PCR using oligonucleotides All_repeats_FWR and primer 9 (Supplementary Table 

S2) and cloned into the HindIII site of pCSAM173, between PpetE and the gfp gene. The 

whole construct was excised with EcoRI and cloned into the unique EcoRI site of 

pCSAM200, rendering pCSAM207. To construct pCSAM208, a fragment containing 

repeats 10, 11 and 12 (incomplete) was amplified with oligonucleotides TS1 (containing 

a ClaI site) and TS2 (containing an XhoI site) (Supplementary Table S2) and 

chromosomal DNA from Anabaena 7120 as template. The resulting ClaI-XhoI site was 
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cloned between the ClaI and XhoI sites of promoter-probe pCSAM211, rendering 

pCSAM208. The main features of plasmids pCSAM201, 202, 207 and 208 are depicted 

in Figure 4a.  

Fluorescence microscopy  

The accumulation of GFP was analyzed by laser confocal microscopy as described.52 

GFP was excited at 488 nm by an argon ion laser, and the fluorescent emission was 

monitored by collection across windows of 500-540 nm (GFP imaging) and 630-700 nm 

(cyanobacterial autofluorescence). 

Acknowledgments 

We thank J. E. Frías at IBVF for providing the strains used in Supplementary Fig. 2b, I. 

Luque and C. Steglich for critical reading. We thank the Minerva foundation (DI), the 

Deutsche Forschungsgemeinschaft (WRH, SPP1258 HE 2544/4-1), the BMBF-project 

0313921 (WRH) and the Ministerio de Educación y Ciencia, Spain (AMP, grant 

BFU2007-60457) for support.  



   22  

Figure legends  

 

Figure 1. Organization and conservation of DNA repeats upstream of hetF in 5 different 

cyanobacteria. A scheme of the region upstream of hetF in the genomes of Anabaena 

7120, Anabaena variabilis ATCC 29413, Nodularia spumigena CCY9414, Nostoc 

punctiforme PCC 73102 and Nostoc azollae strain D708 is shown. Homologous ORFs 

are presented in identical colors. Repeats in Anabaena 7120 are numbered 1-12 with 

respect to the direction of transcription. In the unfinished genome of N. azollae, this 

region is split between two different contigs, and therefore the distance between the first 

and the second repeat is unknown. The color gradients reflect the divergence between a 

certain repeat and repeats 3-9 of Anabaena 7120. Boxed repeats are almost identical to 

each other within one genome. The hetF transcriptional start is indicated by TSS (hetF).  

Figure 2. Sequence alignment of repeats 1-12 in Anabaena 7120. Insertions of 28, 22 

and 54 nt in repeats 1, 2 and 12 compared to repeats 3-11 are indicated at the 

respective sites. Mapped transcriptional start sites for hetF and repeats 11 and 12 are 

labeled by bent arrows. A position that could correspond to a processing site for 

transcripts originating at repeat 11 (as determined by primer extension, see Figure 5) is 

indicated by an asterisk. The positions of several oligonucleotides are indicated: for 

primer extension below the alignment, for northern analysis shaded in grey. A black 

to pCSAM208, a white triangle 

to 

cloned in pCSAM208 is located 24 nt downstream from the white triangle. Genome 

coordinates are provided for the first and the final nucleotide position of the region.  
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Figure 3. Identification of NsiR1 in cyanobacteria. (a) Expression of NsiR1 in wild-type 

Anabaena 7120 and in the mutant strains CSE2 (ntcA) and 216 (hetR) after nitrogen 

depletion. 15 g of RNA (first nine lanes) or 11 g RNA (other lanes) was loaded. (b) 

Expression of NsiR1 over 36 h after nitrogen depletion (15 g RNA per lane).  

labeled oligonucleotide was used as a probe (cf. Figure 2). The sizes of the major bands 

are indicated. The lower panels show 5S rRNA as a loading control. RNA was isolated 

from ammonium-grown cells (lane 0) or from ammonium-grown cells incubated in 

combined nitrogen-free medium for the indicated number of hours. (c) Overexposure of 

a section from (a). (d) Primer extension analysis of the expression of the NsiR1 region in 

Anabaena 7120 and in the mutant strains CSE2 (ntcA) and 216 (hetR). RNA was 

isolated from ammonium-grown cells (lane 0) or from ammonium-grown cells incubated 

in combined nitrogen-free medium for the indicated number of hours. Expression of 

NsiR1 precursors upon nitrogen deprivation in the wild-type strain (left panel) and 

comparison of primer extension products for RNA samples from the wild-type and 

mutants CSE2 and 216 strains (middle panel) are shown. Samples from an independent 

experiment were analyzed with a different primer (right panel). The sizes of the bands 

referred to in the text are indicated. WT, wild-type strain Anabaena 7120. Names of the 

used oligonucleotides are indicated (see Figure 2 for position and sequence).  

Figure 4. Cell-specific transcription from the NsiR1 region. (a) Scheme of the different 

gfp fusions constructed in the replicative plasmids pCSAM201 (promoter-probe), and 

pCSAM202 (PpetE::gfp) and the repeat-containing plasmids pCSAM207 and pCSAM208. 

(b) Expression of GFP in wild-type cells carrying plasmid pCSAM207. Micrographs of 

filaments subjected to nitrogen step-down were taken after 5.5 h in nitrogen-free 
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medium. Images corresponding to red autofluorescence (left panel), GFP fluorescence 

(center panel), and overlay of both images (right panel) are shown. (c) Overlay of 

autofluorescence and GFP fluorescence in filaments of the wild-type strain and in the 

mutants CSE2 and 216 bearing plasmid pCSAM208 after 8 h in nitrogen-free medium.  

Figure 5. Analysis of gfp transcripts originating at repeats 11 and 12. (a) Primer 

extension assays carried out with RNA samples from the wild-type strain bearing 

plasmid pCSAM207 and oligonucleotide GFP4 (see position in (b)). Approximate 

positions of the different parts of transcripts are indicated on the left. The 

identified for repeats 11 and 12 are indicated by bent arrows, as in Figure 2. (b) 

Schematic of the region analyzed. The position of oligonucleotide GFP4 is indicated by 

an arrow under the gfp gene. A primer extension signal possibly indicating a processing 

site is labeled by an asterisk. MCS, multiple cloning site. 

Fig. 6. Predicted secondary structure of NsiR1 and model for transcription and 

processing. (a) Predicted secondary structure of NsiR1. White triangles 

ends of NsiR1 as determined for repeats 11 and 12 (cf. Figures 2 and 5a). The different 

UU). (b) Model for the 

transcription and processing of any three contiguous expressed repeats. Asterisks 

indicate positions at which, according to primer extension products, long transcripts 

bearing more than one repeat might be processed.  
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          28 nt               3’TCTACGTGGGACTATTGATTGAGGGG5’ (Northern probe) 
           
1  AGATGCAGCAAGCCA-TTGAATGTTTCTCCA-CAACTTTATCCGGA-----T------TGGTTAGCATCTGCCCAGAACAGTTTAACGG-TAGATGCACCTTGATCTTTAACTCCCCTAGTTGGTTGATAGCCACTGGGGGTTTTTT 
 
      TSS (hetF)                22 nt 
 
2  ATAACTAGCATATAC-TTAGATTATTCTACT-CAATTCCCTAAGACAGACCT------TAATGAA----TAAGTATTTTGTCTAACTTG-TAAA-AAAGTCTCATCATTAA-TTTCCTAGTTTGCAAATATGGACTAGGGATTTTTT 
3  ATGATTACCGAGTAACCAGCATCATTGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGATAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTTT  
4  ATGTTCATAAATAGC-CAGCATAATCGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGATAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTTT  
5  ATGTTCATAAATAGC-CAGCATAATCGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGGTAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTTT  
6  ATGTTCATAAATAAC-CAGCATAATCGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGATAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTT  
7  ATGTTCATAAATAAC-CAGCATCATTGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGATAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTT  
8  ATGTTCATAAATAAC-CAGCATCATTGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGATAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTTT  
9  ATGTTCATAAATAGC-CAGCATAATCGTG---CAGATTCATCCGGAA----T------TGAGTGA-ATATGGGTAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGCTGGCTAACACCGACTGGGGGCTTTTTTT 
10 ATGTTTAGCAATCAG-TAACTTCTTTGATCA-TAAGATTGTTGAAAATATCTGATTGCTGATGGA---------AAACCGATTATTTTGATGAACGTACCCTAATAAATAACTCTCCCCAGTGGCTGCCACTTGT-AAGGGCTTTTTTT 
 
                        TSS(11) 
 
11 --GT--AAAAAAAAG-CAACTTCATTTGTGA-CAATTTCATCCGGAACATCC------TGTTGAA-----TCAGAGAACAATTAATTGG-TAGATGCACCCTGATAACTAACTCCCCTAGTTGGCTGCCACC-ACAGGGGTTTTTT 
 
                        TSS(12) 
  
12 ATTGGAAATGAACCA-CAGCATACCTTTGAT-GCAATTTATCCGGAAGACTG------TAATTCA-----AAATAGAACAATTAATTGG-TAGATGCACCTCAATAACTAACTCCCTAGTTTGGTTAAGACTAACTAGGAGCTTTTTTT 
 
                                                     54 nt    
                                                               3’CGTGGAGTTATTGATTGAGGG5’(Primer 9) 
                                                                                        3’CC-ATCTACGTGGAACTAGAAAT5’(Primer T4)        coordinate 
                                   4271644 
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Ionescu et al.: Supplementary Information, table and figure legends and Table S2 

 

Figure S1. Alignment of repeats from all cyanobacteria. Sequences are given as the 

corresponding RNA transcripts, their IDs consist of the strain name, prefixed by the 

number of the repeat. The alignments were generated using RNAforester,1 which lines 

editing and the coloring were done with RALEE.2 The color scheme is as follows: yellow 

indicates >40% conservation, blue indicates >60% conservation and red indicates >80% 

conservation. The conserved secondary structure at the 3' end (predicted terminators) is 

indicated in dot-bracket notation in the last line. The position of TSS(s) determined for 

Anabaena 7120 is indicated. 

Figure S2. Minimum evolution tree of all repeats from Figure S1. The distance matrix 

was calculated using the Jukes Cantor algorithm, as implemented in MEGA 4.0.3  

Figure S3. Northern blot with an RNA probe potentially covering the whole repeats 

region. (a) A time-course is shown for Anabaena 7120 subjected to nitrogen step-down 

for up to 24 h. (b) Identification of NsiR1-like transcripts in 18 other cyanobacterial 

strains. All cyanobacterial strains were grown in BG11 medium4 without agitation. The 

experiment was done over the course of 12 h of nitrogen depletion and sampled every 3 

h. Only selected time points are shown. Labeled RNA probes were prepared using 100 

ng of purified PCR products corresponding to the whole repeats region obtained with 

primers Northern-F and Northern T7-R (Supplementary Table S2) and the T7 Maxi 

Supplementary Material (To be Published)
Click here to download Supplementary Material (To be Published): SupmatRVSD_all3.pdf

http://ees.elsevier.com/jmb/download.aspx?id=487470&guid=bc154a6b-f60c-472c-bb1d-3136d5c21e48&scheme=1
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Script kit (Ambion) according to the manufacturer instructions. For each reaction 50 µCi 

32P-UTP was used. 

Figure S4. Secondary structure of NsiR1. (a) Base conservation and (b) basepairing 

probabilities in the secondary structure of NsiR1 as calculated using RNAalifold.5 The 

structure was built based on an alignment of NsiR1 sequences from all the available 

Nostocales (Supplementary Figure S1). Highly divergent sequences were not used. The 

color bar represents probabilities for basepairing as shown in panel (b).  
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Table S1. Genome-wide prediction of Rho-independent terminators in intergenic 

regions of Anabaena 7120.  
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Table S2. Sequences of all oligonucleotide primers. Introduced restriction sites are 
underlined. Sequence corresponding to the T7 promoter is in lower case. 

 

Primer name   Experiment 
 CAATGGGTCATTCATCAAATGCC  

 CATAGAAAGAAACGCATCTCCC  
-specific 

primer ATATGCGCGAATTCCTGTAGAACGA  

 AUAUGCGCGAAUUCCUGUAGAACGAAC
ACUAGAAGAAA  

 
phosphate-
UUCACUGUUCUUAGCGGCCGCAUGCUC
-idT 

 

-1 GAGCATGCGGCCGCTAAG  
-2 GGCCGCTAAGAACAGTG  

Primer 3 GCACCTCAATAACTAACTCCC  

Primer 9 GGGAGTTAGTTATTGAGGTGC Primer extension, 
cloning 

Primer T4 TAAAGATCAAGGTGCATCTACC Primer extension 
GFP4 TGTATATCTCCTTCTTAAA Primer extension 
oligonucleotide probe  GGGGAGTTAGTTATCAGGGTGCATCT Northern blot 
Northern-F CATTGTGCAGATTCATCCGGAA Northern blot 

Northern T7-R taatacgactcactatagggaCAGGGTGCATCTA
CCAATTAATTG Northern blot 

petE1 (ClaI) ATCGATGGACTCAGAACACAGTACTC Cloning 
petE2 (HindIII) AAAGCTTCCATGGCGTTCTCCT Cloning 
All_repeats_FWD CTTGAAACGCCAAAGTTTCAATTC Cloning 
TS1 (ClaI) ATCGATGCAATCAGTAACTTCTTTG Cloning 
TS2 (XhoI) CTCGAGCACCAGTTAGTCTTAACC Cloning 
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Supplementary Table S3. List of mRNAs predicted as possible targets for NsiR1 

in trans. The sequence of NsiR1 was used to search for possible targets among all 

genes of Anabaena 7120 using the algorithms IntaRNA6 and sRNATarget7. All hits were 

ordered according to the calculated free energy values gained by the formation of 

mRNA:NsiR1 duplexes in kcal/mol (mRNA Energy (IntaRNA)). Moreover, the 

sRNATarget scores (maximum +1.0) are given, together with the annotation for each 

predicted target mRNA, its location, strand (+, forward strand; -, reverse strand), the 

length of the respective protein, its database ID (PID) and associated number from the 

clusters of orthologous genes (COG). Heterocyst-related proteins are highlighted in 

boldface letters. Note that hetF is not in this list since the overlap with NsiR1 is in the 

-116 to -174. The predicted energy of this 

interaction is -37.4086 kcal/mol (IntaRNA).  
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