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Abstract

In protontherapy, the uncertainties in the range of the beam delivered to the patient result

in some safety margins in the planning that limit the dose that can be delivered to the

tumour. For this reason, there is an intensive research program aiming at in vivo range

verification.

In particular, positron emitters are induced on C, N, O, Ca and P nuclei by the pro-

tons of the beam in the patient. Based on this, in vivo PET range verification relies on

the comparison of measured and simulated activity distributions of these isotopes. The

accuracy of the simulated distribution depends on the accuracy of the cross section for

the production of these positron emitters. A revision of the experimental data available in

the EXFOR database shows that the corresponding cross sections do not always cover the

full energy range of interest, and that there are sizeable differences between the different

measurements.

The aim of this study is to develop a method for measuring the production cross sections

of the positron emitters 11C and 13N in the most abundant isotopes in human body: C, N

and O. This will be used, in a first step, to measure the cross section of positron emitters

produced by a low energy proton beam at the CNA cyclotron. The 18 MeV energy beam

produced by the cyclotron is degraded using a multi-stack target configuration in order

to obtain the cross section in different energy points. The activity induced by the beam

has been measured using a clinical PET scanner. The production cross section of these

reaction channels have been measured and compared with the available data, showing a

reasonable agreement with them within uncertainties.
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Chapter 1

1. Introduction

1.1 A brief history of protontherapy

The physics of protontherapy has advanced considerably since, in 1946, Robert Wilson

proposed to use accelerator-produced beams of protons to treat tumours in humans [1,

2]. The principal reason to use protontherapy over radiotherapy is its superior spatial

dose distribution in the patient (see figure 1.1). In comparison to photon therapy, proton

beam therapy results in a lower radiation dose to the adjacent normal tissue due to the

characteristics of proton beams: a well-defined, finite penetration depth in matter and a

high dose deposition close to the end of the trajectory, the Bragg Peak. In order to achieve

an homogeneous dose over the entire tumour, protons of different energies, i.e. with Bragg

peaks at different depths, are applied. The sum of all the Bragg peaks, shown in figure

1.1, is called the spread-out Bragg peak (SOBP).

In 1954, the first human was treated with proton beams at the Lawrence Berkeley

Laboratory [3]. In 1962, specialized radiosurgical proton treatments commenced at the

Harvard Cyclotron Laboratory [4, 5], followed in the mid 1970s by treatments for ocular

cancers [6] and larger tumours [7]. Physicists at Harvard, collaborating with clinical col-

leagues at the Massachusetts General Hospital, the Massachusetts Eye and Ear Infirmary,

and elsewhere, developed much of the physics and technology needed to treat patients with

proton beams safely and effectively. Remarkably, the research and development program

at Harvard continued for more than 40 years. During the same period, physicists were de-

veloping other key related technologies, such as accelerators, magnetically scanned beams,

treatment planning systems, computed tomography imaging (CT) and magnetic resonance

imaging [1].

However, the widespread use of proton therapy has been slow in comparison to other

techniques, for instance intensity-modulated photon therapy. There are several reasons for

this, including technical difficulty, high cost and lack of evidence of cost-competitiveness.

Although commercial proton delivery systems appeared in 2001, the cost of proton therapy

1



Chapter 1 Introduction

Figure 1.1: The spread out Bragg peak (SOBP, dashed blue line) is the therapeutic radiation
distribution. The SOBP is the sum of several individual Bragg peaks (thin blue lines) at
different depths. The depth-dose plot of an X-ray beam (red line) is provided for comparison.
[9]

equipment remains significantly higher than that of comparable photon therapy equipment

[1]. But prices are being continuously reduced and clinical evidence of the advantages of

protontherapy are being demonstrated. Hence, today there are 64 protontherapy centres

in operation worldwide, with 15 more under construction. Overall, the Particle Therapy

Cooperative Group (PTCOG) estimates that at least 131240 patients had been treated

between 1954 and 2015 [8].

1.2 Proton interaction mechanisms

Protontherapy uses a precision-focused proton beam to target and treat tumours. On

their way through matter, protons interact with the nuclei and electrons that they en-

counter. The predominant types of interactions are Coulombic interactions with atomic

electrons, Coulombic interactions with the atomic nucleus, nuclear reactions and Bremsstra-

hlung. Table 1.1 summarizes the proton interaction types, targets, principal ejectiles, influ-

ence on the proton beam and the dosimetric manifestation. In a first order approximation,

protons continuously lose kinetic energy via frequent inelastic Coulombic interactions with

2



Chapter 1 Introduction

Interaction
type

Interaction
target

Principal
ejectiles

Influence on
projectile

Dosimetric
manifestation

Inelastic
Coulomb
scattering

Atomic
electrons

Primary
proton,
ionization
electrons

Quasi-
continuous
energy loss

Energy loss
determines
range in
patient

Elastic
Coulomb
scattering

Atomic
nucleus

Primary
proton, recoil
nucleus

Change in
trajectory

Determines
lateral
penumbral
sharpness

Non elastic
nuclear
reactions

Atomic
nucleus

Secondary
protons and
heavier ions,
neutrons and
gamma rays

Removal of
primary
proton from
beam

Primary
fluence,
generation of
stray
neutrons,
generation of
prompt
gammas for
in vivo
interrogation

Bremsstrahlung Atomic
nucleus

Primary
proton,
Bremsstrahlung
photon

Energy loss,
change in
trajectory

Negligible

Table 1.1: Summary of proton interaction types, targets, ejectiles, influence on projectile
and selected dosimetric manifestations. [1]

atomic electrons. Most protons travel in a nearly straight line because their rest mass is

∼2000 times greater than that of an electron. When a proton undergoes a nuclear reaction

it disappears, producing secondary radiation (light particles and photons) and producing

a new nucleus. On the other hand, when the proton undergoes elastic scattering with a

nucleus, its trajectory can be affected significantly, thus creating the so-called penumbra

of the beam.

As mentioned above, fast charged particles moving through matter interact with the

electrons of atoms via inelastic Coulomb scattering. The interaction excites or ionizes the

atoms, leading to an energy loss of the travelling particle. In this context, it is convenient

3
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to define the mass stopping power, which express the energy loss rate in a way that is

independent of the mass density, as

S

ρ
= − dE

ρdx
, (1.1)

where ρ is the mass density of the absorbing material, E is the mean energy loss and x is

the distance. The energy loss rate was described by Bethe [10] and Bloch [11], taking into

account quantum mechanical effects, and is given by

S

ρ
= 4πNAr

2
emec

2Z

A

z2

β2

[
ln

2mec
2γ2β2

I
− β2 − δ

2
− C

Z

]
, (1.2)

where NA is Avogadro’s number, re is the classical electron radius, me is the mass of an

electron, z is the charge of projectile, Z is the atomic number of the absorbing material,

A is the atomic weight of the absorbing material, c is speed of light, β = v/c, where v

is the velocity of the projectile, γ = (1 − β2)−1/2, I is the mean excitation potential of

the absorbing material, δ is the density corrections arising from the shielding of remote

electrons by close electrons and will result in a reduction of energy loss at higher energies,

and C is the shell correction item, which is important only for low energies where the

particle velocity is near the velocity of the atomic electrons. Figure 1.2 (right) shows the

dependence of the mass stopping power with the proton energy, illustrating how in the

limit β << 1, the energy loss rate is proportional to v−2, and thus near the end of the

proton trajectory, at low velocity, the energy loss is higher, hence causing the Bragg peak.

1.3 Range of protons in human body

The range is defined as the depth at which half of protons in the medium have come

to rest. There are small variations in the energy loss of individual protons (resulting in

the range straggling), so the range is inherently an average quantity defined for a beam

and not for individual particles. As the path of most protons in matter is nearly a straight

line, the proton’s pathlength is nearly equal to its projected pathlength and range. This

fact allows for the proton range calculation with relatively simple numerical or analytical

approaches [1].

4
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Figure 1.2: Right: Mass stopping power (S) versus energy (E) for protons in liquid water.
The corresponding range (R), calculated using the plotted S values and on the assumption
of the continuous slowing down approximation (CSDA), is also plotted [1]. Left: Range of
protons in water [13].

As it is shown in figure 1.2 (left), in order to irradiate superficial tumours (few cm depth)

a proton beam of 60-70 MeV is enough, whereas for deep (∼30 cm depth) tumour tissues is

needed a higher proton beam energy (230-250 MeV). Consequently, clinical treatments use

accelerators that typically produce protons with energies in the range of 70 to 250 MeV.

During the irradiations, it is necessary to control where the protons deposit their energy, in

order to reduce damage in normal tissues, and so that SOBP region corresponds with the

tumour. For this reason, the proton beam range must be well calculated and, if possible,

monitored.

In figure 1.3 we can see an example of protons range and Bragg peak, for a protons

beam of 160 MeV in water. This figure shows how the maximum dose deposited in tissues

(Bragg peak) corresponds with the last few centimetres of the range, being this one of the

advantages in the use of proton therapy over photon therapy.

1.4 Range verification in protontherapy with PET

In current treatment plannings, a safety margin from 1% to 3% is usually applied (see

figure 1.4). This means nearly 1 cm in a 30 cm deep tumour, which certainly limits the

benefits of having a sharp Bragg peak. Reducing this uncertainty would allow a better

utilization of the advantages of protontherapy over radiotherapy.

In a protontherapy treatment, one can detect the particles resulting from the nuclear

5
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Figure 1.3: Dashed line and right axis: Bragg curve (the dose deposited as a function of
depth for a 160 MeV proton beam). Left axis: total (dotted line) and primary (solid line)
proton fluence as a function of depth, showing the contributions from secondary protons
generated in nuclear interactions. The decrease in the entrance plateau is due to primary
protons undergoing nuclear interactions whereas the sharp decrease at the Bragg peak is
mainly due to the stopping of primary protons. The lower graph shows the dose profile,
illustrating the enlargement of the beam due to multiple Coulomb scattering. [12]

interactions that protons suffer on their way trough the matter in order to monitor the

beam range. These particles can be photons, neutrons or charged particles. In the case

of photons, there are two kinds: prompt γ-rays and delayed γ-rays. Prompt γ-rays are

emitted in the decay of excited atomic nuclei, in a nanosecond scale, hence during the

irradiation. On the other hand, delayed γ-rays are the result of the decay of the unstable

nuclei produced in nuclear reactions. When this decay is in the terms of β+, two γ-

rays of 511 keV are emitted in opposite directions. These simultaneous γ-rays can be

detected in coincidence by a clinical Positron Emission Tomography (PET), and thus serve

to determinate the range of the proton beam in vivo, shortly after the irradiation. [14]

Therefore, verification of the treatment and, in particular, of the beam range in the

patient can be achieved by comparing the measured β+ activity with predictions based on

the treatment plan, the patient anatomy and the time course of irradiation and imaging.

There are three operational modalities for PET verification of proton therapy, based on

6
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Figure 1.4: Safety margins applied at different clinical protontherapy facilities: Loma Linda
University Medical Center (LLUMC), Universität Protonen Therapie Dresden (UPTD),
Massachusetts General Hospital (MGH) and University of Florida Health Proton Therapy
institute (UFH). Range bonus refers to the margin added to the prescribed range to ensure
full tumour coverage even in the case of an undershoot [16].

the PET system used for data acquisition. In-beam PET uses detectors panels attached to

the proton treatment system so that the data can be acquired during and immediately after

treatment. In-room PET uses a independent PET scanner positioned within the treatment

room to scan the patient (still in the treatment bed) soon after treatment. Off-line PET

uses an established PET scanner close to but outside the treatment site, often with a CT

component. [15]

The elements in the human body relevant for the production of positron emitters are

mainly carbon, nitrogen, oxygen, phosphorus and calcium. The most copiously produced

short-life (seconds) positron emitters are 12N on carbon, 29P on phosphorus, and 38mK on

calcium, and the most long-lived (minutes) positron emitters are 11C, 13N and 15O [14].

As PET range verification relies on the comparison of measured and simulated activity

distributions, the accuracy of the simulated distribution depends on the accuracy of the

Monte Carlo codes, and thus, as Parodi et al. affirms in “Experimental study on the

feasibility of in-beam PET for accurate monitoring of proton therapy” [19], this accuracy

depends on the underlying cross section data.

7
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Target Abundance Reaction channel Half-life (min) Threshold (MeV)

12C 98.9%
12C(p,p+n)11C 20.39 17.88
12C(p,γ)13N 9.965 0

13C 1.1%
13C(p,t)11C 20.39 16.36
13C(p,n)13N 9.965 3.24

14N 99.6%
14N(p,α)11C 20.39 3,13
14N(p,p+n)13N 9.965 8.93

16O 99.8%

16O(p,3n+3p)11C 20.39 57.59
16O(p,p+n+α)11C 20.39 27.51
16O(p,p+d+t)11C 20.39 46.21
16O(p,d+α)11C 20.39 25.15
16O(p,2p+2n)13N 9.965 35.63
16O(p,2d)13N 9.965 29.10
16O(p,p+t)13N 9.965 26.61
16O(p,α)13N 9.965 5.55

Table 1.2: Target nuclei, positron emitters, and reaction channels of interest for the cross
section measurements. [1] [17]

1.5 Production yields of β+ isotopes for range verifi-

cation

The three most abundant elements in the human body are oxygen (65%), carbon (18%)

and nitrogen (3%). The interaction of a proton beam with these nuclei produces mainly the

positron emitters 11C (20.39 min) and 13N (9.965 min) via the nuclear reactions listed in

table 1.2. The experimental data available in EXFOR for those cross sections are displayed

in figures 1.5−1.10.

The situation can be summarized as follow:

• In the case of the nuclear reaction natC(p,*)11C, the range of interest is covered all

the way up to 250 MeV. There are large discrepancies near the threshold below 20

MeV and moderate (∼10%) differences between data sets in the range.

• The reaction natC(p,*)13N has only been studied below 30 MeV, and mostly looking

at reactions on 13C. The agreement between the data available is in the order of 20%.

• The production cross section of the nuclear reaction natO(p,*)11C is not well known.

8
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At high protontherapy energies there is not any available data, and at low energies

there is not a good agreement between the only two measurements available.

• In the case of natO(p,*)13N, there are a good number of measurements in agreement

in a range of energies until 20 MeV. In the tens at MeV region, the few available

data differ considerably with each other, and they cover only up to 140 MeV.

• The reaction channel natN(p,*)11C has been abundantly measured at low energies

(below 30 MeV), although one set of data is not in a good agreement with the rest

(30% difference). However, at the higher energies of interest in protontherapy there

are only two data points.

• The production cross section of the nuclear reaction natN(p,*)13N is not well known

either. EXFOR contains only a few set of data at low energies (up to 30 MeV), and

the differences between them are around the 20%.

On the other hand, there are some reactions that can not be studied easily, because the

target isotopes have a small abundance, so their contribution to the total cross section is

negligible. This is the case of 15N(p,2p3n)11C, 15N(p,p2n) 13N and those reactions derived

from the least abundant isotopes of oxygen.

9
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Figure 1.5: Available data for the production cross sections of the reaction channel

12C(p,*)11C and 13C(p,*)11C, in a range from 0 to 1 GeV. The data is provided by EXFOR.

Figure 1.6: Available data for the production cross sections of the reaction channel

12C(p,*)13N and 13C(p,*)13N, in a range from 0 to 30 MeV. The data is provided by EX-

FOR.
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Figure 1.7: Available data for the production cross sections of the reaction channel
16O(p,*)11C, in a range from 0 to 160 MeV. The data is provided by EXFOR.

Figure 1.8: Available data for the production cross sections of the reaction channel

16O(p,*)13N, in a range from 0 to 160 MeV. The data is provided by EXFOR.
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Figure 1.9: Available data for the production cross sections of the reaction channel

14N(p,α)11C, in a range from 0 to 30 MeV. The data is provided by EXFOR.

Figure 1.10: Available data for the production cross sections of the reaction channel

14N(p,*)13N, in a range from 0 to 160 MeV. The data is provided by EXFOR.
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1.6 Objectives

This work is part of a larger project aiming at measuring the production cross section of

11C and 13N in the full energy range of interest in protontherapy, up to 250 MeV. For this,

it is necessary to develop and implement the experimental techniques in order to measure

production cross sections of these nuclear reactions. As a first step, an experimental set up

has been designed and tested at the 18 MeV cyclotron at CNA. These measurements at low

energies are of interest on their own, as it is the energy near the end (last few millimetres)

of the proton beam range.

The PET isotopes of interest are produced via the irradiation of natC, natN and natO

targets in the CNA cyclotron with a low-energy proton beam. These targets are made of

a stack of thin films of the material of interest. In this way, production yields of these β+

emitters can be measured for several energies at a same irradiation, considering that the

proton beam goes through the films and in each of them the proton beam has a different

energy. The activity curve is measured by a PET scanner to extract the number of positron

emitters produced. As the PET scanner is outside the irradiation room, although oxygen

is also produced in the irradiation, it has a half-life too short and we can not detect it

before it fully decays. The irradiated targets used in this work are polyethylene (PE),

Polymethyl-methacrylate (PMMA), Nylon-6, and the number of films used in each case

has been calculated using the program SRIM, considering that it is convenient that the

beam do not stop in order to measure the current beam.

The following step would be the measurement of these cross sections at higher energies

taking into account the techniques, improvements and experimental set up developed in

this work.
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2. Experimental set-up: description and

characterization

In order to measure the production cross section of 11C and 13N in natC, natN and natO, three

targets made of a stacks of thin films of PE, PMMA and Nylon-6 have been irradiated at

the CNA cyclotron. In this way the energy of the proton traversing each film decreases from

one film to the next. The activity induced in all films has been determined by measuring

all of them simultaneously with the PET scanner at CNA.

This section describes the experimental set up and the measurements made to charac-

terize both the cyclotron and the PET scanner.

2.1 18 MeV proton cyclotron at CNA

A cyclotron is a circular particle accelerator which, by the combined application of an

oscillating electric field and a magnetic field, accelerates ions by spinning them in increas-

ing radio-energy orbits. The one at CNA was the second particle accelerator, installed in

2004, and was manufactured by IBA (Belgium). It accelerates protons and deuterons to

18 and 9 MeV, respectively, with maximum beam intensities in the internal target ports of

80 µA for protons and 35 µA for deuterons. This accelerator has eight ports of irradiation,

seven of them dedicated to the production of positron emitters for medical imaging and

research, and the last one is an external line (Experimental Beam Line) used for research

with the proton or deuteron beam.

The CNA cyclotron is sketched in figure 2.1. The first part is inside the cyclotron vault

and it includes a retractable graphite Faraday cup, a variable graphite slit, a XY set of

magnetic steerers and a doublet quadrupole. The second part is outside, separated from

the other by a two meters thick wall, and it is equipped with a single quadrupole, a 15

mm diameter collimator, a pumping station and another Faraday cup with a phosphor

scintillator in order to see the size and shape of the beam.

14



Chapter 2 Radiation and detection experimental set-up

Figure 2.1: Scheme of the cyclotron external line.

Figure 2.2: Left: 18 MeV (protons)/9 MeV (deuterons) cyclotron accelerator. Right: Ex-
perimental set-up, where one can see the sample holders with the different targets inside
them, the external beam and the monitored table.

In this work, a target holder has been designed and manufactured in order to place all

the targets at the same time. As shown in figure 2.2, it is attached to a motorized table so

that it can be remotely controlled. Using this system one can irradiate each stack of films

without entering the experimental room between one irradiation and the rest, so that the

decay of the induced activity is minimized.

In order to check the alignment and shape of the beam a stack of PMMA thin films

was irradiated at high current. The beam produced a colouration of the targets, which

were then scanned and analysed. The irradiated films are displayed in figure 2.3, where a

3D image of the color scale is shown in the right panel. The corresponding horizontal and
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Figure 2.3: Left: PMMA irradiated targets, which are scanned with a Epson Perfection
V700 Photo Scanner. Right: Irradiation intensity of the PMMA-9 target.

Figure 2.4: Horizontal (left) and vertical (right) profile of the irradiation colouration in
PMMA-9 target, for three different vertical positions. PMMA films are not radiochromic
films and thus they can not measure the dose deposition profile, although they allow to
measure the beam size.

vertical projections (see figure 2.4) confirm the size of the beam (10 mm diameter of the

collimator placed in the exit window) and serve to locate the beam centre, where the rest

of the targets were placed and irradiated.

2.2 PET/CT scanner at CNA

Positron Emission Tomography – Computed Tomography (better known as PET/CT)

is a nuclear medicine technique which combines, in a single equipment, a positron emission

tomography scanner and an X-ray computed tomography (CT) scanner. It can acquire

sequential images from both devices in the same session, and combine them into a single

superposed image. Thus, functional imaging obtained by PET, which depicts the spatial

distribution of metabolic or biochemical activity in the body can be more precisely aligned

with the anatomic image obtained by CT scanning.
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Figure 2.5: PET/CT Scanner at the CNA facilities.

The PET system detects pairs of 511 keV γ-rays in coincidence, emitted in the annihila-

tion of a positron produced in the β+-decay of a radionuclide (tracer). The radionuclide is

introduced into the body on a biologically active molecule, such as fludeoxyglucose (FDG),

and the concentration of the tracer imaged indicates where the glucosa has been uptaken

by the tumor cells.

In 2011, the National Accelerator Centre (CNA) acquired a PET/CT for humans (figure

2.5) aiming at both clinical and research activities. It is a Siemens Biograph mCT with

PET detectors with a 162 mm axial field of view, and CT detectors that allow obtaining 64-

slices images. The PET scanner, made of 144 Lutetium Oxyorthosilicate (LSO) scintillator

with 4 photomultiplier tubes each, looks for coincident γ-rays depositing energy between

425 and 650 keV within a time window of only 4.5 ns. The radioactive isotope 176Lu (β−

with a half-life of 3.78·1010 years) amounting to 2.6% of the natural lutetium present in

LSO emits electrons with a mean energy of 420 keV. In addition, it emits three γ-rays of

88, 202, and 307 keV simultaneously to the β− particle [24]. This results in an intrinsic

background of the PET scanner.

In this work, the PET/CT scanner works as a multi-detector operating in coincidence

in order to measure the activity of irradiated targets placed inside the PET/CT and then

obtain the cross sections of interest. For the purpose of this work, the PET/CT has a
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Position PROPCPS

22Na – 1 22Na – 2 22Na – 1 22Na – 2 Conversor

1.1 1.4 3368 21106 –
1.4 4.1 3601 20071 –
4.2 1.2 3141 18385 –
1.1 1.4 3555 21542 PE
1.4 4.1 3238 21397 PE
4.2 1.2 3462 19191 PE

Table 2.1: PROPCPS of the different β+ sources, measured in several positions during ten
minutes.

Position PROPCPS

22Na – 1 22Na – 2 22Na – 1 22Na – 2 Time

1.1 1.4 3247 20586 2 min
1.1 1.4 3290 20663 2 min
1.1 1.4 3339 20519 2 min
1.1 1.4 3368 21106 10 min
1.1 1.4 3406 21167 10 min
1.1 1.4 3392 21049 10 min

Table 2.2: PROPCPS of the different β+ sources, measured in a fixed positions during two
and ten minutes. The conversor is polyethylene.

considerable advantage over a simple scintillator detector, because there is a great number

of films to measure and its good spacial resolution allows measuring all the targets at the

same time.

A protocol of reconstruction (such as time of flight, true X or iterative reconstruction)

is necessary to transform the PET data into the number of 511 keV photons emitted by

each target. In addition, a correction by attenuation is used to correct for the fact that

the photons go through different materials before reaching the detector. The result is a 3D

map in units of PROPCPS (proportional to counts per second), that is then transformed

into unity of activity using a calibrated source of 22Na.

PET scanners for medical imaging do not require a very accurate efficiency calibration,

neither in absolute value nor in its dependency with the position. Therefore, several ex-
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Figure 2.6: Left: Template of the polyethylene sheet built for the emplacement of the 22Na
source. Right: PET/CT scanning system and set up of the polyethylene sheets covering the
sample.

periments were carried out before the measurement of the irradiated targets in order to

test the PET scanner spatial efficiency and statistic uncertainty.

In a first step two 22Na sources with different activities (124 kBq for 22Na-1 and 803

kBq for 22Na-2) where measured at three different positions (see figure 2.6), with and with-

out a surrounding material (see table 2.1). The results show that the PROPCPS values

vary around 5-6% depending on the position of the source. This confirms the need for a

spatial calibration of the PET. In a second step (see table 2.2), the number of PROPCPS

for both 22Na sources is measured during different acquisition times in order to estimate

the statistical uncertainty of the measurements. Acquisitions of 2 minutes provide a 1%

statistical uncertainty, and 0.5% for 10 minutes acquisitions. Since the aimed accuracy

for the detection efficiency is ∼2% we have taken 1 minute measurements of the 22Na (see

below).

The PET efficiency as function of the position has been determined by looking at a 22Na

source placed at 36 (9x4) different positions on two horizontal planes, using a polyethylene

matrix similar to that of the measurements of the irradiated films (see sketch in figure 2.6).

The alignment was made using the laser positioning of the PET room.

In total, six polyethylene sheets of 32×16×1 cm3 were used. Four of them without any

hole, and two of them with 9×4 holes, separated 36 mm, in order to place the source inside

them, and acquire the number of PROPCPS during a minute.
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Figure 2.7: Spatial calibration in efficiency for each position.

The results (figures 2.7 and 2.8) show efficiency variations in the order of 5-10% with the

positions, being fairly constant at the centre of the PET. In figure 2.7, one can se that the

z=1 and z=4 curves are opposed to each other, with differences in efficiency between the

edges and the centre of around 10%. This can be explained because the polyethylene matrix

was not completely lined up in the x axis, so opposite corners have the same behaviour:

two of them are close to the centre and the others are close to the extremes, therefore the

solid angle coverage is different in each case. Moreover, the z=2 and z=3 have a similar

behaviour, and all the curves are approximately constant (within 4%) in the centre of the

polyethylene sheets.

In this way the efficiency in the PET scanner has been determined in all the different
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Figure 2.8: 3D representation of the PET scanner efficiency, for plane y=1 (left) and plane
y=2 (right).

positions in which the irradiated targets will be placed within an uncertainty of 2%.

2.3 Target configuration for irradiation

The energy of the beam provided by the cyclotron is fixed to 18 MeV, but the aim of

this experiment is to measure the production cross sections at different energies below 18

MeV. For this, the targets were made of a stack of thin films in such a way the energy of

the protons traversing each film is decreasing from one to the next. The number of films in

each target were chosen so that the total thickness is not enough to stop the beam. In this

way the beam current can be monitored and measured with a beam dump after the targets.

The materials chosen to measure reactions in C, N and O are polyethylene (PE), poly-

methylmethacrylate (PMMA) and polycaprolactam (Nylon-6), all supplied by Goodfellow.

The characteristics of the targets are given in table 2.3. The thickness of the films were

measured by weighting pieces of known surface, obtaining the values listed in table 2.3.

While the values for PE and PMMA agree with those from the provider, the one of Nylon-6

was found to be 76(1) µm instead of the 100 µm claimed by the provider (with a tolerance

of 20%).

The energy of the beam before and after each film is calculated using SRIM-2013 [23]:

group of programs which calculate the stopping and range of ions (up to 2 GeV/amu) into

matter using a quantum mechanical treatment of ion-atom collisions (assuming a moving

atom as an ”ion”, and all target atoms as ”atoms”). This calculation is made very efficiently
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Material Density (g/cm3) Composition
Number Provided Measured
of layers thickness (µm) thickness (µm)

PE 0.96 (C2H4)n 12 200(±20%) 198(2)
PMMA 1.18 (C5O2H5)n 9 250(±20%) 247(3)
Nylon-6 1.13 (C6H11NO)n 20 100(±20%) 76(1)

Table 2.3: Target configuration for the irradiation. The uncertainty in the thickness was
estimated of the standard deviation of three independent measurements. The geometry of
the films is square (40×40 mm2).

by the use of statistical algorithms which allow the ion to make jumps between calculated

collisions and then averaging the collision results over the intervening gap. SRIM provides

the proton beam energy distribution after traversing each target, taking into account that

there is a 100 µm Al window in the exit of the cyclotron line and that the proton beam

travels 51 mm in air before reaching the first target. Then, the average energy inside each

target can be obtained as (see figure 2.9)

Ē =
Ēin + Ēout

2
, (2.1)

where Ēin and Ēout are the incident average energy and the outgoing average energy in

each target. The energy spread of the beam in each target is calculated as:

δElow =
FWHMout

2
+
Ēin − Ēout

2
, (2.2)

and

δEhigh =
FWHMin

2
+
Ēin − Ēout

2
, (2.3)

where FWHMout and FWHMin are the full widths at half maximum of the gaussian fit

in each simulated energy distribution. The results for the three target materials are shown

in figure 2.10.

Therefore, the total number of energy points depends on the number of films used.

In PE films the energy range covers from 17.0 MeV to 8.6 MeV, increasing the spread in

energy from 2% to 9%, respectively. In the PMMA films, the production cross section is

measured from 3.6 MeV with an energy uncertainty of the 60% up to 16.1 MeV with a
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Figure 2.9: Example of the entering and exiting proton beam in PE-2 target.

uncertainty of 4%. Finally, in Nylon-6 targets the number of energy points is larger, with

the production cross sections measured from 7.9 MeV (uncertainty of 8%) to 16.5 MeV

(uncertainty of 2%).
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Figure 2.10: Energy distribution after the proton beam traverse each target. The blue line

is the number of protons in each energy interval and the red line is the gaussian fitting

curve.

24



Chapter 3

3. Experiments at CNA, analysis and results

The experiment consisted in the irradiation of the different targets at the 18 MeV cyclotron

and the subsequent quantification (measuring with the PET scanner) of the activity in-

duced in each film. This has been then translated into the corresponding reaction cross

sections.

3.1 Irradiation and PET measurement

Four irradiations were carried out with the configurations summarized in table 3. The

scintillator was irradiated first to verify visually the alignment of the beam. For this and

the other three stacks of films, a polyethylene film was placed in the first position. As it

will be discussed later, the activity induced in this first film serves to verify the measured

beam current.

The beam current during the irradiation is monitored using as beam dump an electri-

cally isolated graphite (placed after the targets) connected to a Brookhaven 1000c Current

Integrator. The total charge is calculated taking into account the secondary electron losses

in graphite characterized in a previous work by biasing a graphite target into a vacuum

chamber. Table 3.1 summarizes the duration of each irradiation, the total incident charge

in each target and the time offset between the end of the irradiation (EOI) and the start

of the PET acquisition.

It is seen in table 3.1 that the PMMA measurement was performed later than the oth-

ers. Actually, in a first irradiation of PMMA the films were damaged due to high current

and thus a second irradiation of a new target was done for a longer time using a reduced

beam current. This reduced beam current was also used for the scintillator, as it can be

seen in figure 3.1. This figure shows the current (left) and accumulated charge (right) as

function of the irradiation time. One can see that the flux of protons was constant during

the irradiation of the PE, Nylon-6 and scintillator targets. However, in the case of PMMA

targets, the measured current fluctuates in the last minutes of the irradiation. A possible

explanation is that the samples started to damage towards the end of the irradiation.
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Irradiation PE PMMA Nylon Scintillator

Irradiation time 4’ 5” 11’ 40” 4’ 19” 9’ 54”
Time offset 36’ 10” 21’ 24” 51’ 59” 36’ 13”
PET acq. time 5h 3h 52’ 5h 3h 52’
Total charge 8.7(4)µC 8.7(4)µC 8.7(4)µC 6.5(3)µ
Number of targets 12 1 PE + 9 1 PE + 20 1 PE

Table 3.1: Experimental configuration during irradiation and PET/CT detection.

Figure 3.1: Current beam measured in a graphite, for each irradiation, as well as the total
charge.

The irradiated targets were placed inside a PE matrix acting as a conversor of the

positron into a couple of 511 keV photons. The matrix and the target therein are shown in

figure 3.2. There are 36 mm distance between each target in the horizontal (x-z) plane, and

4 cm distance in the vertical (y) plane. The images from the PET/CT scanner are shown

in figure 3.3. In order to measure the activity in each film, a spherical volume of interest

(VOI) of 3 cm in diameter is defined for each position. A total of 42 VOIs have been

studied. Using a dynamic analysis of the PET images, where the reconstruction technique

is TrueX and correction by attenuation, the result is the PROPCPS in each VOI in time

intervals of one minute. The decay time has been corrected by the time offset and the

PROPCPS values converted into activity using as reference a 22Na (124±7 kBq) source
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Figure 3.2: Polyethylene matrix with irradiated targets inside the PET scanner.

Figure 3.3: PET images superposed to CT image in the three planes, for y=1 and y=2.

placed at the position (5,2,2). The activity of the 22Na calibration source was verified

within 8% using an activimeter at CNA. The results are the activity curves discussed in

the following.

3.2 Fitting activity curves

The activity curves have been obtained taking into account the PET spatial resolution

and a correction due to the decay during the irradiation time, in order to have the total

production yield as a function of the initial activity. The production yield in case a nucleus

decays is
dN

dt
= −λN + fproduction, (3.1)
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r11C r13N

PE irradiation 1.07 1.14
PMMA irradiation 1.21 1.46
Nylon irradiation 1.08 1.16

Table 3.2: Correction factor by decay during the irradiation.

where λ is ln(2)/T1/2 and fproduction is proportional to the cross section. Then,

dN

dt
= −λN + nσI, (3.2)

where n is the number of atoms per unity of area of the irradiated material and I is the flux

of incident particles. Solving this differential equation, taking into account that N(0) = 0

and N(Tirrad) = A0/λ:

Ndecay = nσIλ−1(1− e−λTirrad)e−λt, (3.3)

where Tirrad is the irradiation time of each stack of targets. On the other hand, assuming

that the nuclei do not decay during the irradiation, i.e., the time of irradiation is much

smaller than the half-life of the isotope, then

Nnodecay = nσITirrad, (3.4)

Thus, the ratio between the production yield assuming the realistic and the “no decay”

cases, is:

r =
λTirrad

1− e−λTirrad
. (3.5)

Therefore, one must correct by this factor for each initial activity obtained, in order to have

the real production yields when the irradiation ended. Table 3 summarizes the correction

factor for the production yields of the different irradiations. The production yield of 13N

is significantly more affected than 11C, due to the fact that the 13N half-life is shorter than

that of 11C.

As mentioned before, a PE film was placed in the first position for each stack of targets.

The analysis of the corresponding activity curves, displayed in figure 3.4, shows that the

activity curves corrected by the decay time during the irradiation and normalized to the
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Figure 3.4: Activity curve in function of time in the first PE film of each set of targets.

total charge agree within 8%. The difference between each fit (2-8%) is compatible with the

uncertainty in the current beam (5%). It allows to validate the monitoring of the current

beam, even in PMMA targets (see figure 3.1, left).

The activity curves of all films have been analysed making use of the ROOT software

whose algorithms are based on the minimum chi-squared method. Taking into account the

decay constant of 11C and 13N, and the background introduced by the 22Na source and

176Lu present in the LSO scintillator crystals, the activity curves are fitted to the following

expression:

f(t) = A0 + A11Ce
−λ11Ct + A13Ne

−λ13N t, (3.6)

where A11C and A13N are the activities at EOI of the isotopes 11C and 13N, respectively,

with λ11C = ln(2)/T
11C
1/2 and λ13N = ln(2)/T

13N
1/2 . The half-life of the 11C and 13N are 20.36

and 9.967 min, respectively. The figures 3.5, 3.6 and 3.7 show the result of the fitted acti-

vation curves in each film. The blue line represents the fitted activity of 13N, the green line

represents the activity curve of 11C and the red line the total fit, including background.

The results of the fits are summarized in tables 3.4, 3 and 3.5, which contain the results for

the activities at EOI corrected by the decay factor r as function of the proton beam energy.
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The total uncertainty of these results has contribution from the uncertainty in the fitting

curve (as given by ROOT), the PET scanner efficiency dependence with the position (2%),

the measurement of the beam current (estimated to be 5%), the uncertainty in the activity

of the calibration source (1%) and the uncertainty in the target thickness (1%). The total

relative uncertainty is calculated as the square root of the sum of squares of the partial

uncertainties.

Figure 3.5: Fitted activity curve in PMMA targets. The blue line represents the fitted

activity of 13N, the green line represents the activity curve of 11C and the red line the total

fit, including background.
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Figure 3.6: Fitted activity curve in PE targets. The blue line represents the fitted activity

of 13N, the green line represents the activity curve of 11C and the red line the total fit,

including background.
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Figure 3.7: Fitted activity curve in Nylon-6 targets. The blue line represents the fitted

activity of 13N, the green line represents the activity curve of 11C and the red line the total

fit, including background.
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Energy (MeV) A11C (kBq) A13N (kBq)

17.0+0.4
−0.4 21 ± 3 86 ± 11

16.3+0.4
−0.4 1 ± 3 21 ± 3

15.7+0.4
−0.4 0.73 ± 0.05 26 ± 4

15.1+0.4
−0.5 0.44 ± 0.03 30 ± 3

14.4+0.5
−0.5 0.75 ± 0.08 28 ± 4

13.7+0.5
−0.5 0.48 ± 0.03 35 ± 3

13.0+0.5
−0.6 0.190 ± 0.011 35 ± 3

12.2+0.6
−0.6 0.46 ± .03 33 ± 3

11.4+0.6
−0.6 * 37.3 ± 2.4

10.5+0.7
−0.7 * 41 ± 3

9.6+0.7
−0.7 0.380 ± 0.023 51 ± 4

8.6+0.8
−0.8 0.193 ± 0.012 104 ± 7

Table 3.3: Initial activity in each target of PE. (*) The results of these fit are too small

and can not be trusted data, due to the low production yield of 11C in PE targets.

Energy (MeV) A11C (kBq) A13N (kBq)

16.1+0.6
−0.6 0.1 ± 1.4 401 ± 24

15.1+0.7
−0.7 3.0 ± 1.6 990 ± 60

14.0+0.7
−0.7 (1.2 ± 0.8)·10−3 1350 ± 80

12.7+0.8
−0.8 6.8 ± 1.5 970 ± 60

11.4+0.9
−0.9 5.0 ± 1.6 1380 ± 80

10.0+1.0
−1.0 5.6 ± 1.0 670 ± 40

8.4+1.1
−1.2 5.7 ± 1.4 1160 ± 70

6.4+1.4
−1.5 6.0 ± 0.7 188 ± 11

3.6+2.1
−2.6 4.0 ± 0.4 35 ± 2

Table 3.4: Initial activity in each target of PMMA.
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Energy (MeV) A11C (kBq) A13N (kBq)

16.5+0.3
−0.3 108 ± 7 184 ± 18

16.1+0.3
−0.3 117 ± 7 203 ± 21

15.8+0.3
−0.3 142 ± 9 188 ± 22

15.4+0.3
−0.3 138 ± 9 310 ± 30

15.0+0.3
−0.3 128 ± 8 314 ± 23

14.6+0.3
−0.3 144 ± 9 360 ± 30

14.2+0.3
−0.3 144 ± 9 359 ± 25

13.8+0.3
−0.4 149 ± 9 306 ± 24

13.4+0.4
−0.4 166 ± 10 430 ± 30

13.0+0.4
−0.4 194 ± 12 292 ± 22

12.6+0.4
−0.4 179 ± 11 296 ± 22

12.1+0.4
−0.4 192 ± 12 273 ± 21

11.7+0.4
−0.4 186 ± 11 282 ± 23

11.2+0.4
−0.4 179 ± 11 227 ± 23

10.7+0.4
−0.5 150 ± 9 235 ± 20

10.2+0.5
−0.5 160 ± 10 160 ± 23

9.7+0.5
−0.5 153 ± 9 340 ± 30

9.1+0.5
−0.5 194 ± 12 270 ± 30

8.5+0.5
−0.6 205 ± 13 320 ± 30

7.9+0.6
−0.6 173 ± 11 264 ± 24

Table 3.5: Initial activity in each target of Nylon.

3.3 Production yields and cross sections

The production yield of the isotope i during the irradiation of the target k is given by

dNk
i

dt
=
∑
j

pjn
k
jσj→iIk, (3.7)
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H (atoms/cm2) C (atoms/cm2) O (atoms/cm2) N (atoms/cm2)

PE 1.62 · 1021 8.09 · 1020 0 0
PMMA 1.43 · 1021 8.96 · 1020 3.58 · 1020 0
Nylon 6.62 · 1020 3.61 · 1020 6.02 · 1019 6.02 · 1019

Table 3.6: Targets composition.

where pj is the abundance of the isotope j, nkj is the number of nuclei of the j element

in k-target per unity of area, Ik is the flux of incident protons in k-target in particles per

unity of time, and σj→i is the production cross section of element i. Since production yield

can be related with activity by means of N = A/λ, then one has

dAki
dt

=
∑
j

λipjn
k
jσj→iIk. (3.8)

The solution of this differential equation is

Aki =
∑
j

λipjn
k
jσj→iIkTirrad, (3.9)

and making use of IkT
k
irrad = Ck/|e|, where Ck is the total charge accumulated in k-target

and e is the charge of the electron, the activity at EOI produced is, excluding the decay:

Aki =
∑
j

λipjn
k
jσj→i

Ck
|e|
. (3.10)

Consequently, the production cross section can be written in terms of the decay constant,

the initial activities, the total charge accumulated during the irradiation, the number of

atoms of each element and its relative abundance. The abundance of the isotope 12C is

98,9%, whereas for the isotope 13C is the 1,1%. Moreover, the isotopic relative abundance

of 16O and 14N is 0,998% and 0,996%, respectively. The number of atoms of each isotope

in the different materials are calculated using the density of the material and its thickness.

The results are summarized in table 3.6.

Since, the production cross section of 11C and 13N in the PE films involves only carbon
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atoms (p12C + p13C = 1), the cross section can be written simply as

σCnat→i =
APEi · |e|

λi · nPECnat
· CPE

, (3.11)

where APEi is the initial production activity in PE targets for each one of the positron

emitters produced.

However, since PMMA and Nylon-6 contain also oxygen and nitrogen, different reaction

channels can contribute to the production of 11C and13N. Therefore, both carbon and

oxygen contribute to the production of positron emitters 11C and13N in PMMA targets,

whereas carbon, oxygen and nitrogen contribute to the production in Nylon targets.

Therefore, the production cross section in natC obtained from the analysis of the PE

targets is subtracted from the ones in PMMA in order to obtain the cross section in oxygen:

σOnat→i =
APMMA
i · |e|

λi · p16O · nPMMA
Onat

· CPMMA

−
nPMMA
Cnat

· σCnat→i

p16O · nPMMA
Onat

, (3.12)

where APMMA
i is the initial production activity in PMMA targets for each one of the

positron emitters produced. Similarly, in order to obtain the production cross section of

natural nitrogen, one must subtract the contribution of carbon and oxygen producing the

positron emitters 11C and13N:

σNnat→i =
ANyloni · |e|

λi · p14N · nNylonNnat
· CNylon

−
nNylonCnat

· σCnat→i

p14N · nNylonNnat

−
nNylonOnat

· σOnat→i

p14N · nNylonNnat

, (3.13)

where ANyloni is the initial production activity in Nylon targets for each one of the positron

emitters produced. The energies at which each production yield is measured is different

for each stack of targets, since different thickness were used. Therefore, an interpolation

of the production cross sections was performed when neeed.

As the production cross sections of natO and natN have been calculated subtracting the

contribution of natC in both cases, and the contribution of natO in the natN cross section, the

uncertainty in each cross section depends on the uncertainty of the cross section subtracted.

The subtraction is sizeable in the case of 14N(p,*)13N, where it amounts to be 50%. In
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Figure 3.8: Production cross section for nuclear reactions of interest.

the reaction 14N(p,*)11C, the subtraction is less than 5%, whereas in 16O(p,*) the subtrac-

tion ranges from 1% to 25%.

Tables 3.7, 3.8 and 3.9 contain the production cross sections of the positron emitters

11C and 13N, in natC, 16O and 14N, respectively. The uncertainty in each value is calcu-

lated taking into account the uncertainties mentioned in section 3.2, as well as the error

propagation in the subtraction of the measured cross section.

At this point it must be mentioned that the visual inspection of the PMMA films after

the irradiation revealed that they had a plastic protection layer. This layer was found

to add an amount of oxygen between 0 and 4% to the PMMA layer, depending if it is

considered to be made of PE or EVA. This has been considered in the final cross section

values, and also the fact that this layer contributes to a larger degradation in proton energy

in each PMMA film.

The cross sections resulting from the mentioned measurement and analysis are shown

in figure 3.8. A total of six cross sections have been measured between 4 and 17 MeV.

The reactions with threshold have cross sections in the order of mb while the rest are

between 0.02 and 0.1 barn. The comparison with previous measurements is presented in

the following section.
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Energy (MeV) Cross section 11C (mb) Cross section 13N (mb)

17.0+0.4
−0.4 0.87 ± 0.12 1.71 ± 0.22

16.3+0.4
−0.4 0.10 ± 0.03 0.33 ± 0.06

15.7+0.4
−0.4 0.00362 ± 0.0022 0.51 ± 0.09

15.1+0.4
−0.5 0.0179 ± 0.0011 0.60 ± 0.07

14.4+0.5
−0.5 0.04 ± 0.03 0.56 ± 0.07

13.7+0.5
−0.5 0.0196 ± 0.0018 0.70 ± 0.06

13.0+0.5
−0.6 0.008 ± 0.004 0.70 ± 0.06

12.2+0.6
−0.6 0.0186 ± 0.0011 0.66 ± 0.06

11.4+0.6
−0.6 0 (*) 0.74 ± 0.05

10.5+0.7
−0.7 0 (*) 0.81 ± 0.06

9.6+0.7
−0.7 0.0155 ± 0.0009 1.02 ± 0.09

8.6+0.8
−0.8 0.0079 ± 0.0004 2.07 ± 0.14

Table 3.7: Production cross section measurement in Cnat.

(*) The results of these fit are too small and can not be

trusted data, due to the low production yield of 11C in

PE targets. Then the cross sections are compatible with

zero.
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Energy (MeV) Cross section 11C (barn) Cross section 13N (barn)

16.1+0.6
−0.6 0 (*) 11.6 ± 0.8

15.1+0.7
−0.7 0.15 ± 0.08 35.8 ± 2.1

14.0+0.7
−0.7 0 (*) 48.8 ± 2.9

12.7+0.8
−0.8 0.44 ± 0.10 34.4 ± 2.1

11.4+0.9
−0.9 0.35 ± 0.11 49.7 ± 2.9

10.0+1.0
−1.0 0.38 ± 0.07 23.3 ± 1.4

8.4+1.1
−1.2 0.44 ± 0.11 41.2 ± 2.5

6.4+1.4
−1.5 0.45 ± 0.05 4.9 ± 0.3

3.6+2.1
−2.6 0.27 ± 0.03 0 (*)

Table 3.8: Production cross section measurement in 16O.

(*) The results of these fit are too small and can not be

trusted data, due to the low production yield in compar-

ison with the contribution of C producing 11C and 13N.

Energy (MeV) Cross section 11C (barn) Cross section 13N (barn)

16.5+0.3
−0.3 68 ± 5 50 ± 5

16.1+0.3
−0.3 76 ± 5 52 ± 6

15.8+0.3
−0.3 92 ± 6 43 ± 6

15.4+0.3
−0.3 89 ± 6 77 ± 8

15.0+0.3
−0.3 83 ± 5 72 ± 7

14.6+0.3
−0.3 92 ± 6 82 ± 8

14.2+0.3
−0.3 92 ± 6 76 ± 8

13.8+0.3
−0.4 95 ± 6 53 ± 7

13.4+0.4
−0.4 106 ± 6 81 ± 8

13.0+0.4
−0.4 116 ± 10 35 ± 5

12.6+0.4
−0.4 109 ± 9 46 ± 5

12.1+0.4
−0.4 118 ± 8 46 ± 5
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11.7+0.4
−0.4 116 ± 7 42 ± 5

11.2+0.4
−0.4 112 ± 7 19 ± 3

10.7+0.4
−0.5 94 ± 6 35 ± 4

10.2+0.5
−0.5 101 ± 6 26 ± 4

9.7+0.5
−0.5 97 ± 6 73 ± 7

9.1+0.5
−0.5 123 ± 7 42 ± 5

8.5+0.6
−0.6 130 ± 8 74 ± 7

7.9+0.6
−0.6 109 ± 7 74 ± 7

Table 3.9: Production cross section measurement in 14N.

3.4 Comparison to previous data

A comparison with the cross section data available in EXFOR database has been per-

formed. In order to compare the production cross sections in natC, the available cross

sections for 12C and 13C are weighted by their relative abundance in natural carbon, as we

can not distinguish between the contributions from these two isotopes. Figures 3.9-3.14

show the available data in EXFOR for the nuclear reactions of interest, as well as the pro-

duction cross sections obtained in this study. The red arrow indicates the energy threshold

for each reaction channel.

In the case of the reactionnat C(p,*)11C, the cross section measurements show that at

low energies the production yields of 11C is negligible, because of the threshold energy of

15 MeV. The fitting curves in this case are equally good fixing the initial activity of 11C

to zero, for energies lower than 16 MeV. Therefore, these experimental values can should

be understood as an upper limit below the threshold of the production cross section.

The production cross section of 13N in natC is dominated by 13C, with no data available

for 12C. Our cross section values follow the same behaviour than the data provided by

M. L. Firouzbakht for 13C. It can be observed that the results of this study are in good
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agreement with the previous measurements done at CNA by J. Saiz, although the increase

of cross section in the highest energy is surprising.

Regarding the cross sections in oxygen via the reaction channel 16O(p,*)11C, there is

only one data point in the range of interest. The cross section in this work is in the order of

10−4 barns, with a sizeable uncertainty due to the subtraction of the carbon contribution

in PMMA targets. Our result is in agreement with the value from Akagi.

The reaction channel 16O(p,*)13N has been extensively measured in a wide range of

energy. There is ever an IAEA evaluated cross section (Takacs, 2003). Our cross section

is in relatively good agreement with the data available, being on average 19% higher than

the values of Takacs.

There is also a wide set of data available in the literature for the reaction channel

14N(p,*)11C. Again, there is an IAEA evaluated cross section by Tacaks (2003). Our

data are in agreement, slightly higher, with previous data; although it is obvious that the

measurement with a degraded beam from a cyclotron does not provide the same energy

resolution as the linacs used in previous measurements.

Last, in the reaction 14N(p,*)13N, there are not an agreement between the data available

in EXFOR (differences about 50%). The results of this study show that the production

cross section at low energies are in a factor 5 above the data provides by Z. Kovacs, whereas

cross section measurement of this work are in agreement with the previous measurements

done at CNA by J. Saiz.
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Figure 3.9: Production cross section of positron emitter 11C measured in natC and the
experimental data available in EXFOR.

Figure 3.10: Production cross section of positron emitter 13N measured in natC and the
experimental data available in EXFOR.
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Figure 3.11: Production cross section of positron emitter 11C measured in natO and the
experimental data available in EXFOR. The threshold is out of the energy range.

Figure 3.12: Production cross section of positron emitter 13N measured in natO and the
experimental data available in EXFOR.
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Figure 3.13: Production cross section of positron emitter 11C measured in natN and the
experimental data available in EXFOR.

Figure 3.14: Production cross section of positron emitter 13N measured in natN and the
experimental data available in EXFOR.
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4. Conclusion and outlook

In this work the production cross sections of β+ emitters for different reaction channels of

interest in range verification have been measured. In order to do this, a stack of thin layers

have been used to degrade the 18 MeV proton beam from the CNA cyclotron, permitting

the measurement of the production cross sections of interest in each layer at a determined

energy. In this way, the production cross sections have been measured in a energy range

from 4 to 17 MeV.

A series of improvements in the experimental set up analysis tools with respect to a

previous attempt have been developed. Regarding the experimental set up, a new sam-

ple holder for the irradiation have been designed and manufactured at CNA, in order to

irradiate all the targets without having to access the bunker. In addition, a matrix of

polyethylene (acting as conversor for the positrons) in which the films and the calibration

source are placed during the PET acquisition has been designed and manufactured in the

workshop of the Physics Faculty. Using this PE matrix and a known activity 22Na source,

an accurate spatial calibration in efficiency of the PET scanner has been performed.

In relation with the analysis of the experimental data, a correction by decay during the

irradiation time has been introduced, allowing the comparison between the first PE layers

in each stack of targets and the validation of the current beam measurement within 2%.

In order to reduce the possible systematic uncertainty in the measurement of the pro-

duction cross section, a series of verification tests have been done, such as the measurement

of the targets’ thickness and the experimental determination of the 22Na calibration source

activity.

The result of the experiment is a set of six cross sections (natC(p,*)11C, natC(p,*)13N,

natO(p,*)11C, natO(p,*)13N, natN(p,*)11C, natN(p,*)13N) in the energy range between 4 and

17 MeV with an accuracy that ranges between a minimum systematic uncertainty of 6%

from the measurement, and an additional contribution to the uncertainty from the fits

of the activity curves that ranges from 1% up to 50% (see tables 3.7, 3.8 and 3.9 for

details). In comparison with the available data in EXFOR database, our measurements

of the production cross sections are in agreement within uncertainties with the different
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authors when there is good quality of data, such as in the reaction channels 16O(p,*)13N

and 14N(p,*)11C. In addition, in certain energy range where there was not any available

data, the production cross sections have been measured for the first time.

In summary, the experimental techniques, improvements and set up have been devel-

oped in order to measure successfully the production cross sections of interest below 18

MeV and this will allow in a near future measurements at clinical energies (up to 250 MeV)

at other international facilities.
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