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By extending Amdahl’s law, software developers can weigh 

the pros and cons of moving their applications to the cloud.

A ccording to Gartner’s hype cycle,1 cloud com-
puting is now in a productive phase. Thus, it 
can be exploited at several levels: infrastruc-
ture as a service, which, like Amazon Elastic 

Compute Cloud (EC2), provides customers with custom-
izable virtual machines; platform as a service, which 
offers a framework, such as Google App Engine or Win-
dows Azure, that customers can use to develop their own 
applications; and software as a service, which gives cus-
tomers access to specific applications only, such as Mic-
rosoft Office Web or Dropbox.

Cloud computing has considerable advantages over 
computing on local devices: it offers automatic scaling; 
there is no need to purchase, upgrade, or maintain bare-
metal hardware; and it saves energy resources for mobile 
devices.2 Cloud computing has also opened up research 
opportunities in areas such as new programming para-
digms, mobile agent software, security and privacy, 
and tool balancing and deployment. However, for apps 
with real-time constraints, one might question whether 
remote execution is faster than local execution. Hence, 

both energy consumption and performance are crucial 
for cloud computing systems.

Moving some apps to the cloud yields extraordinary 
results, whereas offloading others is out of the question. 
Consider, for instance, apps that search huge information 
databases stored in servers. Whether these apps involve 
simple Internet searches for a term or feature-based 
image searches (for example, Google Goggles), they must 
sort through a vast number of possible matches. Hence, 
the offloading overhead time is much less than the time to 
obtain search results. These apps occur on the server side 
for two obvious reasons: the extensive volume of infor-
mation to be processed, and the high amount of compu-
tation required. If the user information to be processed 
is already stored in the cloud, no data transfer is required 
(only a pointer to the data),5 making cloud computing 
preferable. But what about those apps that capture infor-
mation online from the local device? Could they benefit 
by cloud offloading today? What about tomorrow?

To help software developers weigh the pros and cons 
of cloud offloading, we offer a simple extension of Gene 
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Amdahl’s law, which is used to predict 
the maximum speedup of a system due 
to improvements in part of the system. 
This extension also allows us to con-
sider what apps are most suitable for 
offloading, as well peer into cloud com-
puting’s future.

AMDAHL’S LAW 
AND THE CLOUD
Although originally intended for uni-
processor versus multiprocessor execution time compari-
sons, Amdahl’s famous law can be applied to any system. 
Let speedup S be the original execution time divided by 
an enhanced execution time.3 If a fraction F of the orig-
inal time is enhanced by a speedup Sfraction, the overall 
speedup is

=
− +

S
F F S

1
(1 ) /

.
fraction

Note that Amdahl assumed the extreme case: fraction F was 
infinitely parallelizable (no overhead times were included), 
and the remaining fraction, 1 – F, was totally sequential.

To extend Amdahl’s law to cloud computing, we must 
compare centralized versus offloaded application perfor-
mance. Figure 1 shows the main system architectural com-
ponents involved in both execution models.

Centralized application execution 
Classical centralized architectures consist of a CPU 
that captures code instructions and operand data from 
its local hierarchic memory, executes them, and stores 
the results in memory. Each core executes instructions 
sequentially according to the von Neumann model. Con-
sequently, uniprocessor execution time can be expressed 
as NI × CPI × T, where NI is the number of program instruc-
tions, CPI is the mean number of cycles per instruction, 
and T is the clock period (see the “Components of Execu-
tion Time” sidebar).

Nowadays, CPUs contain Nc,local number of cores. 
According to Amdahl’s law, the Nc,local cores execute a frac-
tion F of the program in parallel, while a single core executes 
the rest—namely, F × NI instructions are executed in paral-
lel, but (1 – F)NI  instructions are not. For simplicity’s sake, 
suppose that a CPU is a symmetric multicore chip (that is, 

all its cores are identical, which is the most common type) 
and that interaction with the outer world (the input/output 
subsystem) is irrelevant to execution time; only the Inter-
net connection, or network interface controller (NIC), plays 
a significant role. Given these assumptions, local program 
execution time is
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Offloaded application execution
If an app is offloaded to the cloud, the local device first 
sends its data and code through the Internet (Figure 1: green 
arrow, step 1) to the cloud server. Next, the transferred app 
is executed on the cloud. Finally, the server returns the 
results to the local device (green arrow, step 3). The bottom 
of Figure 1 schematizes the time involved in steps 1–3, where 
NData = ND,input + ND,output, or the total amount in bits of 
data exchanged with the cloud.

We assume some additional simplifications to calculate 
cloud execution time:

 › The program’s code size can be neglected: it is either 
much smaller than the data size (evident when 
images, videos, big data, and so on are processed) or 
already resides, for the most part, in the cloud (for 
example, libraries). 

 › Data is transferred at a constant communication 
bandwidth (BW), while its startup latency is negligi-
ble (or done in parallel with transmissions). 

 › Internal cloud overhead times are not considered, 
because most occur in parallel with other times.
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FIGURE 1. Centralized application execution (top left) versus offloaded app execution 
(top right and bottom). ND,input and ND,output together represent the total bits of data 
exchanged with the cloud. NIC: network interface controller.



Indeed, communication and computation times might 
overlap. The two extremes are described below.

If no overlap exists, cloud execution time is the sum of 
communication and computation times:
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Because cloud resources can be scaled up dynamically, 
the number of virtual CPUs should be large enough that 
 F/Nc,cloud → 0. Conversely, if the overlap is complete, 
communication times are completely hidden; hence,

= −t F N CPI T(1 ) .
cloud,overlapping I cloud cloud

Comparing cloud and local performance
For simplicity, assume that the local and cloud CPU tech-
nologies are similar; that is, CPIcloud ≈ CPIlocal, and Tcloud 
≈  Tlocal. In fact, because the cloud contains cutting-edge 
technology, its cores might well be faster than local cores. 
Hence, this simplification favors local machines.

With complete communication–computation over-
lap, local execution time will exceed cloud execution time 
because communication penalties are negligible when 
cloud resources are far bigger than local ones. In a worst-
case cloud scenario, where there is no overlap, computing 
St as tlocal/tcloud, dividing the numerator and denominator 
by NI × CPI × T, and reordering yields the following speedup:
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Thus, we define two parameters. The first, μ = (CPI × T 
× BW)–1, establishes the ratio between the local machine’s 
capacity to execute instructions per second and core (CPI × 
T)–1 and its capacity to send data bits per second (BW). That 
is, μ is reciprocal to the machine’s offloading capabilities. The 
second parameter, DI = NI/NData, represents the app’s comput-
ing density—the mean number of instructions that must be 
executed for any data bit to be exchanged with the cloud.

Figure 2a shows the speedup St as a function of DI for dif-
ferent F, supposing a modest local device (Nc,local = 1). Note 

COMPONENTS 
OF EXECUTION TIME

Most computers are finite state machines 
with a CPU in which almost everything 

is synchronous with a clock of period T. A 
program’s execution time texec is a multiple
of Nclocks periods; that is, texec = NclocksT. 
Likewise, the vast majority of modern 
computers use the von Neumann model, 
established 60 years ago, in which a pro
gram consists of a number NI of instructions
executed in sequential order. Sequential 
execution is not an efficient computation 
method but is how most people express 
solutions to problems; hence, most comput
ing languages stick to this representation. 

Nclocks can be split as
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I
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and, therefore, texec = NI × CPI × T. This is the
fundamental formula of computer archi
tects, and the three factors NI, CPI, and T
each play a role in microprocessor design. 

CPI (clocks per instruction) is the CPU’s 
ability to execute many instructions per 
clock. In the early stages of computing, CPI 
was relatively high (several clocks per in
struction). However, the advent of reduced
instructionset machines in 1985 allowed 
architects to design efficient CPU pipelines 
that executed several instructions in just one 
clock cycle (CPI < 1). Thus, execution times 
could be reduced progressively as a result 
of CPI diminution and period contraction. By 
the end of the last century, architectural in
novations had plateaued. Today, ideal CPI is 
given by the inverse of the width of the pro
cessor issue stage (around 5 instructions per 
cycle for the past 15 years; hence, ideally 
CPI ≈ 1/5). Nevertheless, CPU stall cycles 
make realworld CPI > 1 for a representative 
set of benchmarks. To make matters worse, 
around 2005, the CPU period also came to 
a standstill. These constraints led to the so
called “multicore era.”



that the scales are logarithmic, because St rises to high val-
ues for a large DI. For high F values, remote execution is 
clearly advantageous when DI is moderate. But for F < 0.5, 
offloading is faster even for low DI values (>2). Thus, for sim-
ple devices, cloud computing can benefit a huge range of 
apps. The situation is less favorable when the local device 
is more powerful (Nc,local = 4; see Figure 2b). In this case, a 
new effect appears: for moderate values of DI > 8, offloading 
is advantageous for any F ≥ 0.5. A similar effect occurs with 
an extremely powerful device (Nc,local = 16; see Figure 2c): if 
DI > 20, the high-energy-consuming local device would not 
be beneficial.

Our comparison of local and cloud performance yields 
three important results.

First, total cloud execution time depends strongly on the 
amount of overlap between communication and computa-
tion times. This overlap should be thoroughly analyzed by 
the middleware that manages the task offloading. (The “Ste-
reo Vision Offloading for Mobile Robots” sidebar describes 
an application case.)

Second, μ/DI plays a critical role in speedup. Currently, 
μ is estimated to be a few units (CPI rounds up to 1 for most 

programs, and T and BW are on the order of 1 ns and 1 Gbps, 
respectively). However, μ is expected to progressively 
decrease because BW will presumably continue increasing 
at a geometric rate, and CPI × T has reached a fixed value 
that will be difficult to surpass with present technology (see 
the “Components of Execution Time” sidebar).  This implies 
that because μ/DI is expected to decrease, the benefits of 
using the cloud will increase in the near future.

Finally, when using uniprocessors in the local device 
(Nc,local = 1), 

St =
1

µ
D
I

+(1−F )
.

Thus, offloading execution would be convenient for apps 
with low DI (even if F < 0.5). Therefore, if μ/DI decreases in 
the future, simplified device hardware might become the 
new trend. This would have the additional benefits of sav-
ing energy and reducing software complexity. Note that in 
Internet of Things or bare-metal thin client devices, local 
CPUs would not even exist (see Figure 1).
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FIGURE 2. Speedup for remote versus local execution (Nc,local) as a function of DI = NI/NData (app computing density) for different frac-
tion F, with μ = (CPI × T × BW)–1 = 1: (a) Nc,local = 1, (b) Nc,local = 4, and (c) Nc,local = 16.



CONSIDERING PERFORMANCE AND ENERGY 
Performance speedup is useful for any system, but 
mobile devices’ battery lifetime is a serious constraint 
when executing computation-demanding apps.4 With 
existing technology, most of the energy consumed when 
offloading an app to the cloud is due to data transmis-
sion. Therefore, the question becomes, can extending 
Amdahl’s law for the cloud predict whether the energy 
that off loading saves compensate for the energy that 
local processing consumes?5

Energy consumption is the sum of power multiplied by 
the time of the different periods: 

∑ ×P t .
i i

i

According to Dong Hyuk Woo and Hsien-Hsin Lee’s model, 
local app execution consists of a parallel period and a sequen-
tial period.6 During the fraction F of parallel execution time, 
all the cores are involved, so power is Nc,localP1, with P1 being 
the power of a single core. During the sequential period (1 – 
F), the power is kidleP1(Nc,local – 1 ) + P1, because one core is 
fully active while the others are idle (and  consume kidleP1, 
with kidle < 1). Considering only the app and ignoring the 
remaining system and processes, consumed energy would be

STEREO VISION OFFLOADING FOR MOBILE ROBOTS

Mobile robot technology has reached an ele-
vated degree of maturity in the past decade. 

For example, fully autonomous cars could soon 
become commercially available. This has been 
motivated in part by advances in sensory infor-
mation processing such as stereo vision. Such 
advancements were due mainly to the advent 
of more powerful parallel architectures and the 
availability of distributed OSs, such as robotics 
software frameworks (RSFs). RSFs have allowed 
improved scalability, reusability, deployment, and 
debugging1 and the deployment of tasks either 
on board or in cloud computing systems, depend-
ing on their constraints.2

Stereo vision is an active research field. A 
higher degree of time complexity is involved in 
analyzing the difference between stereo frame 
pairs, that is, the difference between what the left 
and right eyes see. Disparity maps permit calcula-
tion of the objects’ distance to the cameras, more 
or less accurately depending on the algorithm 
used and the image features. Most representa-
tive algorithms have time complexities ranging 
from O(N2) to O(N11), where N is the horizontal 
image size.3 OpenCV (http://opencv.org) has one 
of the most extended algorithms with com-
plexity on the order of O(N3)—the usual level for 
most algorithms. The problem is that real-time 
requirements can be difficult to meet when more 
accurate reconstruction of the environment is 

demanded. The frequency of stereo frame pro-
cessing must be sufficiently high but its latency 
sufficiently small. For example, when the robot is 
moving, the distance to the nearest obstacle must 
be computed early enough to avoid a crash or an 
emergency stop. Such a task must be processed 
by a powerful computing system or—as is more 
common nowadays—performed with low- 
resolution images.

Thus, the possibility of cloud-based stereo 
vision is gaining momentum. The offloading 
process must not only be parallel, but must also 
exploit the cloud’s dynamic scalability. Concretely, 
if multiple CPU cores were available, processing 
times could run in parallel to transfer times, which 
are often the bottleneck during cloud offloading.2 
This could yield mean processing frequencies 
nearly proportional to network bandwidth.
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As mentioned earlier, for cloud computing, local energy 
consumption depends on the overlap between communica-
tion and computation times, with consumption obviously 
lowest for complete overlap. We again consider the worst-
case cloud scenario of no overlap. Local energy is the sum 
of the communication and cloud computation periods. Data 
transmission adds an extra power Pt. Assuming that the 
NIC transmits data by directly accessing local memory, then 
all local cores would be in an off state during both periods. 
Hence, the energy wasted by the local device would be
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The local device need not be running while waiting for 
the cloud response. Obviously, the device can stay awake 
to manage other inner tasks, but this energy consump-
tion cannot be attributed to offloading. From an applica-
tion viewpoint, the local device could be almost fully off 
(only waiting for the NIC), which means that koff would be 
negligible.

Energy efficiency is determined by the performance 
achievable in the same battery life cycle (that is, with the 
same energy).6 The resultant speedup St×E is given by

S
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Finally, reordering and using the parameters μ and DI 
(and assuming that koff = 0), we obtain

S
t×E
=
[(1−F )(N

c,local
−1)k

idle
+1]P

1

µ
D
I

P
t

×

F
N

c,local

+(1−F )

µ
D
I

+(1−F )
.

Again, three significant results emerge when we con-
sider performance and energy.

First, DI is the fundamental parameter for determining 
whether cloud offloading is energetically beneficial. Using 
technological magnitudes for a typical mobile device (μ = 1, 
kidle = 0.3,6 and P1 = Pt = 1W), St×E begins to favor the cloud
for moderate DI values. For simple devices (Nc,local = 1) with 
a DI > 1.3, migration is advantageous (St×E > 1) for any F ≥ 
0.5. For more powerful devices, the bounds grow a little. 

Moreover, for apps with low F, migration is more favorable 
even for lower DI (and the more powerful the device, the 
more notable this effect). This result implies that middle-
ware designers should focus on increasing DI by using com-
pression techniques and good data coding. Furthermore, 
software engineers should estimate whether future app 
versions will increase DI. In general, cloud offloading would 
not benefit apps with low DI, such as those that do not reuse 
input data like video or audio streaming.

Second, if μ’s expected reduction continues, these 
bounds will decrease at a nearly proportional rate. That 
is, if μ were reduced by one-tenth, the bounds on DI would 
decline by approximately 0.1, 0.2, and 0.4 for Nc,local = 1, 4, 
and 16, respectively. Thus, in the future, technology will 
favor offloading app execution for embedded devices.

Finally, when F → 1 (which is common in most scientific 
apps,) or Nc,local = 1, speedup is almost proportional to

S
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So, for simple devices or very parallel apps, we can expect to 
achieve energy efficiency for cloud migration much earlier 
than for timing speedup (quadratic order).

CHARACTERIZING APPLICATION SUITABILITY 
FOR CLOUD OFFLOADING
To determine whether a given app might benefit from cloud 
offloading, we consider two examples.

Example 1
The first example is a very computationally intensive algo-
rithm, matrix multiplication, which is the kernel of many 
scientific apps. Assuming A = B × C is the product of n × n 
ranked matrices, the calculation basically consists of these 
three loops:

    for row = 1...n

for col = 1...n

for  k = 1...n

A[row][col] += B[row][k] * C[k][col]

The two outer loops iterate over A’s elements, while the 
inner loop computes the dot product of a row of the first 
matrix by a column of the second matrix. The total number 
of multiply operations equals the number of inner-loop iter-
ations and is on the order of O(n3). For most scientific apps, 



the bigger n is, the more accurate the results will be. How-
ever, the high computational order together with the ele-
vated amount of memory makes many programmers reluc-
tant to use big matrices.

What if application execution was offloaded? B and C 
must be sent to the cloud, and, after processing, A must 
be returned back—that is, O(n2) bits would be exchanged. 
Hence, DI = O(n3)/O(n2) = O(n). All of A’s elements can be
computed in parallel, and only the sum of products—O(n)—
must be done sequentially, which gives 1 – F = O(n)/O(n3) = 
O(n–2). Finally, St = O(n), St×E = O(n2). Hence, the more accu-
rate the results desired, the more speedup can be extracted 
from cloud execution. In sum, not only μ but also F and DI 
favor cloud offloading.

Example 2
The second example is crucial to many robotic apps: pro-
cessing frame pairs captured by a stereo camera. The “Ste-
reo Vision Offloading for Mobile Robots” sidebar shows 
that this processing can be designed not only to be parallel 
but also to establish an efficient pipeline with transmission 
times. Hence, parallel ratio F is very near to 1 for a medium- 
resolution image. The sidebar shows that the usual com-
plexities of these algorithms are on the order of O(N3), N 
being the horizontal image size. Because transmitted data 

are proportional to image resolution, 
that is, O(N2), DI is again O(N). So, the
higher the image’s resolution, the 
more speedup can be achieved through 
cloud offloading.

This reasoning can be extended to 
most cases. For instance, scientific apps 
are usually parallel and have complexity 
whose order varies between O(n log n)—
for example, fast Fourier transform (FFT) 
calculations—and O(n)—for example, 
finite element–based calculations—for 
a data size n.3 This means that whereas 
F approaches 1, DI grows like O(log n) 
or remains constant. In the FFT case, 
the more data used, the more speedup 
will be achieved, whereas with finite 
element− based computation, speedup 
benefits will only be possible once tech-
nological progress increases by μ.

These examples lead to two main 
conclusions.

First, for many apps, F and DI grow with problem com-
plexity. This implies that as new apps require more accurate 
solutions, cloud offloading becomes more viable. Further-
more, software designers and researchers should strive to 
decrease NData by using compression techniques and good 
data coding7 to increase DI.

Second, and contrary to expectations, remote exe-
cution of apps that have high CPI and giga instructions 
per second (GIPS) far below the theoretical maximum3 
(marked by down arrows in Figure 3) might be the best 
option. For F = 1, the maximum performance that can be 
achieved through local and cloud execution of such an 
app is depicted in Figure 3, which is based on a real case 
(Snapdragon 610 S4 Pro). The abscissa represents differ-
ent DI values, while the ordinate represents GIPS. This 
extension of the roofline model for GIPS,8 rather than giga 
floating-point operations per second (Gflops), results in a 
two-roofline model. Maximum device GIPS is calculated 
as the inverse of clocks/instruction × seconds/clock, mul-
tiplied by the number of cores Nc,local, that is, (CPIminimum 
× T)–1Nc,local. Theoretical maximum cloud GIPS would
be calculated similarly (if cloud resources were finite). 
When execution implies many RAM accesses, this max-
imum cannot be reached: the product instructions/data 
bit × data bit/seconds, that is, DI × BWRAM, gives the first 

DI, ratio of number of instructions per data bit
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FIGURE 3. Two-roofline model for giga instructions per second (GIPS) versus DI for local 
(Qualcomm Snapdragon 610 S4 Pro, with 1.5 GHz quad-core Krait 300) and cloud 
application execution. Decreased maximum device GIPS is marked with down arrows. 



roofline. The second roofline is obtained for the network 
connection between the device and the cloud: DI × BW. If 
prolongation of the second roofline (dotted red line in Fig-
ure 3) crossed real device GIPS, remote execution would 
achieve the same GIPS as local execution. Other benefits, 
such as energy savings, might also motivate use of the 
remote option.

LESSONS FROM HISTORY
For apps that require storing vast amounts of data on a 
server, cloud computing is the only option. But what does 
our extension of Amdahl’s law predict about those apps that 
elude offloading?

If Moore’s law continues to hold for the next decade, 
cloud computing will clearly benefit from the effect of tech-
nological progress on μ.  For holistic factors such as F and DI, 
the matter is less simple. Nevertheless, we can learn some 
valuable lessons from history. Amdahl argued that 1 – F val-
ues were large enough to favor single processors. Today’s 
enhanced machines allow massive computations beyond 
anything he could have envisioned,9 making F values soar 
very close to 1. Thus, F can be stretched as more computa-
tion resources become available.

We can envision DI’s evolution. One of Myhrvold’s laws 
states that “software is a gas: it expands to fill any size 
hardware container.”10 Users or developers might notice 
that a remotely executed app is more powerful (and maybe 
faster and more energy efficient) than its locally executed 
counterpart, which runs in a smaller hardware container. 
Or mobile programmers might discover that they have 
unlimited computation power in the cloud. We wager that 
these users would ditch the local option and embrace the 
cloud, and that the efforts needed to transform a complex 
algorithm to run faster on a low-power computer could be 
turned toward other, more productive purposes. Hence, DI 
will very likely increase when all programmers easily and 
transparently use the cloud. In sum, St and St×E are being 
boosted by these three factors (μ, F, and DI).

Even apps that must run close to the target system tend 
to be offloaded to the cloud nowadays. Platforms such as 
the ARM mbed IoT Device Platform (www.mbed.com) offer 
a remote compilation for embedded systems and the possi-
bility of generating a development project to be loaded into 
a certain device. By enabling embedded-system program-
mers to work in their preferred environment and with their 
favorite tools, the cloud makes app development both easier 
and faster.

The real world is much more complex than a theo-
retical model that tries to encompass major trends 
and must include several assumptions. Some of 

our model’s assumptions benefit cloud offloading, such as 
overlooking overheads from virtualization, middleware, 
and OS, or not considering the time required to divide 
computation between local and external resources. Other 
assumptions benefit local execution, such as considering 
no overlap between communication and computation, or 
supposing that resources (for example, memory, caches, 
and bus speeds) are identical for the cloud and the local 
system. The literature shows how complex these practical 
issues can be.11

Two practical issues make the cloud attractive for app 
developers. First, there has been substantial R&D into mak-
ing cloud facilities commercially successful, which should 
help real cloud execution times soon approach those of our 
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model. Second, migrating apps to the cloud would sim-
plify local devices at minimal cost. This bene� t will likely 
be brought about by e�  c i ent ne tworking an d di stributed 
computing techniques, which could pave the way for new 
programming paradigms that contemplate automatic code 
migration as a new form of computation. 
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