
Extending Amdahl’s Law for the
Cloud Computing Era

Fernando Díaz-del-Río, Javier Salmerón-García, and José Luis Sevillano, University of
Seville

By extending Amdahl’s law, software developers can weigh

the pros and cons of moving their applications to the cloud.

A ccording to Gartner’s hype cycle,1 cloud com-
puting is now in a productive phase. Thus, it
can be exploited at several levels: infrastruc-
ture as a service, which, like Amazon Elastic

Compute Cloud (EC2), provides customers with custom-
izable virtual machines; platform as a service, which
offers a framework, such as Google App Engine or Win-
dows Azure, that customers can use to develop their own
applications; and software as a service, which gives cus-
tomers access to specific applications only, such as Mic-
rosoft Office Web or Dropbox.

Cloud computing has considerable advantages over
computing on local devices: it offers automatic scaling;
there is no need to purchase, upgrade, or maintain bare-
metal hardware; and it saves energy resources for mobile
devices.2 Cloud computing has also opened up research
opportunities in areas such as new programming para
digms, mobile agent software, security and privacy,
and tool balancing and deployment. However, for apps
with real-time constraints, one might question whether
remote execution is faster than local execution. Hence,

both energy consumption and performance are crucial
for cloud computing systems.

Moving some apps to the cloud yields extraordinary
results, whereas offloading others is out of the question.
Consider, for instance, apps that search huge information
databases stored in servers. Whether these apps involve
simple Internet searches for a term or feature-based
image searches (for example, Google Goggles), they must
sort through a vast number of possible matches. Hence,
the offloading overhead time is much less than the time to
obtain search results. These apps occur on the server side
for two obvious reasons: the extensive volume of infor-
mation to be processed, and the high amount of compu-
tation required. If the user information to be processed
is already stored in the cloud, no data transfer is required
(only a pointer to the data),5 making cloud computing
preferable. But what about those apps that capture infor-
mation online from the local device? Could they benefit
by cloud offloading today? What about tomorrow?

To help software developers weigh the pros and cons
of cloud offloading, we offer a simple extension of Gene

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157759994?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Amdahl’s law, which is used to predict
the maximum speedup of a system due
to improvements in part of the system.
This extension also allows us to con-
sider what apps are most suitable for
offloading, as well peer into cloud com-
puting’s future.

AMDAHL’S LAW
AND THE CLOUD
Although originally intended for uni-
processor versus multiprocessor execution time compari-
sons, Amdahl’s famous law can be applied to any system.
Let speedup S be the original execution time divided by
an enhanced execution time.3 If a fraction F of the orig-
inal time is enhanced by a speedup Sfraction, the overall
speedup is

=
− +

S
F F S

1
(1) /

.
fraction

Note that Amdahl assumed the extreme case: fraction F was
infinitely parallelizable (no overhead times were included),
and the remaining fraction, 1 – F, was totally sequential.

To extend Amdahl’s law to cloud computing, we must
compare centralized versus offloaded application perfor-
mance. Figure 1 shows the main system architectural com-
ponents involved in both execution models.

Centralized application execution
Classical centralized architectures consist of a CPU
that captures code instructions and operand data from
its local hierarchic memory, executes them, and stores
the results in memory. Each core executes instructions
sequentially according to the von Neumann model. Con-
sequently, uniprocessor execution time can be expressed
as NI × CPI × T, where NI is the number of program instruc-
tions, CPI is the mean number of cycles per instruction,
and T is the clock period (see the “Components of Execu-
tion Time” sidebar).

Nowadays, CPUs contain Nc,local number of cores.
According to Amdahl’s law, the Nc,local cores execute a frac-
tion F of the program in parallel, while a single core executes
the rest—namely, F × NI instructions are executed in paral-
lel, but (1 – F)NI instructions are not. For simplicity’s sake,
suppose that a CPU is a symmetric multicore chip (that is,

all its cores are identical, which is the most common type)
and that interaction with the outer world (the input/output
subsystem) is irrelevant to execution time; only the Inter-
net connection, or network interface controller (NIC), plays
a significant role. Given these assumptions, local program
execution time is

t
local
=(1−F)N

I
CPI

local
T
local
+
FN

I

N
c,local

CPI
local
T
local

= (1−F)+ F
N

c,local

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
N

I
CPI

local
T
local
.

Offloaded application execution
If an app is offloaded to the cloud, the local device first
sends its data and code through the Internet (Figure 1: green
arrow, step 1) to the cloud server. Next, the transferred app
is executed on the cloud. Finally, the server returns the
results to the local device (green arrow, step 3). The bottom
of Figure 1 schematizes the time involved in steps 1–3, where
NData = ND,input + ND,output, or the total amount in bits of
data exchanged with the cloud.

We assume some additional simplifications to calculate
cloud execution time:

›› The program’s code size can be neglected: it is either
much smaller than the data size (evident when
images, videos, big data, and so on are processed) or
already resides, for the most part, in the cloud (for
example, libraries).

›› Data is transferred at a constant communication
bandwidth (BW), while its startup latency is negligi-
ble (or done in parallel with transmissions).

›› Internal cloud overhead times are not considered,
because most occur in parallel with other times.

Sending data

World
Aux.
CPU

Local CPUs NIC

Local memory

Internet

Cloud
(virtual CPUs)

User
Other

networks

ND,input

ND,output

1

1

2

2

3

3

Remote computing

Receiving results

Time

FIGURE 1. Centralized application execution (top left) versus offloaded app execution
(top right and bottom). ND,input and ND,output together represent the total bits of data
exchanged with the cloud. NIC: network interface controller.

Indeed, communication and computation times might
overlap. The two extremes are described below.

If no overlap exists, cloud execution time is the sum of
communication and computation times:

t
cloud
=
N

Data

BW
+ (1−F)+ F

N
c,cloud

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
N

I
CPI

cloud
T
cloud

=
N

Data

BW
+(1−F)N

I
CPI

cloud
T
cloud

.

Because cloud resources can be scaled up dynamically,
the number of virtual CPUs should be large enough that
F/Nc,cloud → 0. Conversely, if the overlap is complete,
communication times are completely hidden; hence,

= −t F N CPI T(1) .
cloud,overlapping I cloud cloud

Comparing cloud and local performance
For simplicity, assume that the local and cloud CPU tech-
nologies are similar; that is, CPIcloud ≈ CPIlocal, and Tcloud
≈ Tlocal. In fact, because the cloud contains cutting-edge
technology, its cores might well be faster than local cores.
Hence, this simplification favors local machines.

With complete communication–computation over-
lap, local execution time will exceed cloud execution time
because communication penalties are negligible when
cloud resources are far bigger than local ones. In a worst-
case cloud scenario, where there is no overlap, computing
St as tlocal/tcloud, dividing the numerator and denominator
by NI × CPI × T, and reordering yields the following speedup:

S
t
(F ,N

c,local
,µ,D

I
)=
t
local

t
cloud

=

F
Nc,local

+(1−F)

µ
DI
+(1−F)

.

Thus, we define two parameters. The first, μ = (CPI × T
× BW)–1, establishes the ratio between the local machine’s
capacity to execute instructions per second and core (CPI ×
T)–1 and its capacity to send data bits per second (BW). That
is, μ is reciprocal to the machine’s offloading capabilities. The
second parameter, DI = NI/NData, represents the app’s comput-
ing density—the mean number of instructions that must be
executed for any data bit to be exchanged with the cloud.

Figure 2a shows the speedup St as a function of DI for dif-
ferent F, supposing a modest local device (Nc,local = 1). Note

COMPONENTS
OF EXECUTION TIME

Most computers are finite state machines
with a CPU in which almost everything

is synchronous with a clock of period T. A
program’s execution time texec is a multiple
of Nclocks periods; that is, texec = NclocksT.
Likewise, the vast majority of modern
computers use the von Neumann model,
established 60 years ago, in which a pro­
gram consists of a number NI of instructions
executed in sequential order. Sequential
execution is not an efficient computation
method but is how most people express
solutions to problems; hence, most comput­
ing languages stick to this representation.

Nclocks can be split as

clocks I
clocks

I

I
N N

N

N
N CPI= =

and, therefore, texec = NI × CPI × T. This is the
fundamental formula of computer archi­
tects, and the three factors NI, CPI, and T
each play a role in microprocessor design.

CPI (clocks per instruction) is the CPU’s
ability to execute many instructions per
clock. In the early stages of computing, CPI
was relatively high (several clocks per in­
struction). However, the advent of reduced­
instruction-set machines in 1985 allowed
architects to design efficient CPU pipelines
that executed several instructions in just one
clock cycle (CPI < 1). Thus, execution times
could be reduced progressively as a result
of CPI diminution and period contraction. By
the end of the last century, architectural in­
novations had plateaued. Today, ideal CPI is
given by the inverse of the width of the pro­
cessor issue stage (around 5 instructions per
cycle for the past 15 years; hence, ideally
CPI ≈ 1/5). Nevertheless, CPU stall cycles
make real-world CPI > 1 for a representative
set of benchmarks. To make matters worse,
around 2005, the CPU period also came to
a standstill. These constraints led to the so-
called “multicore era.”

that the scales are logarithmic, because St rises to high val-
ues for a large DI. For high F values, remote execution is
clearly advantageous when DI is moderate. But for F < 0.5,
offloading is faster even for low DI values (>2). Thus, for sim-
ple devices, cloud computing can benefit a huge range of
apps. The situation is less favorable when the local device
is more powerful (Nc,local = 4; see Figure 2b). In this case, a
new effect appears: for moderate values of DI > 8, offloading
is advantageous for any F ≥ 0.5. A similar effect occurs with
an extremely powerful device (Nc,local = 16; see Figure 2c): if
DI > 20, the high-energy-consuming local device would not
be beneficial.

Our comparison of local and cloud performance yields
three important results.

First, total cloud execution time depends strongly on the
amount of overlap between communication and computa-
tion times. This overlap should be thoroughly analyzed by
the middleware that manages the task offloading. (The “Ste-
reo Vision Offloading for Mobile Robots” sidebar describes
an application case.)

Second, μ/DI plays a critical role in speedup. Currently,
μ is estimated to be a few units (CPI rounds up to 1 for most

programs, and T and BW are on the order of 1 ns and 1 Gbps,
respectively). However, μ is expected to progressively
decrease because BW will presumably continue increasing
at a geometric rate, and CPI × T has reached a fixed value
that will be difficult to surpass with present technology (see
the “Components of Execution Time” sidebar). This implies
that because μ/DI is expected to decrease, the benefits of
using the cloud will increase in the near future.

Finally, when using uniprocessors in the local device
(Nc,local = 1),

St =
1

µ
D
I

+(1−F)
.

Thus, offloading execution would be convenient for apps
with low DI (even if F < 0.5). Therefore, if μ/DI decreases in
the future, simplified device hardware might become the
new trend. This would have the additional benefits of sav-
ing energy and reducing software complexity. Note that in
Internet of Things or bare-metal thin client devices, local
CPUs would not even exist (see Figure 1).

102

Ti
m

in
g

sp
ee

du
p

Ti
m

in
g

sp
ee

du
p

Ti
m

in
g

sp
ee

du
p

101

101

DI

Nc,local=1 Nc,local=4 Nc,local=16F = 0.99

F = 0.95

F = 0.90

F = 0.80

F = 0.50

F = 0.99

F = 0.95

F = 0.90

F = 0.80

F = 0.50

F = 0.99

F = 0.95

F = 0.90
F = 0.80

F = 0.50

(a) (b) (c)

102 103

100

100 101

DI

102 103100 101

DI

102 103100
10–1

102

101

100

10–1

102

101

100

10–1

FIGURE 2. Speedup for remote versus local execution (Nc,local) as a function of DI = NI/NData (app computing density) for different frac-
tion F, with μ = (CPI × T × BW)–1 = 1: (a) Nc,local = 1, (b) Nc,local = 4, and (c) Nc,local = 16.

CONSIDERING PERFORMANCE AND ENERGY
Performance speedup is useful for any system, but
mobile devices’ battery lifetime is a serious constraint
when executing computation-demanding apps.4 With
existing technology, most of the energy consumed when
offloading an app to the cloud is due to data transmis-
sion. Therefore, the question becomes, can extending
Amdahl’s law for the cloud predict whether the energy
that off loading saves compensate for the energy that
local processing consumes?5

Energy consumption is the sum of power multiplied by
the time of the different periods:

∑ ×P t .
i i

i

According to Dong Hyuk Woo and Hsien-Hsin Lee’s model,
local app execution consists of a parallel period and a sequen-
tial period.6 During the fraction F of parallel execution time,
all the cores are involved, so power is Nc,localP1, with P1 being
the power of a single core. During the sequential period (1 –
F), the power is kidleP1(Nc,local – 1) + P1, because one core is
fully active while the others are idle (and consume kidleP1,
with kidle < 1). Considering only the app and ignoring the
remaining system and processes, consumed energy would be

STEREO VISION OFFLOADING FOR MOBILE ROBOTS

Mobile robot technology has reached an ele-
vated degree of maturity in the past decade.

For example, fully autonomous cars could soon
become commercially available. This has been
motivated in part by advances in sensory infor-
mation processing such as stereo vision. Such
advancements were due mainly to the advent
of more powerful parallel architectures and the
availability of distributed OSs, such as robotics
software frameworks (RSFs). RSFs have allowed
improved scalability, reusability, deployment, and
debugging1 and the deployment of tasks either
on board or in cloud computing systems, depend-
ing on their constraints.2

Stereo vision is an active research field. A
higher degree of time complexity is involved in
analyzing the difference between stereo frame
pairs, that is, the difference between what the left
and right eyes see. Disparity maps permit calcula-
tion of the objects’ distance to the cameras, more
or less accurately depending on the algorithm
used and the image features. Most representa-
tive algorithms have time complexities ranging
from O(N2) to O(N11), where N is the horizontal
image size.3 OpenCV (http://opencv.org) has one
of the most extended algorithms with com-
plexity on the order of O(N3)—the usual level for
most algorithms. The problem is that real-time
requirements can be difficult to meet when more
accurate reconstruction of the environment is

demanded. The frequency of stereo frame pro-
cessing must be sufficiently high but its latency
sufficiently small. For example, when the robot is
moving, the distance to the nearest obstacle must
be computed early enough to avoid a crash or an
emergency stop. Such a task must be processed
by a powerful computing system or—as is more
common nowadays—performed with low-
resolution images.

Thus, the possibility of cloud-based stereo
vision is gaining momentum. The offloading
process must not only be parallel, but must also
exploit the cloud’s dynamic scalability. Concretely,
if multiple CPU cores were available, processing
times could run in parallel to transfer times, which
are often the bottleneck during cloud offloading.2
This could yield mean processing frequencies
nearly proportional to network bandwidth.

References
1. P. Iñigo-Blasco et al., “Robotics Software Frameworks for

Multi-agent Robotic Systems Development,” Robotics and

Autonomous Systems, vol. 60, no. 6, 2012, pp. 803–821.

2. J. Salmerón-García et al., “A Trade-Off Analysis of a Cloud-

Based Robot Navigation Assistant Using Stereo Image

Processing,” IEEE Trans. Automation Science and Eng., vol.

12, no. 2, 2015, pp. 444–454.

3.	 M. Sizintsev and R.P. Wildes, “Coarse-to-Fine Stereo Vision

with Accurate 3D Boundaries,” Image and Vision Comput-

ing, vol. 28, no. 3, 2010, pp. 352–366.

E F N k P N CPI T[(1)(1) 1] ().
local c,local idle 1 I
= − − + × × 6

As mentioned earlier, for cloud computing, local energy
consumption depends on the overlap between communica-
tion and computation times, with consumption obviously
lowest for complete overlap. We again consider the worst-
case cloud scenario of no overlap. Local energy is the sum
of the communication and cloud computation periods. Data
transmission adds an extra power Pt. Assuming that the
NIC transmits data by directly accessing local memory, then
all local cores would be in an off state during both periods.
Hence, the energy wasted by the local device would be

E
cloud
=
N

D

BW
P
t
+ (1−F)(N

I
×CPI×T)+

N
D

BW

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
N

c,local
k
off
P
1
.

The local device need not be running while waiting for
the cloud response. Obviously, the device can stay awake
to manage other inner tasks, but this energy consump-
tion cannot be attributed to offloading. From an applica-
tion viewpoint, the local device could be almost fully off
(only waiting for the NIC), which means that koff would be
negligible.

Energy efficiency is determined by the performance
achievable in the same battery life cycle (that is, with the
same energy).6 The resultant speedup St×E is given by

S
t×E
=
E
local
t
local

E
cloud
t
cloud

=S
E
S
t
.

Finally, reordering and using the parameters μ and DI
(and assuming that koff = 0), we obtain

S
t×E
=
[(1−F)(N

c,local
−1)k

idle
+1]P

1

µ
D
I

P
t

×

F
N

c,local

+(1−F)

µ
D
I

+(1−F)
.

Again, three significant results emerge when we con-
sider performance and energy.

First, DI is the fundamental parameter for determining
whether cloud offloading is energetically beneficial. Using
technological magnitudes for a typical mobile device (μ = 1,
kidle = 0.3,6 and P1 = Pt = 1W), St×E begins to favor the cloud
for moderate DI values. For simple devices (Nc,local = 1) with
a DI > 1.3, migration is advantageous (St×E > 1) for any F ≥
0.5. For more powerful devices, the bounds grow a little.

Moreover, for apps with low F, migration is more favorable
even for lower DI (and the more powerful the device, the
more notable this effect). This result implies that middle-
ware designers should focus on increasing DI by using com-
pression techniques and good data coding. Furthermore,
software engineers should estimate whether future app
versions will increase DI. In general, cloud offloading would
not benefit apps with low DI, such as those that do not reuse
input data like video or audio streaming.

Second, if μ’s expected reduction continues, these
bounds will decrease at a nearly proportional rate. That
is, if μ were reduced by one-tenth, the bounds on DI would
decline by approximately 0.1, 0.2, and 0.4 for Nc,local = 1, 4,
and 16, respectively. Thus, in the future, technology will
favor offloading app execution for embedded devices.

Finally, when F → 1 (which is common in most scientific
apps,) or Nc,local = 1, speedup is almost proportional to

S
t×E
=
D
I

µ

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

2

.

So, for simple devices or very parallel apps, we can expect to
achieve energy efficiency for cloud migration much earlier
than for timing speedup (quadratic order).

CHARACTERIZING APPLICATION SUITABILITY
FOR CLOUD OFFLOADING
To determine whether a given app might benefit from cloud
offloading, we consider two examples.

Example 1
The first example is a very computationally intensive algo-
rithm, matrix multiplication, which is the kernel of many
scientific apps. Assuming A = B × C is the product of n × n
ranked matrices, the calculation basically consists of these
three loops:

 for row = 1...n

for col = 1...n

for k = 1...n

A[row][col] += B[row][k] * C[k][col]

The two outer loops iterate over A’s elements, while the
inner loop computes the dot product of a row of the first
matrix by a column of the second matrix. The total number
of multiply operations equals the number of inner-loop iter-
ations and is on the order of O(n3). For most scientific apps,

the bigger n is, the more accurate the results will be. How-
ever, the high computational order together with the ele-
vated amount of memory makes many programmers reluc-
tant to use big matrices.

What if application execution was offloaded? B and C
must be sent to the cloud, and, after processing, A must
be returned back—that is, O(n2) bits would be exchanged.
Hence, DI = O(n3)/O(n2) = O(n). All of A’s elements can be
computed in parallel, and only the sum of products—O(n)—
must be done sequentially, which gives 1 – F = O(n)/O(n3) =
O(n–2). Finally, St = O(n), St×E = O(n2). Hence, the more accu-
rate the results desired, the more speedup can be extracted
from cloud execution. In sum, not only μ but also F and DI
favor cloud offloading.

Example 2
The second example is crucial to many robotic apps: pro-
cessing frame pairs captured by a stereo camera. The “Ste-
reo Vision Offloading for Mobile Robots” sidebar shows
that this processing can be designed not only to be parallel
but also to establish an efficient pipeline with transmission
times. Hence, parallel ratio F is very near to 1 for a medium-
resolution image. The sidebar shows that the usual com-
plexities of these algorithms are on the order of O(N3), N
being the horizontal image size. Because transmitted data

are proportional to image resolution,
that is, O(N2), DI is again O(N). So, the
higher the image’s resolution, the
more speedup can be achieved through
cloud offloading.

This reasoning can be extended to
most cases. For instance, scientific apps
are usually parallel and have complexity
whose order varies between O(n log n)—
for example, fast Fourier transform (FFT)
calculations—and O(n)—for example,
finite element–based calculations—for
a data size n.3 This means that whereas
F approaches 1, DI grows like O(log n)
or remains constant. In the FFT case,
the more data used, the more speedup
will be achieved, whereas with finite
element−based computation, speedup
benefits will only be possible once tech-
nological progress increases by μ.

These examples lead to two main
conclusions.

First, for many apps, F and DI grow with problem com-
plexity. This implies that as new apps require more accurate
solutions, cloud offloading becomes more viable. Further-
more, software designers and researchers should strive to
decrease NData by using compression techniques and good
data coding7 to increase DI.

Second, and contrary to expectations, remote exe-
cution of apps that have high CPI and giga instructions
per second (GIPS) far below the theoretical maximum3
(marked by down arrows in Figure 3) might be the best
option. For F = 1, the maximum performance that can be
achieved through local and cloud execution of such an
app is depicted in Figure 3, which is based on a real case
(Snapdragon 610 S4 Pro). The abscissa represents differ-
ent DI values, while the ordinate represents GIPS. This
extension of the roofline model for GIPS,8 rather than giga
floating-point operations per second (Gflops), results in a
two-roofline model. Maximum device GIPS is calculated
as the inverse of clocks/instruction × seconds/clock, mul-
tiplied by the number of cores Nc,local, that is, (CPIminimum
× T)–1Nc,local. Theoretical maximum cloud GIPS would
be calculated similarly (if cloud resources were finite).
When execution implies many RAM accesses, this max-
imum cannot be reached: the product instructions/data
bit × data bit/seconds, that is, DI × BWRAM, gives the first

DI, ratio of number of instructions per data bit

Maximum
device GIPS

Theoretical
maximum
cloud GIPS

1 G
bp

s

GI
PS

10
2 G

bp
s

¼ ½ 1 2 4 8

8

16

16

32

32

64

64

128 2568

FIGURE 3. Two-roofline model for giga instructions per second (GIPS) versus DI for local
(Qualcomm Snapdragon 610 S4 Pro, with 1.5 GHz quad-core Krait 300) and cloud
application execution. Decreased maximum device GIPS is marked with down arrows.

roofline. The second roofline is obtained for the network
connection between the device and the cloud: DI × BW. If
prolongation of the second roofline (dotted red line in Fig-
ure 3) crossed real device GIPS, remote execution would
achieve the same GIPS as local execution. Other benefits,
such as energy savings, might also motivate use of the
remote option.

LESSONS FROM HISTORY
For apps that require storing vast amounts of data on a
server, cloud computing is the only option. But what does
our extension of Amdahl’s law predict about those apps that
elude offloading?

If Moore’s law continues to hold for the next decade,
cloud computing will clearly benefit from the effect of tech-
nological progress on μ. For holistic factors such as F and DI,
the matter is less simple. Nevertheless, we can learn some
valuable lessons from history. Amdahl argued that 1 – F val-
ues were large enough to favor single processors. Today’s
enhanced machines allow massive computations beyond
anything he could have envisioned,9 making F values soar
very close to 1. Thus, F can be stretched as more computa-
tion resources become available.

We can envision DI’s evolution. One of Myhrvold’s laws
states that “software is a gas: it expands to fill any size
hardware container.”10 Users or developers might notice
that a remotely executed app is more powerful (and maybe
faster and more energy efficient) than its locally executed
counterpart, which runs in a smaller hardware container.
Or mobile programmers might discover that they have
unlimited computation power in the cloud. We wager that
these users would ditch the local option and embrace the
cloud, and that the efforts needed to transform a complex
algorithm to run faster on a low-power computer could be
turned toward other, more productive purposes. Hence, DI
will very likely increase when all programmers easily and
transparently use the cloud. In sum, St and St×E are being
boosted by these three factors (μ, F, and DI).

Even apps that must run close to the target system tend
to be offloaded to the cloud nowadays. Platforms such as
the ARM mbed IoT Device Platform (www.mbed.com) offer
a remote compilation for embedded systems and the possi-
bility of generating a development project to be loaded into
a certain device. By enabling embedded-system program-
mers to work in their preferred environment and with their
favorite tools, the cloud makes app development both easier
and faster.

The real world is much more complex than a theo-
retical model that tries to encompass major trends
and must include several assumptions. Some of

our model’s assumptions benefit cloud offloading, such as
overlooking overheads from virtualization, middleware,
and OS, or not considering the time required to divide
computation between local and external resources. Other
assumptions benefit local execution, such as considering
no overlap between communication and computation, or
supposing that resources (for example, memory, caches,
and bus speeds) are identical for the cloud and the local
system. The literature shows how complex these practical
issues can be.11

Two practical issues make the cloud attractive for app
developers. First, there has been substantial R&D into mak-
ing cloud facilities commercially successful, which should
help real cloud execution times soon approach those of our

ABOUT THE AUTHORS

FERNANDO DÍAZ-DEL-RÍO is an associate professor at

the University of Seville. His research interests include

mobile robot navigation, bioinspired systems, and dis-

tributed computing systems. Díaz-del-Río received

a PhD in physics (electronics) from the University of

Seville. Contact him at fdiaz@us.es.

JAVIER SALMERÓN-GARCÍA is a PhD student and part-

time lecturer at the University of Seville. His research

focus is cloud robotics. Salmerón-García received an

MSc in computer engineering and networks from the

University of Seville, and an MSc in software engineer-

ing for technical computing from Cranfield University.

Contact him at jsalmeron2@us.es.

JOSÉ LUIS SEVILLANO is an associate professor at

the University of Seville. His research interests include

real-time communications and architectures, mobile

robots, and eHealth and rehabilitation systems. Sevil-

lano is an associate editor of Simulation and the Inter-

national Journal of Communication Systems. He is an

IEEE Senior Member. Contact him at jlsevillano@us.es.

model. Second, migrating apps to the cloud would sim-
plify local devices at minimal cost. This bene� t will likely
be brought about by e� c i ent ne tworking an d di stributed
computing techniques, which could pave the way for new
programming paradigms that contemplate automatic code
migration as a new form of computation.

ACKNOWLEDGMENTS
This work was supported by the Spanish grant BIOSENSE
TEC2012-37868-C04-02/01 (with support from the European
Regional Development Fund).

REFERENCES
1. G. Van Huizen, “Hype Cycle for Application Architecture,

2013,” Gartner, 31 July 2013; www.gartner.com/doc
/2569522/hype-cycle-application-architecture-.

2. M. Armbrust et al., “Above the Clouds: A Berkeley View of
Cloud Computing,” tech. report, EECS Dept., Univ. Califor-
nia, Berkeley, Feb. 2009; www.eecs.berkeley.edu/Pubs
/TechRpts/2009/EECS-2009-28.html.

3. J.L. Hennessy and D.A. Patterson, Computer Architecture:
A Quantitative Approach, 5th ed., Morgan Kaufmann, 2011.

4. R. Friedman, A. Kogan, and Y. Krivolapov, “On Power and

Throughput Tradeo� s of WiFi and Bluetooth in Smart-
phones,” IEEE Trans. Mobile Computing, vol. 12, no. 7, 2013,
pp. 1363–1376.

5. K. Kumar and Y.-H. Lu, “Cloud Computing for Mobile Users:
Can O� oading Computation Save Energy?,” Computer,
vol. 43, no. 4, 2010, pp. 51–56.

6. D.H. Woo and H.-H.S. Lee, “Extending Amdahl’s Law for
Energy-E� cient Computing in the Many-Core Era,” Com-
puter, vol. 41, no. 12, 2008, pp. 24–31.

7. E. Tilevich and Y.-W. Kwon, “Cloud-Based Execution to
Improve Mobile Application Energy E� ciency,” Computer,
vol. 47, no. 1, 2014, pp. 75–77.

8. S. Williams, A. Waterman, and D. Patterson, “Roo� ine: An
Insightful Visual Performance Model for Multicore Archi-
tectures,” Comm. ACM, vol. 52, no. 4, 2009, pp. 65–76.

9. M.D. Hill and M.R. Marty, “Amdahl’s Law in the Multicore
Era,” Computer, vol. 41, no. 7, 2008, pp. 33–38.

10. W. Wayt Gibbs, “Taking Computers To Task,” Scienti� c
American, vol. 277, no. 1, 1997, pp. 82–89.

11. M.S. Gordon et al., “COMET: Code O� oad by Migrating
Execution Transparently,” Proc. 10th USENIX Conf. Symp.
Operating Systems Design and Implementation (OSDI 12), 2012,
pp. 93–106.

Cen
 Techn

