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ABSTRACT  

Inorganic polyphosphates (polyP) are linear polymers of tens to hundreds orthophosphate residues linked by 

phosphoanhydride bonds. These fairly abundant biopolymers occur in all extant forms of life, from 

prokaryotes to mammals, and could have played a relevant role in prebiotic evolution. Since the first 

identification of polyP deposits as metachromatic or volutin granules in yeasts in the 19th century, an 

increasing number of varied physiological functions have been reported. Due to their “high energy” bonds 

analogous to those in ATP and their properties as polyanions, polyP serve as microbial phosphagens for a 

variety of biochemical reactions, as a buffer against alkalis, as a storage of Ca2+ and as a metal-chelating 

agent. In addition, recent studies have revealed polyP importance in signaling and regulatory processes, cell 

viability and proliferation, pathogen virulence, as a structural component and chemical chaperone, and as 

modulator of microbial stress response. This review summarizes the current status of knowledge and future 

perspectives of polyP functions and their related enzymes in the microbial world. 
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PolyP Chemistry and Biochemistry. Enzymes Involved in PolyP Synthesis and Degradation. 

1. Structure and Chemical Composition 

Inorganic polyphosphates, polyP, are polymers of orthophosphate (Pi) residues linked by phosphoanhydride 

P-O-P bonds . They are often termed as “condensed phosphates” since they are composed by several Pi units 

(from three up to thousands) connected by oxygen bridges. Contrary to long-chained polyP, which are poorly 

soluble in water, the majority of polyP are stable in neutral aqueous solutions even at hight temperatures. 

Considering their chemical structure (Kulaev et al. 2005) polyP are divided into three classes: cyclic 

condensed phosphates (also referred as metaphosphates, PnO3n
n-, whose simplest member is cyclic-

triphosphate), linear polyphosphates (or linear metaphosphates, PnO3n+1 
(n+2)-, whose shortest component is 

tripolyphosphate), and lastly, the “ultraphosphates” or branched polyphosphates (Fig.1). 

PolyP is perhaps one of the biopolymers with the highest density of negative charge. Its analogous structure to 

the RNA and other polyanions leads to comparable reactivity. For instance, both polymers increase 

fluorescence of DAPI, which can potentially provoke misinterpretations. As a result, the development of new 

polyP specific sensitive and selective detection techniques, and its application was critical for further progress 

on polyP research (Angelova et al. 2014). In fact, in spite of their discovery in the end of the 19th century 

(Babes 1895) and their wide occurrence, polyP was largely dismissed as a “molecular fossil” (Kornberg 

1999). Fortunately, these recent studies have revealed the real physiological importance of polyP, starting an 

emerging interest in polyP research. 

2. Natural Occurrence of PolyP 

Polyphosphate is ubiquitous in living beings having being found in archaea, bacteria, algae, fungi, protists, 

plants, insects and mammals (Brown and Kornberg 2004; Docampo et al. 2005a; Rao et al. 2009). PolyP 

reserves were formely discovered in bacteria and unicellylar eukaryotes being dennoted as metachromatic or 

volutin granules due to their metachromatic effect - they appear red when stained with methylene blue. Later, 

once polyP was proven as one of its main components, they were also referred as polyphosphate granules o 

acidocalcisomes (Docampo et al. 2005a). Besides this widely distribution among living organisms, the 

amount and chemical structure of polyP reserves may vary depending the species and the particular growth 



conditions. In general, prokaryotes and protists are able to accumulate polyP at higher rates than multicellular 

eukaryotes.  

3. Enzymes Involved in PolyP Synthesis 

Synthesis of PolyP in Prokaryotic Microorganisms: Polyphosphate Kinase 

Most studies concerning proteins involved in polyP biosynthesis have been focused on microorganisms, 

namely bacteria, including pathogenic and phosphate-accumulating strains, yeasts and parasitic protists. 

Based on these findings, some orthologs have been identified in microorganisms of other taxonomic groups. 

Nevertheless, to date there are still numerous organisms with no archetypical orthologs identifed so far, in 

spite of being able to accumulate high polyP levels. Consequently, it is deduced that they should have 

alternative pathways for polyP synthesis. 

In prokaryotes -and in some microbial eukaryotes as well (Zhang et al. 2007)- polyP is mainly sinthesized by 

polyphosphate kinase 1 (PPK1; polyphosphate:ADP phosphotransferase, EC 2.7.4.1), which catalyzes the 

reversible transfer of the energy-rich γ-phosphate from ATP to enlongate the polyP chain. 

PolyPn + ATP ↔ PolyPn+1 + ADP 

PPK1 (Pfam PF02503) is a member of the phosphotransferases superfamily, and exhibits other enzymatic 

activities including ATP synthesis from polyP, nucleoside-diphosphate kinase, guanosine 5′-tetraphosphate 

synthesis and autophosphorylation (Tzeng and Kornberg 2000). A genomes screening using the BLAST 

engine revealed ppk1 homologs in more than 354 prokaryotes (Tzeng and Kornberg 1998). However, no ppk1 

homologs have been identified so far in higher eukaryotes, both higher plants and animals. Moreover, various 

studies have proved the importance of ppk1, and PPK1 has been shown to be an essential enzyme. Lack of 

PPK1 severely compromised cell viability of many bacteria under stationary-growth phase and their effective 

responses to a wide range of  stress factors, such as heat, UV light, pH, antibiotics, etc. Similarly, bacterial 

mutants lacking PPK1 are defective in cell motility, quorum sensing, biofilm formation and virulence, and 

show ultrastructural defects (Brown and Kornberg 2008; Fraley et al. 2007; Rashid et al. 2000b; Sanyal et al. 

2013). As a result, ppk1 has been proposed as a novel target for next generation antibiotics.  



Nonetheless, PPK1 is not the sole enzyme responsible for polyP synthesis. In particular, high Mm polyP were 

identified in ppk1-lacking null mutants of Pseudomonas aeruginosa (Ishige et al. 2002). The alternative 

enzyme was called PPK2 (Pfam PF03976). Similarly to ppk1, ppk2 is absent in plants and metazoans and has 

been claimed to have a role in virulence of bacterial pathogens, in connection with alginate synthesis and 

biofilm formation, being then considered as an attractive target for antibiotics. However, PPK2 is frequently a 

polyP-degrading enzyme since its capacity to use polyP for GTP synthesis is 75-fold greater than its Poly P 

synthetic activity from GTP (Ishige et al. 2002). PPK2 can also serve as a PolyP:AMP phosphotransferase 

(EC 2.7.4.B2) and PolyP:ADP phosphotransferase (Ishige and Noguchi 2000): 

PolyPn + AMP ↔ PolyPn-1 + ADP 

Conversely to PPK1, PPK2 is no strictly specific for ATP and it is able to efficiently use either GTP or ATP.  

Many microbial genomes encode multiple ppk2 paralogs (Zhang et al. 2002). In fact, there are probably three 

subfamilies of PPK2 enzymes containing a single or two homologous PPK2 domains. Thus, whereas class I 

PPK2 is monodomain and catalyzes NTP synthesis from NDP, classes II and III are bi-domain PPK2 enzymes 

which catalyse the synthesis of NMP, or both NMP and NDP, respectively (Motomura et al. 2014). Likewise 

ppk1, ppk2 widely occur among prokaryotic microorganisms, and hundreds of ppk2 homologs have been 

identified to date. However, many bacteria should synthesize polyP by unknown enzymes, since one-third of 

bacterial species known so far lack both ppk1 and ppk2 (Whitehead et al. 2014). 

Synthesis of PolyP in Protists: Arp and VTC Proteins 

In the slime mold Dictyostellium discoideum a new type of PPK, named DdPPK2, was identified. This 

enzyme is a complex of three actin-related proteins (Arp), which can polymerize into an actin-like filament  

concurrently with the reversible synthesis of polyP chain from ATP (Gomez-Garcia and Kornberg 2004; 

Spudich 2004). 

In yeast and trypanosomes (Lander et al. 2013) an alternative pathway responsible for polyP synthesis that 

involves VTC4, a subunit of the vacuolar transport chaperone (VTC) complex, has been described. VTC4 is a 

member of the Conserved Protein Domain family VTC (Pfam PF09359), which belongs to the CYTH-like 

phosphatases superfamily (cl11964). S. cerevisiae VTC complex is also involved in several other cellular 



processes, like vacuolar-membrane fusion (Hothorn et al. 2009; Ogawa et al. 2000a; Uttenweiler et al. 2007), 

microautophagy (Cohen et al. 1999; Hothorn et al. 2009; Muller et al. 2002; Ogawa et al. 2000a; Uttenweiler 

et al. 2007). Homologs of VTC4 have been inferred in the genomes of apicomplexan protists, fungi and 

microalgae (Aksoy et al. 2014). Chlamydomonas reinhardtii VTC1 is required for polyP synthesis and polyP 

granule accumulation in acidocalcisomes. A deficient acidocalcisome formation in protistan cells deprived of 

N, P, or mainly S, may impact various function associated with energetics, trafficking of periplasmic proteins 

and regulation of cellular processes (Aksoy et al. 2014; Moreno and Docampo 2013). 

Other Enzymes for PolyP Synthesis 

The dolichyl diphosphate:polyphosphate phosphotransferase (EC 2.7.4.20) was related to the synthesis of the 

small fraction of polyP associated with the vacuolar membrane of Saccharomyces cerevisiae (Schomburg and 

Stephan 1997), and performs the following reaction: 

Dolichyl diphosphate + PolyPn → Dolichyl phosphate + PolyPn-1 

Lastly, an 3-phospho-D-glycerol-phosphate:polyphosphate phosphotransferase (EC 2.7.4.17) was found in the 

fungus Neurospora crassa (Kukaev et al. 1971). The enzyme, which has not been purified and needs further 

investigations, catalyzes the following reaction: 

3-Phospho-D-glycerol-1-phosphate + PolyPn → 3-Phosphoglycerate + PolyPn+1 

4. Enzymes that Degrade PolyP 

Exopolyphosphatase and Guanosine Pentaphosphate Hydrolase 

The main enzyme responsible for polyP usage in microorganisms is the exopolyphosphatase (PPX; 

Polyphosphate phosphohydrolase, EC 3.6.1.11). PPX hydrolyzes and processively splits Pi from the end of 

the polyP chain: 

PolyPn + H2O → PolyPn-1 + Pi 

Two major non-homologous classes of PPX are defined based on their primary structure. A first PPX class is 

established by the archetypical exopolyphosphatase PPX1, first identified in Saccharomyces cerevisiae, and 



their orthologues later described in yeasts, other fungi and protists. PPX1 belongs to the superfamily of DHH-

DHHA2 phosphoesterases (Pfam PF02833), which also includes the prokaryotic family II pyrophosphatases 

(Young et al. 1998) and the Nudix hydrolase family (Lonetti et al. 2011). Some of these Nudix proteins, such 

as the human protein h-prune, a binding protein of the metastasis suppressor nm23-H1, have been proved to 

efficiently hydrolyze polyP (Tammenkoski et al. 2008). The human protein h-prune and the yeast PPX1 

proteins share a high sequence identity (27%). PPX1 is an extremely active phoshohydrolase which can 

hydrolyze polyP, adenosine tetraphosphate and GPT; but does not hydrolyze PPi or NTPs. 

A second exopolyphosphatase class includes the Ppx-GppA polyphosphatases (Pfam PF02541) which belong 

to the sugar kinase/actin/hsp 70 superfamily. Ppx-GppA exopolyphosphatases are widely distributed among 

bacteria and archaea, processively hydrolyse linear polyP of 3 up to thousands of Pi residues, and also have 

nucleoside triphosphatase (NTPase) activity (Albi and Serrano 2014). Thus, prokaryotic PPXs and eukaryotic 

(fungal/protistan) PPXs belong to different families of polyphosphatases and do not have structural similarity. 

In addition, bacteria posses another Ppx-GppA exopolyphosphatase sharing ca 40% sequence similarity with 

its archetypical prokaryotic paralog and catalytically less efficient than the latter, the guanosine 

pentaphosphate phosphohydrolase (GppA, EC 3.6.1.40) which also catalyzes the following reaction: 

Guanosine 5’-triphosphate, 3’-diphosphate → Guanosine 5’-diphosphate,3’-diphosphate + Pi 

Endopolyphosphatase 

Besides PPX1 exopolyphosphatase, yeasts, fungi and protists also posses an endopolyphosphatase enzyme. 

The archetypical endopolyphosphatase of S. cerevisiae (PPN1; Polyphosphate depolymerase, EC 3.6.1.10) is 

a transmembrane bitopic protein which belong to the Calcineurin-like phosphoesterase superfamily (Pfam 

PF00149), and cleaves long polyP into shorter polyP molecules without releasing Pi (Sethuraman et al. 2001): 

PolyPn + H2O → oligopolyphosphates 

In rich growth conditions, yeast PPN1 acts as an endopolyphosphatase in the presence of Mg2+. However, 

under certain stress conditions, such as toxic heavy-metals, PPN1 shifts to an Co2+-dependent 

exopolyphosphatase activity (Andreeva et al. 2015). 



 

Functions of PolyP in Microorganisms 

1. PolyP as a Structural Component 

One of the most exciting chemical features of polyP is its strong ability to interact with a variety of inorganic 

and organic compounds resulting in ternary complexes. Thus, polyP (with and average length of 150 Pi 

residues) can form complexes with poly-β-hydroxybutyrate (mean size of 170) an Ca2+ ions. In the proposed 

structure, poly-β-hydroxybutyrate (PHB) corresponds to the outer layer which is directly in contact with the 

lipid membrane. Inside, PHB ester groups are bonded to polyP by ionic interactions and to Ca2+ by ion dipoles 

(Reusch and Sadoff 1988). The polyP/Ca2+/PHB complex has been detected in the plasma membrane of many 

naturally competent bacteria, and in various subcellular compartments of eukaryotes (Reusch 1989). This 

ternary complex constitutes a transient channel increasing membrane permeability - selective for Ca2+ ions - 

which probably plays an important physiological role in competence for DNA entry and transformation 

(Castuma et al. 1995). 

Further researches in mammals support this assumption (Dedkova and Blatter 2014). It has been recently 

review that polyP may be a strong activator of the mitochondrial permeability transition pore in 

cardiomycetes, heart muscle cells, playing a structural role in their mitochondria membrane systems 

(Dedkova and Blatter 2014; Seidlmayer et al. 2012a; Seidlmayer et al. 2012b). 

 

2. PolyP as a Substitute for ATP 

As phosphorylated compound with a Gibbs free energy of hydrolysis similar to ATP (-30.5 kJ mol−1), polyP 

may act as a substitute for ATP in diverse enzymatic reactions (Kornberg et al. 1999). 

Donor for Sugars: PolyP-gluco(manno)kinase 



Polyphosphate gluco(manno)kinase (PPGK; Polyphosphate-glucose phosphotransferase, EC 2.7.1.63), a 

member of the ROK (Repressor-ORF-Kinase) superfamily (Pfam PF00480), catalyzes the phosphorylation of 

monosaccharides –glucose, mannose, and in some cases fructose– using polyP or ATP as a phosphoryl donor. 

PolyPn + D-glucose → PolyPn-1 + D-glucose-6-phosphate 

This enzymatic activity has been reported in a variety of phylogenetically different bacteria, including 

important pathogens (Szymona and Ostrowski 1964; Szymona and Szymona 1978), bacteria of activated 

sludge (Tanaka et al. 2003), and N2-fixing cyanobacteria (Albi and Serrano 2015). 

Donor for Adenylate Kinases: NAD Kinase 

NAD kinase ((polyP)/ATP:NAD 2’-phosphotransferase, EC 2.7.1.23; Pfam PF01513) catalyzes the 

phosphorylation of NAD to yield NADP. In some prokaryotes, NAD kinases use either ATP or polyP as 

phosphoryl donors: 

ATP + NAD → ADP + NADP 

PolyPn + NAD → PolyPn-1 + NADP 

PolyP have been postulated as the precursor of ATP and the primitive energy donor in the origin of life 

(Kornberg 1995; Lipmann 1965). Similarly to ATP, polyP is composed by high-energy phosphate groups and 

it was likely present on prebiotic earth. Moreover, polyP formed by high pressure and desiccation (phosphate 

condensation) might have been naturally abundant (sedimentary rocks, hydrothermal vents, volcanic 

exudates) in the early earth (Lohrmann and Orgel 1968; Miller and Parris 1964). Based on their comparable 

chemical properties and its ubiquity, we should not exclude a role for polyP in energy protometabolism of 

primordial cells (Achbergerova and Nahalka 2011; Brown and Kornberg 2004). Furthermore, subsequent 

biochemical studies on bacterial NAD kinases and glucokinases revealed that some of them are active with 

polyP. In particular, polyP can really substitute for ATP, and some enzymes are even strictly dependent on 

polyP. This hypothesis is substantiated by several later observations from the biochemical properties of NAD 

kinases and glucokinases: most bacterial enzymes are able to use both phosphoryl donors with an observed 

progressive decrease in the preference for polyP in the phylogenetically newer taxa (Albi and Serrano 2015). 



Interestingly, human mitochondrial NAD kinase uses both phosphoryl donors, ATP and polyP (Ohashi et al. 

2012). Finally, no eukaryotic polyP-dependent NAD kinases or glucokinases have been reported so far. Given 

the polyP substitution for ATP together with the presence of polyP-dependent enzymes in a variety of ancient 

microorganisms, it is conceivable that polyP may have been the ancestor of ATP on the early stages of life 

evolution. 

 

3. PolyP Role in Cell Acclimation to Nutrient-limiting Conditions  

Bacteria tend to accumulate polyP under growth in unbalanced media. For instance, Escherichia coli or 

Acetobacter xylinum cells (Rao et al. 1998) concentrate the excess of extracellular Pi as PolyP granules under 

amino acid or nitrogen deficiency, respectively (Kuroda and Ohtake 2000). Such limitations may lead to 

polyP accumulation, with fluctuation in polyP levels up to 103-fold. This reserve of polyP may be rapidly 

mobilized to serve as a significant energy source. In this regard, many marine organisms tend to accumulate 

polyP in surface water layers or when Pi is abundant, for a future use of polyP as a source of energy and Pi in 

case of anaerobic conditions (Diaz et al. 2008). In a similar way, some mycorrhizal fungi accumulate large 

amounts of polyP by dissolving mineral phosphorous from soil. The reserves of polyP are later locally 

hydrolyzed in fungal cells to supply phosphate to the symbiotic plant (Mensah et al. 2015). In addition, the 

chlorophyte microalga Chlamydomonas reinhardtii accumulates polyP in acidocalcisomes in response to 

sulfur, phosphorous or nitrogen deprivation (Aksoy et al. 2014). The fungi Cryptococcus humicola and S. 

cerevisiae accumulate polyP in absence of nitrogen (Breus et al. 2012). Another example of polyP 

sequestration by symbiotic microorganisms has been recently reported in cyanobacterial symbionts of marine 

sponges (Zhang et al. 2015). The importance of polyP in the environmental adaptation was evidenced by the 

fact that Chlamydomonas null-mutants in the polyP synthetase VTC1 formed less acidocalcisomes and with 

structural abnormalities, which impacts trafficking of periplasmic proteins. These data suggest that polyP (and 

acidocalcisomes) are essential for adaptation of algal cells to nutrient deficiency (Aksoy et al. 2014). Overall, 

these data corroborate the notion that polyP actually serves as a reservoir of Pi and energy that could be 

efficiently mobilized in case of further requirements. However, even in phosphorous-depleted medium, Pi-

starved yeast cells maintain a reduced but significant level of polyP (Vagabov et al. 2000). This effect was 



also observed in phytoplankton under phosphorous stress. In particular, the ratio polyP to total phosphorous 

was five-fold higher in phytoplankton of ultra-low-phosphorous waters than in the one of normal waters. 

However, cells undergoing P stress had activated their typical transcriptional and metabolic machineries in 

response to starvation, namely an enhanced of alkaline phosphatase activity and substitution of sulfolipids for 

phospholipids (Van Mooy et al. 2009). Therefore, these studies revealed that polyP serve many functions 

besides P homeostasis and energy source. It seems that there are multiple polyP cellular pools with different 

roles and dynamics in eukaryotic microorganisms: most polyP performs the function of phosphorous reserve 

(in the vacuole/acidocalcisome), while another smaller but critical fractions of polyP (nucleus, cytoplasm) are 

responsible for several regulatory processes challenging the classical view of polyP as a luxury phosphorous 

storage molecule. 

 

4. PolyP as a Phosphorous Reservoir. PolyP Reserves 

In most microorganisms the main phosphorous reserve is polyP. Although some archaea, bacteria and fungi 

accumulate other kinds of P reserves like insoluble magnesium phosphates or sugar complexes 

(phosphomanan), PolyP has several advantages. It has no effect on the osmotic pressure and can be easily 

mobilized by exopolyphosphatases, NAD kinases or glucokinases. 

Some bacteria from activated sludge –especially from the taxa Mycobacteria, Corynebacteria, and 

Eubacteria– in addition to yeasts are able to accumulate considerable amounts of polyP (up to 30% of dry 

weight). Highest rates of polyP accumulation are achieved under the called “phosphate overplus” condition, 

consisting in the transfer of cells previously adapted to Pi deficiency to a Pi rich medium.  

In a diverse range of organisms, from bacteria to mammals, polyP accumulates in acidic, calcium-storage 

compartments, called acidocalcisomes. Acidocalcisomes are acidic single-membrane organelles especially 

adapted for accumulation of large amounts of polyP containing divalent cations and pyrophosphate as well. 

Essential proteins not only for Ca2+ signaling and phosphate homeostasis but also for membrane transport 

(primary pumps, channels and transporters) and growth are localized in acidocalcisomes. A number or recent 



studies have revealed the importance of acidocalcisomes as evolutionary conserved organelles present in 

many organisms, from bacteria to mammals (Docampo et al. 2005b). 

 

5. PolyP as a Metal-ion Chelator 

Heavy-metal Detoxification 

Polyphosphates are inorganic polyanions and can bind or act as a potent chelator of metal cations. It is well-

known the ability of polyP to sequestrate very diverse cations (many of them biohazardous), including Al3+ 

(Pettersson 1985), Mn2+(Andreeva et al. 2013), Ni2+ (Gonzalez and Jensen 1998), Cu2+(Alvarez and Jerez 

2004; Grillo-Puertas et al. 2014; Remonsellez et al. 2006), Cd2+(Keasling 1997; Keasling and Hupf 1996), 

Zn2+(Baxter and Jensen 1980), Hg2+ (Pan-Hou et al. 2002), Pb2+ (Keasling et al. 1998), Ca2+(Dunn et al. 

1994), Ba2+(Baxter and Jensen 1980), La3+ (Andreeva et al. 2014) and U6+  (Renninger et al. 2004), as well as 

other heavy-metal ions (Mg2+, Fe2+, Co2+). The capacity of polyP to efficiently chelate heavy metals has been 

straightly associated by numerous studies with an intensification in the tolerance of microorganisms to toxic 

metals. Thus, there is a straight relationship between the cell reserves of polyP and the resistance to poisonous 

heavy metals. This feature is particularly evident in those bacterial strains capable to accumulate elevated 

polyP levels, either naturally or by genetic manipulation, used for bioremediation. In addition, bacterial 

phenotypes of polyP-dependent enzymes null mutants, such as ppk-and ppx-, have provided further evidences 

in this respect. For instance, mutants unable to accumulate or degrade polyP were highly sensitive to heavy 

metals even in high phosphate media. Likewise, the inclusion of certain metals, such as Mn2+ or Co2+ may 

alter the polyP content of yeast cells, by way of an increase of polyP synthesis by VTC4 protein or through 

modulation of exopolyphosphatase activities. The metal sensitivity of bacterial ppx single mutants represents 

an evidence that not only polyP presence, but also its hydrolysis to Pi is required for heavy metal 

detoxification. Particularly, metal addition to bacterial cultures induced polyP degradation via 

exopolyphosphatase and Pi efflux as well. Most bacteria own two phosphate transporters: Pit and Pst. Pit is a 

constitutive low-affinity Pi transporter which has been also described as a metal-phosphate:H+ symporter with 

the capacity to co-export metal-phosphate complexes (MeHPO4) from cells. Consequently, the important role 

of polyP in heavy metal resistance and detoxification has been proposed in a model described by Keasling 



(Keasling 1997) where metals are initially chelated by polyP, then polyP is degraded by 

exo/endopolyphosphatases yielding metal-phosphate complexes that are removed from cells via the Pit 

transport system. 

Antioxidative Protection Involving Complexation with PolyP 

PolyP can protect cells from oxidative stress caused by highly toxic superoxide anion radicals (O2
-) through 

their efficiency to coordinate metal cations, such as Mn2+ and Fe3+. Some bacteria accumulate high 

concentrations of Mn2+, which when coordinated with various metabolites is able to carry out O2
- dismutation. 

In fact, Mn2+ is first chelated by polyP, and later the Mn2+-polyP complexes formed are hydrolyzed by 

exopolyphosphatases yielding MnHPO4, which efficiently detoxifies O2
- ions. Consistent with this role, it was 

recently described that S. cerevisiae superoxide dismutase (Sod)-VTC4 double mutants cannot be rescued by 

addition of Mn2+, contrary to the superoxide dismutase Sod single mutant (Hothorn et al. 2009; Reddi et al. 

2009). Therefore, it is evident that polyP presence is relevant for O2
- detoxification in yeast. 

PolyP also protects against the Fenton reaction (Gray and Jakob 2015). In such process, the highly reactive 

hydroxyl radical (OH•) is generated by the redox reaction of Fe2+ or Cu2+ with oxidants like H2O2 or HOCl. 

As a polyanion, polyP easily form Cu2+-phosphate complexes that are exported, and stabilize Fe3+ ion, an 

intermediate necessary for the cyclic reaction which produces OH•. 

 

6. PolyP Roles in Cell Motility and Pathogen Virulence and Persistence 

PolyP is required for bacterial biofilm formation, motility, and sporulation in Bacillus cereus (Shi et al. 2004),  

Pseudomonas aeruginosa (Rashid and Kornberg 2000) and Escherichia coli (Grillo-Puertas et al. 2012). ppk- 

mutants of several enteropathogenic strains are defective in motility (swimming, swarming and twitching) and 

surface attachment, all features linked to virulence (Ogawa et al. 2000b; Rashid and Kornberg 2000; Rashid et 

al. 2000a). 

PolyP accumulation in Mycobacterium tuberculosis ppx-null mutants reduces pathogenicity and survival in 

the host (Chuang et al. 2015). The importance of polyP for stationary-phase survival and virulence is widely 



conserved among many bacterial pathogens, including Escherichia coli, Pseudomonas aeruginosa, Shigella 

spp. (Kim et al. 2002) and Salmonella spp. (Kim et al. 2002; McMeechan et al. 2007). Campylobacter jejuni 

ppk1-null mutants exhibit low levels of poly-P and are defective for survival during osmotic shock, low-

nutrient stress and for virulence into intraepithelial cells (Candon et al. 2007). The role of acidocalcisomal 

polyP in osmotic stress has been studied in parasitic protists. According to the model proposed, hyposmotic 

stress triggered acidocalcisome polyP hydrolysis in the haemoparasite T. cruzi (Montalvetti et al. 2004). 

Conversely, hyperosmotic stress resulted in increased synthesis of acidocalcisomal polyP (Jimenez and 

Docampo 2012). 

PolyP contributes to the cell envelope formation and consequently has a strong impact in virulence. Neisseria 

mutants lacking capsular polyP exhibits reduced pathogenicity in comparison with the wild-type strain 

(Tinsley and Gotschlich 1995).  

Many bacteria are able to enter in a high stress-tolerant state of dormancy. Persistent cells accumulate the 

alarmone (p)ppGpp, which modulates several physiological changes in response to stress known as a whole as 

the stringent response. Bacterial responses to stress conditions, such as nutrient deprivation (amino-acid 

starvation, fatty acid limitation, iron limitation), heat shock, and other stresses, are termed as the stringent 

response or stringent control, which is signed by the alarmone (p)ppGpp. This secondary-messenger exerts a 

control on general metabolism, modulating growth rate and inhibiting production of ribosomal RNA. The 

stringent response also exerts a central role in regulatory circuits controlling bacterial virulence, survival 

during host invasion, antibiotic resistance and persistence. During the stringent response, (p)ppGpp produces 

a direct effect on polyP metabolism through PPK targeting, which leads to persistence. The enzymes 

synthesizing and degrading (p)ppGpp are highly conserved in bacteria. One of them is the guanosine 

pentaphosphate phosphohydrolase GppA above described, which also posses exopolyphosphatase activity and 

is inhibited by high concentrations of polyP. In turn, elevated concentrations of (p)ppGpp competitively 

inhibits polyP degradation by PPX, increasing polyP levels. As a result, (p)ppGpp and polyP contents 

increase significantly during the stringent response. On the other hand, polyP forms a complex with the ATP-

dependent protease Lon which degrades most ribosomal proteins (Kuroda et al. 2001; Nomura et al. 2004), 

and the antitoxin components of type II toxin–antitoxin systems (Gerdes and Maisonneuve 2012). As a result, 



free toxins dramatically accumulate, which inhibits cell metabolism and growth rate, thus inducing 

persistence. 

 

7. PolyP Role in Cell Energy 

Some studies in the 90’s have established a relationship between the turnover of polyP and cell metabolism 

via mitochondrial activity in mammalian cells (Kumble and Kornberg 1995). In addition, it was later reported 

a plausible feedback mechanism involving polyP levels and cell energy (Pavlov et al. 2010). In particular, 

while substrates of the mitochondrial respiratory chain promote polyP synthesis, its levels were reduced by 

mitochondrial inhibitors or respiratory chain uncouplers. Moreover, polyP depletion by mitochondrial-

targeted PPX1 overexpression impairs respiratory chain activity and reduced ATP production (Pavlov et al. 

2010). Based on the somewhat similitude between mitochondria and bacteria, a similar role for polyP appears 

plausible in microbial cell energy metabolism. However, further research is needed to elucidate the exact role 

of polyP in bioenergetics of prokaryotic and eukaryotic microorganisms. 

 

8. Cell Signaling and Stress Response Network 

Recently, experimental evidence has been presented that polyP may play an important role in signaling of 

some nuclear proteins (Azevedo et al. 2015). Thus, polyP can trigger through a non-enzymatic mechanism a 

novel post-translational process called polyphosphorylation. This modification consists on the covalent 

attachment of inorganic polyP to lysine residues of proteins containing a polyacidic serine and lysine-rich 

cluster. Polyphosphorylation is essentially similar to other protein modifications previously known as 

phosphorylation or pyrophosphorylation (Bhandari et al. 2007). 

Moreover, there are direct evidences of polyP involvement in regulation of general stress response network 

with small differences among bacterial species (Shiba et al. 1997). The general outline includes the stationary-

phase gene rpoS, encoding the σ-factor σ38. PolyP and PPK are required for the transcription of rpoS. In turn, 

factor σ38 controls a regulon including ppk and numerous genes involved in osmotic and nitrogen starvation 



stress responses (Maciag et al. 2011). σ38 also controls the alginate production as well as swimming and 

twitching motility in Pseudomonas aeruginosa. Similarly, the σE regulon in Mycobacterium spp. determines 

the response to oxidative and phosphate-limiting stresses and is also required for virulence and persistence of 

this pathogen (Manganelli et al. 2001). 

 

9. Stress Protection 

Microbial strategies in response to oxidative and other stresses comprise several mechanisms on post-

translational control, redox-regulated adjustment of cellular metabolism, and the activation of specific 

molecular chaperones. Recently, it was reported that polyP exerts as a functional protein-protective chemical 

chaperone at physiological levels (Gray et al. 2014). Thus, polyP is able to stabilize a broad range of proteins 

maintaining their competent conformations, preventing them from unfolding and aggregation. In addition, 

bacterial ppk-null mutants suffer from higher protein damage than the wild-type strain upon a similar 

proteotoxic stress. Besides, polyP may have some advantages compared to other chaperones since it does not 

react with oxidants, such as HClO, and does not require ATP hydrolysis for its protective activity (Kampinga 

2014). 

On the other hand, polyP enhance Vibrio cholerae cells tolerance to environmental stresses in Pi-limiting 

conditions (Jahid et al. 2006), and ppk-null mutants of Lactobacillus spp. (Alcantara et al. 2014) and E. coli 

(Gray et al. 2014), which are not able to produce polyP, show reduced growth or are more sensitive to acidic 

pH, ethanol, heat, high-salt and oxidative stresses. Furthermore, it has been reported that polyP production by 

bacteria of the human gastrointestinal tract protects the intestinal epithelia from oxidative stress (Segawa et al. 

2011). To summarize, these results corroborate the important contribution of polyP to the regulation of 

growth, cell survival and stress tolerance of many microorganisms. 

 

PROSPECT 



Despite the identification of polyP at the end of the nineteenth century and its extensive occurrence covering 

the whole evolutionary lineages, polyP was largely dismissed and forgotten during decades. Recently, there is 

an increasing interest in this polymer, which goes hand-in-hand with the revelation of its unexpected and 

intriguing involvement in critical cellular functions in prokaryotes and eukaryotes. Thanks to these studies, it 

has become evident an active association between polyP and many physiological processes of paramount 

importance for microorganisms, such as multilayer metabolic regulation, stress responses, pathogen 

resistance, etc. In a broader context, polyP was also recently reported to be involved in a variety of biological 

processes related to human health, such as cardiac ischaemia, blood coagulation, apoptosis and stress-induced 

cell death (Dedkova and Blatter 2014; Hernandez-Ruiz et al. 2006; Seidlmayer et al. 2012b), suggesting its 

therapeutic use. The recognized importance of such recent advances, as well as the growing number of 

researchers engaged in the study of polyP, shall foster original and fascinating progresses and applications 

related to this ancient biopolymer in the next future. 
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Figure 1. Representative schematic structures of the three main polyPs structural classes. (a) Linear 

polyphosphates, (b) cyclic polyphosphates (also named metaphosphates), and (c) branched polyphosphates 

(also named ultraphosphates). 

Figure 2. Functions of polyPs in prokaryotic and eukaryotic microorganisms. In most cases the indicated 

functions have been reported for both prokaryotes (bacteria, archaea) and eukaryotes (fungi, microalgae and 

parasitic and free-living heterotrophic protists). 
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