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a b s t r a c t

The average connectivity κ(G) of a graph G is the average, over all pairs of vertices, of the
maximum number of internally disjoint paths connecting these vertices. The connectivity
κ(G) can be seen as the minimum, over all pairs of vertices, of the maximum number
of internally disjoint paths connecting these vertices. The connectivity and the average
connectivity are upper bounded by the minimum degree δ(G) and the average degree d(G)
ofG, respectively. In this paper the average connectivity of the strong productG1�G2 of two
connected graphs G1 and G2 is studied. A sharp lower bound for this parameter is obtained.
As a consequence, we prove that κ(G1 � G2) = d(G1 � G2) if κ(Gi) = d(Gi), i = 1, 2. Also
we deduce that κ(G1 � G2) = δ(G1 � G2) if κ(Gi) = δ(Gi), i = 1, 2.

1. Introduction

Throughout this paper, all the graphs are simple, that is, with neither loops normultiple edges. Notations and terminology
not explicitly given here can be found in the book by Chartrand and Lesniak [4].

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The cardinalities of these sets are denoted by
|V (G)| = n and |E(G)| = e. Let u and v be two distinct vertices of G. A path from u to v, also called an uv-path in G, is
a subgraph P with vertex set V (P) = {u = x0, x1, . . . , xr = v} and edge set E(P) = {x0x1, . . . , xr−1xr}. This path is usually
denoted by P : x0x1 · · · xr and r is the length of P , denoted by l(P). Two uv-paths P and Q are said to be internally disjoint
if V (P) ∩ V (Q ) = {u, v}. A cycle in G of length r is a path C : x0x1 · · · xr such that x0 = xr . The girth of G, denoted by g(G),
is the length of a shortest cycle in G, and if G contains no cycles, then g(G) = ∞. The set of adjacent vertices to v ∈ V (G) is
denoted by NG(v). The degree of v is dG(v) = |NG(v)|, whereas δ(G) = minv∈V (G) dG(v) and d(G) =

1
n


v∈V (G) dG(v) = 2e/n

are the minimum degree and the average degree of G, respectively. The connectivity of a graph G, is the smallest number of
vertices whose deletion from G produces a disconnected or a trivial graph. Clearly, a complete graph cannot be disconnected
by deleting vertices, so that κ(Kn) = n − 1 is adopted. The connectivity between two distinct vertices u and v in a graph
G, denoted by κG(u, v), is the minimum number of vertices whose deletion separates u and v in G. Whitney [15] proved
in 1932 that a graph G is r-connected, that is, κ(G) ≥ r , if and only if every pair of vertices is connected by r internally
disjoint paths. From this result, we know that the connectivity κG(u, v) between two distinct vertices u and v in G is the
maximum number of pairwise internally disjoint uv-paths in G. In this way, the connectivity of a graph can be seen as
κ(G) = minu,v∈V (G) κG(u, v). In [15] the author also showed that κ(G) ≤ δ(G). The graph G is maximally connected if the
previous bound is attained, that is, if κ(G) = δ(G).
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Fig. 1. The strong product of a cycle of length 6 and a path of order 3.

For a graph G of order n, the average connectivity κ(G) is defined as the average of the connectivities between all pairs of
vertices of G, that is,

κ(G) =
1 n
2

 
u,v∈V (G)

κG(u, v).

In order to avoid fractions, we also consider the total connectivity K(G) of G, defined as K(G) =


u,v∈V (G) κG(u, v). While
the connectivity is the minimum number of vertices whose removal separates at least one connected pair of vertices, the
average connectivity is a measure for the expected number of vertices that have to be removed to separate a randomly
chosen pair of vertices.

It is well known that most networks can be modeled by a graph G = (V , E), where V is the set of mainly elements
and E is the set of communication links between them in the network. The best known measure of reliability of a graph
is its connectivity, defined above. As the connectivity is a worst-case measure, it does not always reflect what happens
throughout the graph. For example, a tree and the graph obtained by appending an end-vertex to a complete graph both have
connectivity 1. Nevertheless, for large order the latter graph is far more reliable than the former. Interest in the vulnerability
and reliability of networks such as transportation and communication networks, has given rise to a host of other measures
of reliability, see for example [1]. In this paper we pay attention to a measure for the reliability of a graph, the average
connectivity, introduced by Beineke, Oellermann and Pippert [3].

There is a lot of research on the connectivity of a graph (see [10]). Many works provide sufficient conditions for a
graph to be maximally connected or super connected [5,8,14]. Others study the maximal connectivity in networks that
are constructed from graph generators, as Cartesian product graphs [6,12,16], line graphs [11,13], permutation graphs [2,9].
There are two excellent papers where the average connectivity has been investigated. In the first one, Beineke, Oellermann
and Pippert [3] find upper and lower bounds on the average connectivity of a graph G in terms of its order n and its average
degree d(G). In the second one, Dankelmann and Oellermann [7] obtain sharp upper bounds for some families of graphs,
such as planar and outerplanar graphs and Cartesian product of graphs. In this paper, we study the average connectivity of
one kind of product graphs, the so called strong product of graphs.

For a large system, configuration processing is one of themost tedious and time-consuming parts of the analysis. Different
methods have been proposed for configuration processing and data generation. Some of them are structural models which
can be seen as the product graph of two given graphs, known as generators. Many properties of structural models can be
obtained by considering the properties of their generators. In this sense, a usual objective in network design is the extension
of a given interconnection system to a larger and fault-tolerant one so that the communication delay among nodes of the
new network is small enough. To achieve this goal, many works in Graph Theory have studied fault-tolerant properties of
some products of graphs, such as the Cartesian product, the direct product or the strong product of graphs, among others.

We focus on this last one. The strong product G1�G2 of two graphsG1 andG2 is defined on the Cartesian product of the ver-
tex sets of the generators, so that two distinct vertices (x1, x2) and (y1, y2) ofG1�G2 are adjacent if x1 = y1 and x2y2 ∈ E(G2),
or x1y1 ∈ E(G1) and x2 = y2, or x1y1 ∈ E(G1) and x2y2 ∈ E(G2). From the definition, it clearly follows that the strong product
of two graphs is commutative. A picture of the strong product of a cycle of length 6 and a path of order 3 is shown in Fig. 1.

In thisworkweprovide, by a constructivemethod, a lower boundon the average connectivity of the strongproductG1�G2
of two connected graphsG1 andG2 with at least three vertices and girth at least 5. As a consequence, we prove that the strong
product of twomaximally connected graphs of girth at least 5 ismaximally connected, and also, that κ(G1�G2) = d(G1�G2)
if κ(Gi) = d(Gi), i = 1, 2.

2. Main results

To estimate the average connectivity of the strong product G1 �G2 of two graphs G1 and G2, we must find a lower bound
on the number of internally disjoint paths that join any two arbitrary vertices in V (G1 � G2). The following two lemmas
provide these estimations.



Fig. 2. Construction of paths Ru,j in Lemma 2.1.

Given two vertices x1, y1 ∈ V (G1), we denote by k = κG1(x1, y1) and let P1, . . . , Pk be k internally disjoint x1y1-paths
in G1. Similarly, for vertices x2, y2 ∈ V (G2), we denote by ℓ = κG2(x2, y2) and let Q1, . . . ,Qℓ be ℓ internally disjoint x2y2-
paths in G2. Without loss of generality we assume that l(P1) = min{l(P1), . . . , l(Pk)} and that l(Q1) = min{l(Q1), . . . , l(Qℓ)}.
Observe that for every u ∈ V (G1), the subgraph of G1 � G2 induced by the set {(u, x2) : x2 ∈ V (G2)} is isomorphic to G2, and
so, this subgraphwill be denoted by Gu

2. Thus, for each x2y2-path Qj in G2, there exists an (u, x2)(u, y2)-path in Gu
2, which will

be denoted by Q u
j .

In the first result we estimate the connectivity between two vertices (x1, x2), (y1, y2) in V (G1 � G2) such that either
x1 = y1 or x2 = y2. In the former case, it means that both vertices belong to a subgraph isomorphic to G2, namely the copy
Gx1
2 corresponding to the vertex x1 ∈ V (G1).

Lemma 2.1. Let G1 and G2 be two connected graphs with at least three vertices and girth at least 5. Let xi, yi ∈ V (Gi) be two
distinct vertices, i = 1, 2. Then the following assertions hold:

(i) There exist dG1(x1)κG2(x2, y2) + dG1(x1) + κG2(x2, y2) internally disjoint (x1, x2)(x1, y2)-paths in G1 � G2.
(ii) There exist κG1(x1, y1)dG2(x2) + κG1(x1, y1) + dG2(x2) internally disjoint (x1, x2)(y1, x2)-paths in G1 � G2.

Proof. By the commutativity of the strong product of two graphs, it suffices to prove (i). Given vertices x1 ∈ V (G1) and
x2, y2 in V (G2), let us denote by ℓ = κG2(x2, y2). For any (x2, y2)-path Qj in G2, we will denote by Q ′

j the corresponding path
obtained from Qj by removing its end-vertices.

Now, we introduce some general constructions of (x1, x2)(x1, y2)-paths in G1 � G2. Let u ∈ NG1(x1) and j ∈ {1, . . . , ℓ}. If
l(Qj) ≥ 2, then vertices (x1, x2) and (x1, y2) are adjacent to the first and to the last internal vertex of Q u

j , respectively. Hence,
it makes sense to consider the path Ru,j : (x1, x2)(Q u

j )′(x1, y2) in G1 � G2 constructed as above (see Fig. 2). Also, when there
exists a vertex wu ∈ NG1(u) \ {x1}, we can consider the (x1, x2)(x1, y2)-path Rwu : (x1, x2)(u, x2)(Q

wu
1 )′(u, y2)(x1, y2).

Observe that vertices (x1, x2) and (x1, y2) belong to the same copy Gx1
2 of G1 �G2, therefore, Q

x1
1 , . . . ,Q x1

ℓ are ℓ internally
disjoint (x1, x2)(x1, y2)-paths inG1�G2. To construct the (ℓ+1)dG1(x1) remaining pathswedistinguishwhether x2y2 belongs
to E(G2) or not.

First, assume that x2y2 ∈ E(G2), that is, l(Q1) = 1. Let u ∈ NG1(x1). The paths Ru : (x1, x2)(u, x2)(x1, y2) and Ru :

(x1, x2)(u, y2)(x1, y2) are contained in G1 � G2. Moreover, since G2 is a simple graph, for every j ∈ {2, . . . , ℓ}, the path Qj

have length at least 2 and there exists the path Ru,j. Hence, Q
x1
1 , . . . ,Q x1

ℓ ,Ru,Ru, Ru,2, . . . , Ru,ℓ, for every u ∈ NG1(x1) are at
least ℓ + 2δ(G1) + δ(G1)(ℓ − 1) = (δ(G1) + 1)ℓ + δ(G1) internally disjoint (x1, x2)(x1, y2)-paths in G1 � G2.

Second, assume that x2y2 ∉ E(G2). For j ∈ {1, . . . , ℓ} and u ∈ NG1(x1), we consider the path Ru,j. Thus, we have
(dG1(x1) + 1)ℓ internally disjoint (x1, x2)(x1, y2)-paths. If there exists a vertex u ∈ NG1(x1) such that dG1(u) = 1, notice
that dG1(x1) ≥ 2 and then (dG1(x1) + 1)ℓ ≥ 3ℓ ≥ 2ℓ + 1 = (δ(G1) + 1)ℓ + δ(G1). Otherwise, there exists a vertex
wu ∈ NG1(u) \ {x1} for every u ∈ NG1(x1). Since g(G1) ≥ 5, then wu ≠ wv for all u, v ∈ NG1(x1) with u ≠ v. Hence, the paths
Rwu , u ∈ NG1(x1), are at least δ(G1) internally disjoint (x1, x2)(x1, y2)-paths in G1 � G2. �

Now we study in the following lemma the number of internally disjoint paths between two vertices in G1 � G2 which
come from two different vertices in G1 and from another two different ones in G2.

Lemma 2.2. Let G1 and G2 be two connected graphs with at least three vertices and girth at least 5. Then for every two distinct
vertices x1, y1 ∈ V (G1) and every two distinct vertices x2, y2 ∈ V (G2), there exist κG1(x1, y1)κG2(x2, y2) + κG1(x1, y1) +

κG2(x2, y2) internally disjoint (x1, x2)(y1, y2)-paths in G1 � G2.

Proof. Let us denote by k = κG1(x1, y1) and ℓ = κG2(x2, y2). Let P1, . . . , Pk be k internally disjoint x1y1-paths in G1,
and Q1, . . . ,Qℓ be ℓ internally disjoint x2y2-paths in G2. Let us denote by Pi : ui

0u
i
1 . . . ui

ri and Qj : v
j
0v

j
1 . . . v

j
sj , so that

(x1, x2) = (ui
0, v

j
0) and (y1, y2) = (ui

ri , v
j
sj) for i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ}. The proof is constructive, that is, we

provide next kℓ + k + ℓ internally disjoint (x1, x2)(y1, y2)-paths in G1 � G2.



Fig. 3. Construction of path R∗ if k = 1.

Fig. 4. Construction of path R∗ if k ≥ 2.

(I) Associated to the x1y1-path P1 in G1 and the x2y2-pathQ1 in G2, we construct 3 internally disjoint (x1, x2)(y1, y2)-paths
in G1 � G2, denoted by R′

1,1,
R1,1 and R∗, depending on the lengths of P1 and Q1.

(a) If l(P1) = 1 and l(Q1) = 1, that is, if P1 : x1y1 and Q1 : x2y2, then
R′

1,1 : (x1, x2)(x1, y2)(y1, y2).R1,1 : (x1, x2)(y1, x2)(y1, y2).
R∗

: (x1, x2)(y1, y2).
(b) If l(P1) = 1 and l(Q1) ≥ 2 (the case l(P1) ≥ 2 and l(Q1) = 1 is analogous by the commutativity of the strong product

of graphs), then
R′

1,1 : (u1
0, v

1
0) . . . (u1

0, v
1
s1−1)(u

1
1, v

1
s1).R1,1 : (u1

0, v
1
0)(u

1
1, v

1
1) . . . (u1

1, v
1
s1).

Observe that it is impossible to construct in G1 � G2 one more path induced only by P1 and Q1. We solve this problem in
two different ways depending on the value k.

If k = 1, since x1y1 ∈ E(G1) andG1 has at least three vertices, there exists a vertexw ∈ V (G1) such that eitherwx1 ∈ E(G1)
or wy1 ∈ E(G1). Without loss of generality, we consider that wx1 ∈ E(G1) and hence the end-vertices of the path Qw

1 are
adjacent in G1 � G2 to (x1, x2) and (x1, y2), respectively. Thus, we obtain the (x1, x2)(y1, y2)-path (see Fig. 3)

R∗
: (x1, x2)(Qw

1 )(x1, y2)(y1, y2).
If k ≥ 2, since g(G1) ≥ 5 and l(P1) = 1, the path P2 exists and l(P2) ≥ 4. Also, by the hypothesis, l(Q1) ≥ 2. Notice that

u1
0 = u2

0 = x1, u1
1 = u2

r2 = y1, v1
0 = v2

0 = x2 and v1
s1 = v2

s2 = y2. Hence, (see Fig. 4)
R∗

: (u1
0, v

1
0)(u

1
1, v

1
0)(u

2
r2−1, v

1
0)(u

2
r2−2, v

1
1) . . . (u2

r2−2, v
1
s1−1) . . . (u2

2, v
1
s1−1)(u

2
1, v

1
s1)(u

2
0, v

1
s1)(u

1
1, v

1
s1)

(c) If l(P1) ≥ 2 and l(Q1) ≥ 2, then
R′

1,1 : (u1
0, v

1
0) . . . (u1

0, v
1
s1) . . . (u1

r1 , v
1
s1).R1,1 : (u1

0, v
1
0) . . . (u1

r1 , v
1
0) . . . (u1

r1 , v
1
s1).

R∗
: (u1

0, v
1
0)(u

1
1, v

1
1) . . . (u1

1, v
1
s1−1) . . . (u1

r1−1, v
1
s1−1)(u

1
r1 , v

1
s1).

Notice that these three paths prove constructively the desired result when k = 1 and ℓ = 1.
(II) If ℓ ≥ 2 then associated to the x1y1-path P1 in G1 and the x2y2-paths Q2, . . . ,Qℓ in G2, we construct the following

(x1, x2)(y1, y2)-paths in G1 � G2:

R′

1,j : (u1
0, v

j
0) . . . (u1

0, v
j
sj−1) . . . (u1

r1−1, v
j
sj−1)(u

1
r1 , v

j
sj)R1,j : (u1

0, v
j
0)(u

1
1, v

j
1) . . . (u1

r1 , v
j
1) . . . (u1

r1 , v
j
sj)


, for j ∈ {2, . . . , ℓ}.

As g(G2) ≥ 5, we have l(Qj) ≥ 3 for every j ∈ {2, . . . , ℓ}. This fact has made possible the construction of the previous
2(ℓ − 1) pairwise internally disjoint paths.

If k = 1 then (I) and (II) provide 3 + 2(ℓ − 1) = 2ℓ + 1 internally disjoint (x1, x2)(y1, y2)-paths in G1 � G2 and the proof
is finished.



Fig. 5. Construction of path Ri,j .

(III) If k ≥ 2 then associated to the x1y1-paths P2, . . . , Pk in G1 and the x2y2-path Q1 in G2, we find the following
(x1, x2)(y1, y2)-paths in G1 � G2:

Ri,1 :


(ui

0, v
1
0)(u

i
1, v

1
1) . . . (ui

ri , v
1
1), if l(Q1) = 1

(ui
0, v

1
0)(u

i
1, v

1
1) . . . (ui

1, v
1
s1−1)(u

i
2, v

1
s1) . . . (ui

ri , v
1
s1), if l(Q1) ≥ 2

Ri,1 :


(ui

0, v
1
0) . . . (ui

ri−1, v
1
0)(u

i
ri , v

1
1), if l(Q1) = 1

(ui
0, v

1
0) . . . (ui

ri−2, v
1
0)(u

i
ri−1, v

1
1) . . . (ui

ri−1, v
1
s1−1)(u

i
ri , v

1
s1), if l(Q1) ≥ 2

for i ∈ {2, . . . , k}. As g(G1) ≥ 5, we have l(Pi) ≥ 3 for every i ∈ {2, . . . , k}, yielding that the previous 2(k − 1) paths are
pairwise internally disjoint.

If ℓ = 1, then (I) and (III) provide 3 + 2(k − 1) internally disjoint (x1, x2)(y1, y2)-paths in G1 � G2, which finishes the
proof.

(IV) If k ≥ 2 and ℓ ≥ 2, then associated to the x1y1-paths P2, . . . , Pk in G1 and the x2y2-paths Q2, . . . ,Qℓ in G2, we
obtain the remaining (k − 1)(ℓ − 1) internally disjoint (x1, x2)(y1, y2)-paths Ri,j, for i ∈ {2, . . . , k}, j ∈ {2, . . . , ℓ}, given as
(see Fig. 5)

Ri,j : (ui
0, v

j
0)(u

i
1, v

j
1) . . . (ui

1, v
j
sj−1) . . . (ui

ri−1, v
j
sj−1)(u

i
ri , v

j
sj).

Hence, (I)–(IV) provide 3 + 2(ℓ − 1) + 2(k − 1) + (k − 1)(ℓ − 1) = kℓ + k + ℓ internally disjoint (x1, x2)(y1, y2)-paths
in G1 � G2. �

Theprevious lemmas togetherwith the fact that theminimumdegree ofG1�G2 is δ(G1�G2) = δ(G1)δ(G2)+δ(G1)+δ(G2),
give a sufficient condition to guarantee maximal connectivity of G1 � G2.

Theorem 2.1. Let G1 and G2 be two connected graphs with at least three vertices and girth at least 5. If both G1 and G2 are
maximally connected, then G1 � G2 is maximally connected.

Proof. Denote by G = G1 � G2 and let (x1, x2), (y1, y2) be two vertices of V (G). If x1 = y1 then by Lemma 2.1 we have

κG ((x1, x2), (y1, y2)) ≥ dG1(x1)κG2(x2, y2) + dG1(x1) + κG2(x2, y2)
≥ δ(G1)κ(G2) + δ(G1) + κ(G2)

= δ(G1)δ(G2) + δ(G1) + δ(G2),

the last equality due to the maximal connectivity of G2. The reasoning is analogous if x2 = y2. Finally, if x1 ≠ y1 and x2 ≠ y2
then, from Lemma 2.2 and the fact that both G1 and G2 are maximally connected, it follows that

κG ((x1, x2), (y1, y2)) ≥ κG1(x1, y1)κG2(x2, y2) + κG1(x1, y1) + κG2(x2, y2)
≥ κ(G1)κ(G2) + κ(G1) + κ(G2)

= δ(G1)δ(G2) + δ(G1) + δ(G2).

Hence, δ(G) = δ(G1)δ(G2) + δ(G1) + δ(G2) ≤ κG ((x1, x2), (y1, y2)).
Therefore, δ(G) ≤ min{κG ((x1, x2), (y1, y2)) : (x1, x2), (y1, y2) ∈ V (G1 � G2)} = κ(G) ≤ δ(G), it follows that

κ(G) = δ(G), that is, G = G1 � G2 is maximally connected. �

Let G1 and G2 be two connected graphs of order n1 and n2, size e1 and e2, average connectivity κ(G1) and κ(G2),
and average degree d(G1) and d(G2), respectively. From the previous lemmas, we obtain a lower bound on the average
connectivity of G1 � G2 in terms of the aforementioned parameters of G1 and G2. To do that, let us denote by P the set of
non-ordered pairs of vertices of V (G1 � G2). Then the following sets

A =


x2,y2∈V (G2)

{{(u, x2), (u, y2)} : u ∈ V (G1)}



B =


x1,y1∈V (G1)

{{(x1, v), (y1, v)} : v ∈ V (G2)}

C =


(x1,x2),(y1,y2)∈V (G1�G2)

{{(x1, x2), (y1, y2)} : x1 ≠ y1 and x2 ≠ y2}

form a partition of P . Indeed, |V (G1 � G2)| = n1n2, |A| = n1
 n2

2


, |B| = n2

 n1
2


and |C | = 2

 n1
2

  n2
2


.

Theorem 2.2. Let G1 and G2 be two connected graphs with orders n1, n2 ≥ 3, respectively, and girth at least 5. Then

κ (G1 � G2) ≥
1

n1n2 − 1


(n1 − 1)(n2 + d(G2))κ(G1) + (n2 − 1)(n1 + d(G1))κ(G2)

+ (n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)

.

Proof. Let G = G1 � G2. Since the elements of A ∪ B satisfy the hypothesis of Lemma 2.1, it follows that
A

κG ((u, x2), (u, y2)) ≥


A


(1 + d(u))κG2(x2, y2) + d(u)


=


x2,y2∈V (G2)

κG2(x2, y2)


u∈V (G1)

(1 + d(u)) +

n2

2

 
u∈V (G1)

d(u)

=


x2,y2∈V (G2)

κG2(x2, y2)(n1 + 2e1) + 2e1
n2

2


= (n1 + 2e1)K(G2) + 2e1

n2

2


.

By applying Lemma 2.1 and the commutativity of the strong product of graphs, we also deduce that
B

κG ((x1, v), (y1, v)) ≥ (n2 + 2e2)K(G1) + 2e2
n1

2


.

Since the elements of C satisfy the hypothesis of Lemma 2.2, we have
C

κG ((x1, x2), (y1, y2)) ≥


C


κG1(x1, y1)κG2(x2, y2) + κG1(x1, y1) + κG2(x2, y2)


=


C


κG1(x1, y1) + 1

 
κG2(x2, y2) + 1


− 1


= 2


x1,y1∈V (G1)

(κG1(x1, y1) + 1)


x2,y2∈V (G2)

(κG2(x2, y2) + 1) − |C |

= 2K(G1)K(G2) + 2
n2

2


K(G1) + 2

n1

2


K(G2).

Thus, from the partition of P into the sets A, B, C , we deduce that

K(G1 � G2) =


{(x1,x2),(y1,y2)}∈P

κG ((x1, x2), (y1, y2))

≥ (n1 + 2e1)K(G2) + 2e1
n2

2


+ (n2 + 2e2)K(G1) + 2e2

n1

2


+ 2K(G1)K(G2) + 2

n2

2


K(G1) + 2

n1

2


K(G2)

= (n2
2 + 2e2)K(G1) + (n2

1 + 2e1)K(G2) + 2K(G1)K(G2) + 2e1
n2

2


+ 2e2

n1

2


.

Hence,

κ (G1 � G2) =
2

n1n2(n1n2 − 1)
K (G1 � G2)

≥
1

n1n2 − 1


(n1 − 1)(n2 + d(G2))κ(G1) + (n2 − 1)(n1 + d(G1))κ(G2)

+ (n1 − 1)(n2 − 1)κ(G1)κ(G2) + (n2 − 1)d(G1) + (n1 − 1)d(G2)

. �



Theorem 2.2 is best possible in the sense that the hypothesis of girth at least 5 cannot be relaxed. Indeed, let G1 be the
graph formed by two cycles of length 5 which share a common vertex z, and let G2 be a cycle of length 4. Clearly G1 is
1-connected, since z is a cut vertex of G1, and G2 is 2-connected. Let us consider two distinct vertices x1, y1 ∈ V (G1) \ {z}
such that any x1y1-path in G1 pass through z. For any two vertices x2, y2 ∈ V (G2), it is impossible to find five internally
disjoint (x1, x2)(y1, y2)-paths in G1 � G2, because each of these paths must contain a vertex of the subgraph Gz

2. But this
graph has only four vertices because it is isomorphic to G2, that is, to the cycle of length 4.

In [3] the following result is proved.

Theorem 2.3 (See [3]). Let G be a graph on n vertices and e edges with e ≥ n, and let r = 2e − n⌊2e/n⌋. Then

κ(G) ≤ d(G) −
r(n − r)
n(n − 1)

.

From Theorem 2.3 it directly follows that

d(G) ≥ κ(G), (1)

for any connected graph G of minimum degree at least 2. Hence, applying (1) to the inequality of Theorem 2.2, we have

κ (G1 � G2) ≥ κ(G1)κ(G2) + κ(G1) + κ(G2).

Since the average degree of G1 � G2 is d (G1 � G2) = d(G1)d(G2) + d(G1) + d(G2), we obtain the following corollary whose
proof is immediate.

Corollary 2.1. Let G1 and G2 be two connected graphs with at least three vertices and girth at least 5. If κ(Gi) = d(Gi), for
i = 1, 2, then

κ (G1 � G2) = d (G1 � G2) .
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