

METALURGIA E INGENIERI/ DE LOS MATERIALES

AP

Aplicaciones Porosas Avanzadas

PMTi 2017, September 8th to 10th 2017, Xi'an, P.R.China

A simple and economical device to process Ti cylinders with elongated porosity by freeze-casting techniques: design and manufacturing

P. Trueba ¹*, J. R. Bascón ¹, A. M. Beltrán¹, J.A. Rodriguez-Ortiz¹, Y. Torres¹,

J.J. Pavón², E. Alonso³, D.C. Dunand⁵

¹Engineering and Materials Science and Transport Department, University of Seville. C/Virgen de Africa n°7, 41011, Sevilla, España.

²Advanced Biomaterials Group and Regenerative Medicine, University of Antioquia. C/ 67, n°53 - 108, Medellín, Antioquia, Colombia.

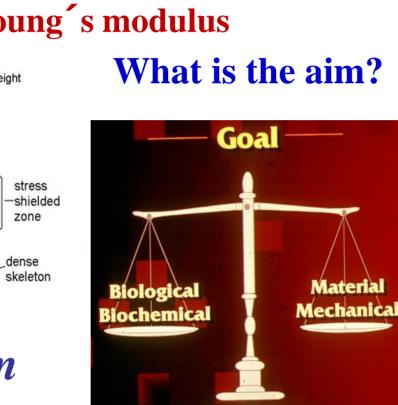
³Analytical chemistry Department, University of Seville. Virgen de Africa nº7, 41011, Sevilla, España.

⁴ Materials Science & Engineering Department, North-western University. Campus Drive, Cook Hall 2036, Evanston, IL 60208, U.S.A.

*ptrueba@us.es

UNIVERSIDAD

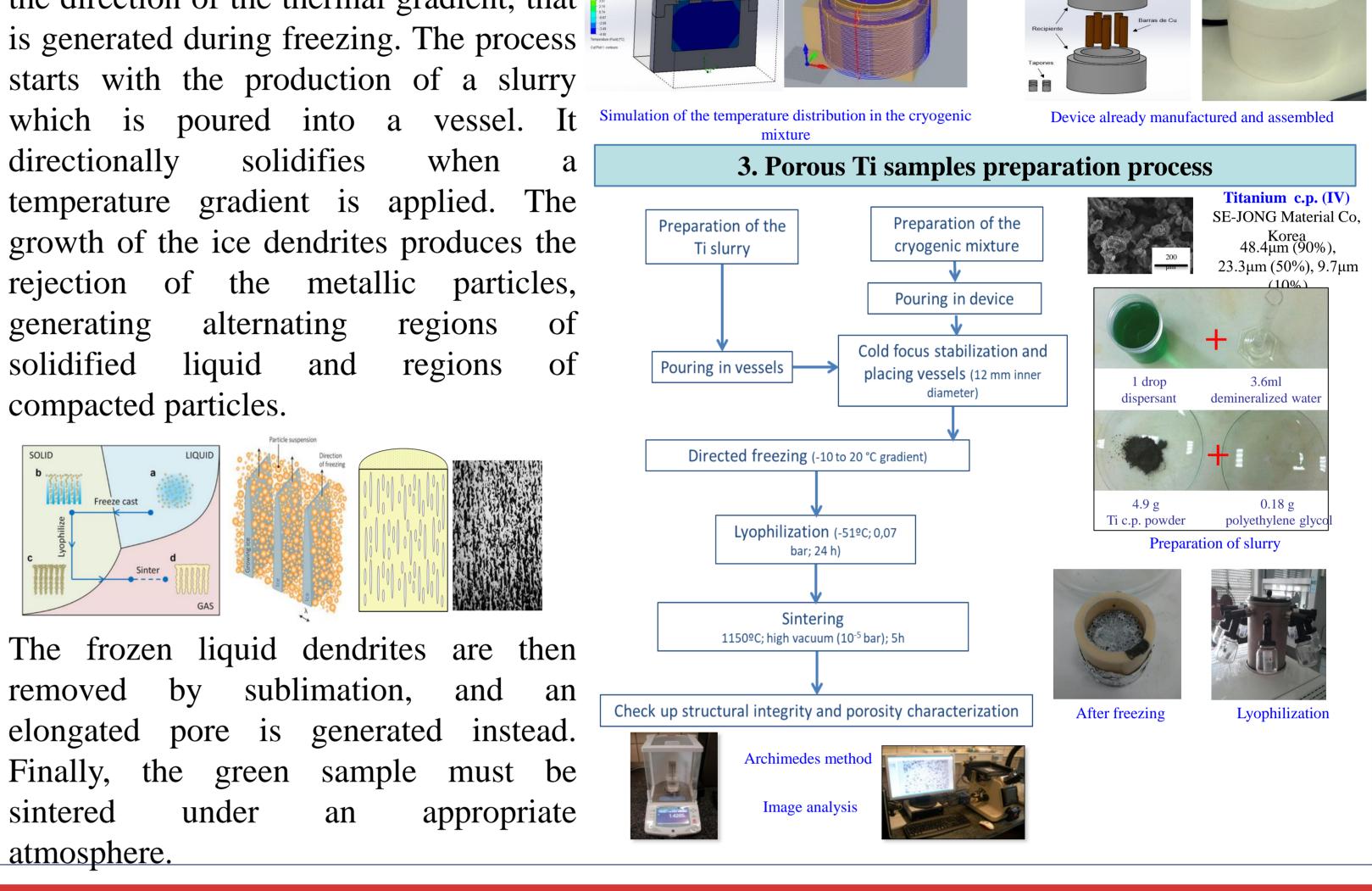
DE ANTIOQUIA


1 8 0 3

Introduction and Objectives	Materials and Experimental Procedure	
Disadvantages of Titanium for bone tissue replacement:	Freeze-casting technique allows the 1. Design device 2. Manufacturing device	
STRESS-SHIELDING PHENOMENON	generation of elongated pores oriented to the direction of the thermal gradient that	

Calcar Bone Resorption

Mechanical incompatibility with the bone: due to big difference in Young's modulus What is the aim? E (Ti) ~ 110 GPa


E (Cortical bone) ~ 20 GPa

One possible solution: porous titanium manufactured by different techniques

Objective:

Design, manufacture and validation of a simple and economic device that allows producing Ti cylinders with directed porosity applying the freeze-casting technique, and the study of the influence on the internal structure of the Ti porous samples when different materials are used for the vessel (alumina or Teflon).

Results and Discussion

Archimedes method ASTM Standard - C373-14 (2014)

Images of three zones through longitudinal cross section

	Porosity (%)		
Vessel	Total D	Interconnected,	
material	Total, P _T	P _i	
Alumina	38.3	37.2	
Teflon	38.53	38.44	

A first global analysis of the total porosity reveals that these values are suitable to solve the stress shielding (~ 40%). According to the overall and interconnected porosity values, the vessel material does not influence them.

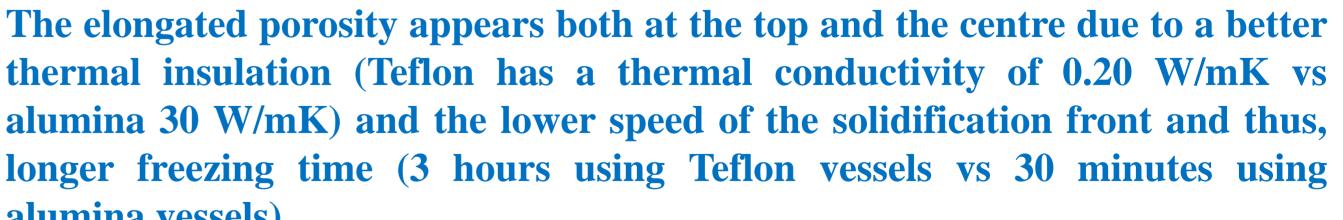
Image Analysis

Vessel material	Zone	Total Porosity (%)	Ø _{min} (µm) (pore width)	Ø _{max} (µm) (pore length)	Elongation factor Ø _{min} / Ø _{max of} equivalent ellipse
Alumina	Тор	38.6	15.7	45.2	0.35
	Centre	18.2	13.3	33.4	0.40
	Bottom	24.2	11.4	32.1	0.36
Teflon	Тор	39.5	18.8	123.3	0.15
	Centre	16.4	8.8	21.5	0.54
	Bottom	1.7	5.7	10.1	0.56

✓ The porosity changes through the direction of the thermal gradient, being greater in the area closest to the hot focus, where both the freeze front velocity and sedimentation are lower.

- \checkmark A higher presence of elongated porosity is observed when used Teflon vessel.
- Pore interconnectivity and the average pore size obtained with Teflon vessels, could be \checkmark guarantee the ingrowth of the bone tissue (pores $\geq 100 \mu m$) of implants manufactured by this technique.

of the Ti cylinders


The role of the particles sedimentation should be also considered to explain the presence of the three differentiated zones.

Alumina vessel:

- \checkmark Porosity at the bottom and the centre is not oriented in the direction of the thermal gradient.
- \checkmark At the top it is clearly elongated along that direction.
- \checkmark It is related to engulfment of the titanium particles by a fast growth of the ice dendrites during the solidification process.

Teflon vessel:

✓ The presence of elongated porosity is much higher..

	Alumina	Teflon	
Тор			
Centre	250 µm	ация. 250 р.m.	
Bottom	 250 μm	250 µm	

N	ext	wor	ks

Conclusions

- ✓ An economical and simple device has been
- designed, manufactured and validated.
- ✓ It allows the implementation of the freeze-casting technique to manufacture cylindrical samples with

elongated and aligned porosity.

- ✓ Studies have revealed the advantages of using
 - Teflon instead of alumina vessels to reduce the
 - speed of the freezing front and to achieve a better

insulation of the slurry and, thus a higher amount of directed porosity is obtained.

✓ Finally, it is significant that the pore size, average

porosity and pore interconnectivity in the titanium

cylinders are suitable for their potential use in

biomedical applications.

- ✓ Mechanical characterization of the titanium samples.
- ✓ Influence of different particle size on the results.
- ✓ Study of pouring the titanium slurry into mold by layer.

Acknowledgements

This work has been supported by the Junta de Andalucía under Grant No. P12-TEP-1401, and the Ministry of Economy and Innovation of Spain within project MAT2015-71284-P. The authors also thanks to technician J. Pinto for his collaboration in the characterization works. MINISTERIO DE CIENCIA E INNOVACIÓ