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Enumeration and classification of self-orthogonal partial

Latin rectangles by using the polynomial method.

Raúl M. Falcón
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Avenida de Reina Mercedes 4 A, 41012, Seville, Spain.

Abstract

The current paper deals with the enumeration and classification of the set

SORr,n of self-orthogonal r × r partial Latin rectangles based on n symbols.

These combinatorial objects are identified with the independent sets of a Ham-

ming graph and with the zeros of a radical zero-dimensional ideal of polynomials,

whose reduced Gröbner basis and Hilbert series can be computed to determine

explicitly the set SORr,n. In particular, the cardinality of this set is shown for

r ≤ 4 and n ≤ 9 and several formulas on the cardinality of SORr,n are exposed,

for r ≤ 3. The distribution of r× s partial Latin rectangles based on n symbols

according to their size is also obtained, for all r, s, n ≤ 4.
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1. Introduction.

An r × s partial Latin rectangle based on [n] = {1, . . . , n} is an r × s array

in which each cell is either empty or contains a symbol of [n], such that each

symbol occurs at most once in each row and in each column. Its number of

filled cells is its size. Let Rr,s,n and Rr,s,n:m respectively denote the set of r× s

partial Latin rectangles based on [n] and its subset of partial Latin rectangles

of size m. Given P = (pij) ∈ Rr,s,n, its orthogonal array representation is
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the set O(P ) = {(i, j, pij) : i ∈ [r], j ∈ [s], pij ∈ [n]}. Permutations of rows,

columns and symbols of P give rise to new r × s partial Latin rectangles based

on [n], which are said to be isotopic to P . If Sm denotes the symmetric group

on m elements, then Θ = (α, β, γ) ∈ Sr × Ss × Sn is an isotopism of Rr,s,n

and it is defined the isotopic partial Latin rectangle PΘ such that O(PΘ) =

{(α(i), β(j), γ(pi,j)) : i ∈ [r], j ∈ [s], pij ∈ [n]}. Given a permutation π ∈ S3,

it is defined the parastrophic partial Latin rectangle P π such that O(P π) =

{(pπ(1), pπ(2), pπ(3)) : (p1, p2, p3) ∈ O(P )}. If P π ∈ Rr,s,n, then π is called a

parastrophism of Rr,s,n. The composition of an isotopism and a parastrophism

is a paratopism. Two partial Latin rectangles are in the same main class if one

of them is isotopic to a parastrophic partial Latin rectangle of the other.

Two partial Latin rectangles P = (pij), Q = (qij) ∈ Rr,s,n are orthogonal

if, given i, i′ ∈ [r] and j, j′ ∈ [s] such that pij = pi′j′ ∈ [n], then qij and qi′j′

are not the same symbol of [n]. If r = s, then the partial Latin rectangle P is

self-orthogonal if it is orthogonal to its transpose P t (see Figure 1).

1 3

2 3 1

1 2

2 3

Figure 1: Example of a self-orthogonal 4× 4 partial Latin rectangle based on [3].

Let SORr,n be the set of self-orthogonal r× r partial Latin rectangles based

on [n]. Only those isotopisms of the form (α, α, γ) ∈ Sr × Sr × Sn and those

paratopisms based on S3 = {(1)(2)(3), (12)(3)} preserve always the set SORr,n.

Hence, the sets Sr ×Sn and Sr ×Sn⋊S3 determine, respectively, the isotopism

and paratopism groups of SORr,n. The enumeration of isotopism and main

classes of SORr,n has been studied for r = n ≤ 10 [5, 6, 13]. However, there

does not exist a similar study for self-orthogonal partial Latin rectangles of

any order. In the current paper, we deal with this problem by adapting the

Combinatorial Nullstellensatz of Alon [1], whose effectiveness in the study of

Latin squares has been exposed in [11, 12].
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The paper is organized as follows. In Section 2, we indicate some prelimi-

naries concepts and results on commutative algebra. In Section 3, the set Rr,s,n

is identified with that of independent sets of a Hamming graph and with the set

of zeros of a zero-dimensional radical ideal, whose reduced Gröbner bases and

Hilbert series determine, respectively, the elements and cardinality of Rr,s,n:m,

for all natural m. This cardinality is explicitly shown for r ≤ s ≤ n ≤ 4 and

m ≤ rsn. In Section 4, we consider new polynomials to be added to the above

ideal in order to determine the set SORr,n. Besides, two strategies are indi-

cated that allow us to reduce the cost of computation of the Gröbner basis and

Hilbert series of the new ideal. They are used to determine the cardinality of

SORr,n for r ≤ 4 and n ≤ 9. Some general formulas about the cardinality of

SORr,n are finally exposed, for r ≤ 3.

2. Preliminaries.

We start with some basic concepts of commutative algebra (see [7, 8, 15] for

more details). Let R = k[x] = k[x1, . . . , xn] be a polynomial ring in n variables

over a field k with the standard grading induced by the degree of polynomials,

that is, R =
⊕

0≤d Rd, where each Rd is the set of homogeneous polynomials in

R of degree d. The largest monomial of a polynomial of R with respect to a given

term order < is its initial monomial. Given an ideal I of R, the ideal generated

by the initial monomials with respect to < of all the non-zero elements of I is

its initial ideal I<. Any monomial of R which is not contained in I< is called a

standard monomial of I with respect to <. The set of standard monomials of

I with respect to any given term order can be used to study the dimension of

the quotient ring R/I. This ring inherits the natural grading of R and can be

written as the direct sum
⊕

0≤d Rd/Id, where Id = Rd ∩ I. In particular, the

set of standard monomials of I of degree d with respect to a given term order

constitutes a linear k-basis of Rd/Id and hence, its cardinality coincides with

dimk(Rd/Id), regardless of the term order which has been chosen. The Hilbert

function HFR/I of R/I maps each non-negative integer d onto dimk(Rd/Id). Its
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Hilbert series is the generating function HSR/I(t) =
∑

0≤dHFR/I(d) · t
d, which

can also be written as:

HSR/I(t) =
P (t)

(1− t)n
=

Q(t)

(1− t)dimk(I)
, (1)

where P (t) and Q(t) are polynomials with integer coefficients. The former is

called the Hilbert numerator of R/I. If I is zero-dimensional, then the Hilbert

series of R/I coincides with the polynomial Q(t). The number of standard

monomials of I is then finite and coincides with the dimension of R/I over k.

Moreover, it is always greater than or equal to the number of points of the

affine variety V (I) of I, that is, the set of points in kn which are zeros of all the

polynomials of I. The ideal I is zero-dimensional if and only if V (I) is finite.

Further, it is verified that |V (I)| = dimk(R/I) whenever I is radical, that is, if

any polynomial p belongs to I whenever there exists a natural n ∈ N such that

pn ∈ I.

The problem of computing a Hilbert series is NP-complete [2]. The standard

algorithm which is commonly used to compute the Hilbert series of a quotient

ringR/I by determining the corresponding Hilbert numerator was first proposed

by Mora and Möller in [16] and is based on the additivity of the Hilbert function

in short exact sequences. Even if it only works when I is homogeneous, it is

not an inconvenient, because the Hilbert series of R/I coincides with that of

R/I< for any term order < and the initial ideal I< is homogeneous because all

its elements are monomials. It is therefore necessary to determine explicitly the

initial ideal of I for a given term order <. In this regard, a Gröbner basis of I

with respect to < is any generating set G of I such that the initial monomials

of its elements generate the initial ideal I<. It is said to be reduced if all its

polynomials are monic and no monomial of a polynomial of G can be generated

by the initial monomials of the other polynomials of the basis. There exists

only one reduced Gröbner basis of an ideal and the algorithm which is most

commonly used to obtain it is that given by Buchberger [4].
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3. Boolean ideals and Hilbert series related to Rr,s,n.

In the current section, we show how the set Rr,s,n of r × s partial Latin

rectangles based on [n] can be identified with that of zeros of a boolean ideal

which is zero-dimensional and radical. The use of non-linear polynomials to solve

combinatorial problems was established by Alon [1]. Afterwards, Bernasconi et

al. [3] exposed the possibility of solving counting problems in Combinatorics

by using Gröbner bases of boolean ideals, that is to say, ideals on k[x1, . . . , xn]

containing the polynomials xi · (xi− 1), for all i ∈ [n]. Such a boolean structure

facilitates the computation of the corresponding reduced Gröbner basis with

respect to any given term order.

P ≡
1 4

3 2

O(P ) =

{

(1, 1, 1), (1, 3, 4),
(2, 2, 3), (2, 3, 2)

}

Figure 2: 2× 3 partial Latin rectangle based on [4] related to an independent set of H2,3,4.

Let Hr,s,n be the Hamming graph [14] defined as the cartesian product

Kr�Ks�Kn of the three complete graphs of r, s and n vertices. It is a

(r + s + n − 3)-regular graph of order rsn, whose vertices can be labeled with

the triples of [r] × [s]× [n] so that two vertices are adjacent if and only if their

corresponding labels differ exactly in one component. The labels of any inde-

pendent set of Hr,s,n, formed by m pairwise nonadjacent vertices, constitute the

orthogonal array representation of an r× s partial Latin rectangle based on [n]

of size m (see Figure 2). The reciprocal is also verified and hence, the num-

ber of independent sets of m vertices of Hr,s,n coincides with the cardinality of

Rr,s,n:m. When r = s = n, the Hamming graph Hn,n,n is usually denoted as
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H(3, n) and its number of independent sets is only known for n ≤ 4 (see the

integer sequences A027681 and A027682 in [17]). The following result holds.

Proposition 1. It is verified that:

a) |Rr,s,n:0| = 1.

b) |Rr,s,n:1| = rsn.

c) |Rr,s,n:2| =
1
2rsn · (rsn− r − s− n+ 2).

Proof. The first two assertions are immediate. To prove the third one, observe

that, since the number of independent sets of size two of any graph of v vertices

and e edges is
(

v
2

)

− e, we have that |Rr,s,n:2| =
(

rsn
2

)

− 1
2 · rsn · (r+ s+n− 3) =

1
2rsn · (rsn− r − s− n+ 2). �

Let us consider now a boolean variable xijk related to each vertex of Hr,s,n,

for all (i, j, k) ∈ [r] × [s]× [n], such that, given an independent set S of Hr,s,n,

it takes the value 1 if the vertex labeled as (i, j, k) belongs to S, or 0, otherwise.

Keeping in mind the adjacency in our graph, the next result is satisfied.

Theorem 2. The set Rr,s,n can be identified with the set of zeros of the ideal

Ir,s,n = 〈xijk(xijk − 1), xijkxi′jk, xijkxij′k, xijkxijk′ : i ∈ [r], j ∈ [s], k ∈

[n], i′ ∈ {i + 1, . . . , r}, j′ ∈ {j + 1, . . . , s}, k′ ∈ {k + 1, . . . , n} 〉 ⊆ F2[x], where

x = {x111, . . . , xrsn}. Besides, |Rr,s,n| = dimF2
(F2[x]/Ir,s,n) and |Rr,s,n:m| =

HFF2[x]/Ir,s,n(m), for all m ≥ 0.

Proof. Any partial Latin rectangle P = (pij) ∈ Rr,s,n can be uniquely

identified with a zero (x111, . . . , xrsn), where xijk = 1 if pij = k and 0, otherwise.

The finiteness of Rr,s,n implies Ir,s,n to be zero-dimensional. Further, for all

(i, j, k) ∈ [r] × [s]× [n], the intersection between Ir,s,n and the polynomial ring

F2[xijk] of polynomials in the variable xijk is the ideal 〈xijk (xijk − 1) 〉 ⊆ Ir,s,n.

Hence, Proposition 2.7 of [7] assures Ir,s,n to be radical and thus, Theorem 2.10

of [7] implies that |Rr,s,n| = |V (Ir,s,n)| = dimF2
(F2[x]/Ir,s,n).
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The reduced Gröbner basis of Ir,s,n with respect to the lexicographic order

<lex coincides with its set of generators. Moreover, if we change in such a set

each polynomial xijk(xijk − 1) by its initial monomial x2
ijk with respect to <lex,

then the new set generates the initial ideal Ir,s,n<lex
. Let xa = xa111

111 . . . xarsn
rsn be

a standard monomial of Ir,s,n with respect to <lex. Since such a monomial does

not belong to Ir,s,n<lex
, it is aijk ∈ {0, 1}, for all (i, j, k) ∈ [r] × [s] × [n]. The

standard monomial xa can then be identified with the partial Latin rectangle

P = (pij) ∈ Rr,s,n, such that pij = k if aijk = 1 and ∅, otherwise. The degree

of xa coincides with the size of P and hence, given m ≥ 0, the cardinality of

Rr,s,n:m is equal to the number of standard monomials of degree d of Ir,s,n. �

The initial ideal Ir,s,n<lex
which appears in the proof of Theorem 2 is the

modified edge ideal [10] of the graph of rsn vertices labeled by the variables

x111, . . . , xrsn and such that there exists an edge connecting the vertices la-

beled by xijk and xi′j′k′ if and only if the monomial xijkxi′j′k′ belongs to

Ir,s,n<lex
. Its standard monomials can then be identified with the indepen-

dent sets of such a graph. It is the fundamental of a specialized algorithm

exposed by Dickenstein and Tobis [10] to compute the Hilbert series related to

this kind of ideals. We have implemented this algorithm in a procedure called

PLR in the open computer algebra system for polynomial computations Sin-

gular [9]. It has been included in the library pls.lib, which is available online

on http://personal.us.es/raufalgan/LS/pls.lib and has been used to ob-

tain the distribution in Table 1 of the partial Latin rectangles of Rr,s,n with

r ≤ s ≤ n ≤ 4 according to their sizes. The computation of the correspond-

ing Hilbert series is immediate (0 seconds) in an Intel Core i7-2600, 3.4 GHz

with Ubuntu, except for R4,4,4, for which the CPU running time is 50 seconds.

Remark that all the values of Table 1 have also been checked by exhaustive

search.
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|Rr,s,n:m|
r.s.n

m1.1.11.1.21.1.31.1.41.2.21.2.31.2.41.3.31.3.41.4.42.2.22.2.32.2.42.3.3 2.3.4 2.4.4 3.3.3 3.3.4 3.4.4 4.4.4

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 3 4 4 6 8 9 12 16 8 12 16 18 24 32 27 36 48 64

2 2 6 12 18 36 72 16 42 80 108 204 384 270 504 936 1,728

3 6 24 96 8 48 144 264 768 2,208 1,278 3,552 9,696 25,920

4 24 2 18 84 2701,332 6,504 3,078 13,716 58,752 239,760

5 1081,008 9,792 3,834 29,808 216,864 1,437,696

6 12 264 7,104 2,412 36,216 494,064 5,728,896

7 2,112 756 23,760 691,200 15,326,208

8 216 108 7,776 581,688 27,534,816

9 12 1,056 283,584 32,971,008

10 75,744 25,941,504

11 10,368 13,153,536

12 576 4,215,744

13 847,872

14 110,592

15 9,216

16 576

Total 2 3 4 5 7 13 21 34 73 209 35 121 325 7813,60128,35311,776116,4252,423,521127,545,137

Table 1: Distribution of Rr,s,n according to the size, for r ≤ s ≤ n ≤ 4.

4. Enumeration and classification of SORr,n.

The ideal Ir,r,n of Theorem 2 can be slightly modified to impose partial Latin

rectangles to be self-orthogonal. In this regard, the proof of the next result is

analogous to that of the mentioned theorem.

Theorem 3. The set SORr,n can be identified with the set of zeros of the

following zero-dimensional ideal of F2[x111, . . . , xrrn].

Ir,n = Ir,r,n ∪ 〈xijp · xklp · xjiq · xlkq : i, j, k, l ∈ [r], p, q ∈ [n], (i, j) 6= (k, l) 〉.

Moreover, |SORr,n| = dimF2
(F2[x]/Ir,n) and |SORr,n:m| = HFF2[x]/Ir,n(m).

�

|SORr,n:m|
r.n

m2.1 2.22.3 2.4 2.5 2.6 2.7 2.8 2.93.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 4 8 12 16 20 24 28 32 36 9 18 27 36 45 54 63 72 81

2 12 36 72 120 180 252 336 432 12 96 252 480 780 1,152 1,596 2,112 2,700

3 24 96 240 480 840 1,344 2,016 2 172 1,014 3,032 6,730 12,612 21,182 32,944 48,402

4 24 120 360 840 1,680 3,024 108 1,836 9,720 31,320 77,220 161,028 299,376 511,920

5 12 1,476 15,912 80,040 270,900 720,972 1,633,296 3,296,592

6 444 12,816 110,040 537,360 1,883,700 5,313,504 12,859,056

7 36 4,608 76,680 573,120 2,743,020 9,870,336 29,142,288

8 720 24,480 295,920 2,005,920 9,444,960 34,655,040

9 48 3,120 58,320 566,160 3,551,520 16,456,608

Total 5 21 73 209 501 1,045 1,961 3,393 5,509 24 407 5,086 47,373 333,236 1,826,659 8,103,642 30,148,121 96,972,688

Table 2: Distribution of SORr,n according to the size, for r ≤ 3 and n ≤ 9.

In order to compute the reduced Gröbner basis and the Hilbert series of

the ideal of Theorem 3, we have implemented the procedure SOR in the library

8



pls.lib. It has been used to obtain the distribution in Table 2 of the partial Latin

rectangles of SORr,n according to their size, for r ≤ 3 and n ≤ 9. Although

the CPU running time is similar to that of the analogous cases of Table 1, our

computer system runs out of memory to determine the case r = 4. It is due

to the fact that the computation of reduced Gröbner bases and Hilbert series

is extremely sensitive to the number of variables and polynomials. We propose

two possible strategies to reduce this cost of computation.

4.1. First strategy. Direct sum.

Given P ∈ Rr,r,n and Q ∈ Rr′,r′,n, let P ⊕ Q ∈ Rr+r′,r+r′,n be the par-

tial Latin rectangle having P as upper left corner, Q as lower right corner

and empty the rest of its cells. Let us consider the set Sr,r′,n = {(P,Q) ∈

SORr,n × SORr′,n : P ⊕ Q ∈ SORr+r′,n} and the ideal IP,Q
r,r′,n = Ir,r′,n +

∑

(i,j,k)∈[r]×[r′]×[n]〈xijk | ∃ l ∈ [r] such that pil = k or ∃ l ∈ [r′] such that qlj =

k〉. The affine variety V (IP,Q
r,r′,n) coincides with that of partial Latin rectangles

of Rr,r′,n which can be included in the upper right corner of P ⊕ Q to obtain

an element of Rr+r′,r+r′,n. Now, given A = (aij) ∈ V (IP,Q
r,r′,n), let I

P,Q,A
r′,r,n be the

following subideal of Ir′,r,n.

Ir′,r,n + 〈xijkxi′j′k : i, i
′ ∈ [r′], j, j′ ∈ [r], (i, j) 6= (i′, j′), k ∈ [n], aji = aj′i′ ∈

[n]〉 + 〈xijkxi′j′k′ : i, i′ ∈ [r′], j, j′ ∈ [r], k, k′ ∈ [n], aji = k′ 6= k =

aj′i′〉 + 〈xijk : (i, j, k) ∈ [r′]× [r]× [n], aji = k, or ∃ l,m ∈ [r] such that aji =

plm, pml = k, or ∃ l,m ∈ [s] such that aji = qlm, qml = k, or ∃ l ∈

[r] such that plj = k, or ∃ l ∈ [r′] such that qil = k〉

It is verified that

|SORr,n:m| =
∑

(P,Q)∈Sr,r′,n

A∈V (I
P,Q

r,r′,n
)

t|P |+|Q|+|A| ·HS
F2/I

P,Q,R

r′,r,n

(t). (2)

This expression has been used to check the data of Table 2 and to expose in

Table 3 the cardinality of SOR4,n, for all n ≤ 9.
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r.n

m 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9

0 1 1 1 1 1 1 1 1 1

1 16 32 48 64 80 96 112 128 144

2 60 360 900 1,680 2,700 3,960 5,460 7,200 9,180

3 56 1,792 8,568 23,744 50,680 92,736 153,272 235,648 343,224

4 14 4,196 45,306 199,784 587,750 1,373,004 2,763,026 5,008,976 8,405,694

5 4,560137,520 1,046,880 4,428,960 13,552,560 33,783,120 73,106,880 142,655,040

6 2,256240,216 3,479,616 22,225,680 91,696,080 288,559,656 755,440,896 1,731,190,176

7 480237,888 7,350,912 74,983,680 430,875,360 1,748,093,760 5,618,070,528 15,283,095,552

8 24131,544 9,785,664 169,923,120 1,410,554,520 7,551,498,024 30,273,440,064 98,905,243,104

9 40,896 8,103,552 256,494,720 3,202,600,320 23,211,048,000 118,117,015,296 469,324,461,312

10 7,056 4,147,584 254,539,680 4,988,125,440 50,312,927,280 331,193,485,056 1,622,312,241,984

11 576 1,332,864 163,762,560 5,241,536,640 75,710,577,600 657,677,857,536 4,029,212,001,024

12 48 283,200 67,632,480 3,633,984,960 77,231,577,360 903,490,374,528 7,027,446,121,920

13 43,008 17,850,240 1,613,064,960 51,545,020,800 827,927,331,840 8,299,928,625,408

14 5,760 2,975,040 437,253,120 21,258,498,240 476,757,469,440 6,249,614,071,680

15 768 291,840 65,571,840 4,861,006,080 154,221,473,280 2,678,459,470,848

16 48 14,160 4,127,760 466,312,560 21,145,881,120 492,310,895,328

Total14713,701850,56735,805,1291,035,763,37121,134,413,357314,221,824,3513,527,256,198,41730,984,678,831,619

Table 3: Distribution of SOR4,n according to the size, for n ≤ 9.

4.2. Second strategy. Number of distinct symbols.

Given s ≤ n, let SORr,n;s be the subset of partial Latin rectangles of SORr,n

which contain exactly s distinct symbols in their cells. Observe that any partial

Latin rectangle of SORr,n;s is equal, up to permutation of symbols, to a partial

Latin rectangle of SORr,s;s. If s = 0, then the set SORr,0;0 only contains the

empty r × r Latin rectangle. We have that

SORr,n =
n
⋃

s=0

SORr,n;s (3)

Hence, if σr,s denotes the cardinality of SORr,s;s, then

|SORr,n| =
n
∑

s=0

(

n

s

)

· σr,s, (4)

The following result holds.

Lemma 4. It is verified that:

i. σr,0 = 1.

ii. σr,r2−1 = 1
2 · (r2 + 1)! · r3−2r2+r+2

r .

iii. σr,r2 = r2!.

iv. σr,s = 0, for all s > r2.
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Proof. Claims (i), (iii) and (iv) follows straightforward from the definition

of σr,s. To prove the second expression, observe that any r × r partial Latin

rectangle which contains exactly r2 − 1 distinct symbols has at most one empty

cell. There are r2! possible partial Latin rectangles with exactly one empty cell.

Otherwise, there exist two cells with the same symbol, where at most one of

them is in the main diagonal. Specifically, there are (r2 − 1)! · r · (r− 1) · (r− 2)

possible partial Latin rectangles with one such a cell in the main diagonal and

1
2 · (r2 − 1)! · (r2 − r) · (r − 1) · (r − 2) ones without any of them in the main

diagonal. The result follows from the addition of all these possibilities. �

The enumeration of SORr,s;s can be based on that of SORr,s−1;s−1, for all

s ∈ [n]. To see it, given a partial Latin rectangle P = (pij) ∈ SORr,s−1;s−1, let

us define the subset SORP
r,s;s of partial Latin rectangles Q = (qij) ∈ SORr,s;s

such that qij = pij if pij ∈ [s− 1] and qij = ∅, otherwise. It is then verified that

SORr,s;s =
⋃

P∈SORr,s−1;s−1

SORP
r,s;s. (5)

The partial Latin rectangles of SORP
r,s;s ∪ {P} can be identified with the zeros

of the ideal IPr,s;s based on the r2 − |P | variables which result after substituting

the following variables in the ideal Ir,s of Theorem 3.

a) Each variable xijk such that i, j ∈ [r] and k ∈ [s− 1] is substituted by 1

if pij = k, or by 0, otherwise.

b) Each variable xijs such that i, j ∈ [r] and pij ∈ [s− 1] is substituted by 0.

The reduced Gröbner basis of this new ideal can then be computed to deter-

mine explicitly the set SORP
r,s;s. If the same reasoning is done for each partial

Latin rectangle of SORr,s−1;s−1 and for each s ≤ n, then we can enumerate

the set SORr,n. The reduction on the number of variables of each ideal IPr,s;s,

in comparison with the r2 · n variables of the ideal Ir,n, implies a significant

improvement of the initial cost of computation which was necessary to enumer-

ate the set SORr,n by applying Theorem 3. Even if such an improvement is
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obtained at the expense of time of computation (observe that it would be nec-

essary to compute
∑n−1

s=0 σr,s distinct reduced Gröbner bases), this time can be

reduced if we make use of the distribution of SORr,n into main classes. In this

regard, given s ≤ n, let Pr,s;s be the set of main classes of SORr,s;s and let

Ps,P denote the main class of P ∈ SORr,s, where the necessity of the subscript

s for the number of symbols is due to the fact that P is also a self-orthogonal

partial Latin rectangle of SORr,t, for all t > s. Since Sr × Ss ⋊ S3 is a finite

group which acts on SORr,s, Burnside’s lemma implies that

σr,s =
∑

P∈Pr,s;s

|Ps,P | =
∑

P∈Pr,s;s

2 · r! · s!

|Is(P, P )| + |Is(P, P t)|
, (6)

where given two partial Latin rectangles P,Q ∈ SORr,s, the set Is(P,Q) de-

notes the set of isotopisms which transform P into Q. The next result shows how

the polynomial method can be used to determine this set and its cardinality.

Theorem 5. Given P = (pij), Q = (qij) ∈ SORr,s, the set Is(P,Q) can be

identified with the set of zeros of the zero-dimensional ideal of F2[x11, . . . , xrr,

y11, . . . , yss].

IIs(P,Q) = 〈 1−
∑

j∈[r]

xij : i ∈ [r] 〉+〈 1−
∑

j∈[n]

yij : i ∈ [s] 〉+〈 1−
∑

i∈[r]

xij : j ∈ [r] 〉+

〈 1−
∑

i∈[n]

yij : j ∈ [s] 〉+ 〈xij · (1− xij) : i, j ∈ [r] 〉+ 〈 yij · (1− yij) : i, j ∈ [s] 〉+

〈xik · xjl · (ypijqkl
− 1): i, j, k, l ∈ [r], such that pij , qkl ∈ [s] 〉+

〈xik · xjl : i, j, k, l ∈ [r], such that (pij = ∅ and qkl ∈ [s]) or

or (pij ∈ [s] and qkl = ∅) 〉.

Moreover, |Is(P,Q)| = dimF2
(F2[x11, . . . , xrr, y11, . . . , yss]/IIs(P,Q)).

Proof. Any isotopism Θ = (α, γ) ∈ Sr × Ss of SORr,s can be univocally

identified with a zero (xΘ
11, . . . , x

Θ
rr, y

Θ
11, . . . , y

Θ
ss), where xΘ

ij = 1, (respectively,

yΘij = 1) if α(i) = j (respectively, γ(i) = j) and 0, otherwise. The first six

subideals of IIs(P,Q) imply that Θ belongs to Sr × Ss and the following two

subideals imply that Θ transforms P into Q. The rest of the proof is analogous

to that of Theorem 2. �
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It just remains to determine a representative partial Latin rectangle of each

main class of SORr,s;s. The following result shows how the enumeration of

Pr,s−1;s−1 can determine that of Pr,s;s.

Lemma 6. Let {P1, . . . , Pm} be a set of representative partial Latin rectangles

of Pr,s−1;s−1. Given P ∈ SORr,s;s, there exist a natural i ≤ m and a partial

Latin rectangle Q ∈ SORPi

r,s;s such that P is in the same main class than Q.

Proof. Given P ∈ SORr,s;s, let P ′ ∈ SORr,s−1;s−1 be the self-orthogonal

partial Latin rectangle which results after removing the symbol s from the cells of

P . There exist a natural i ≤ m and a paratopism Θ = (α, γ, π) ∈ Sr×Ss−1⋊S3

such that Pi = P ′Θ. It is enough to consider Q = PΘ′

∈ SORPi

r,s;s, where

Θ′ = (α, γ′, π) ∈ Sr × Ss ⋊ S3 is defined such that γ′(i) = γ(i) if i < s and

γ′(s) = s. �

Once we have determined a set S ⊆ SORr,s−1;s−1 of representative partial

Latin rectangles of Pr,s−1;s−1, it is enough to enumerate the set
⋃

P∈S SORP
r,s;s

and to distribute its elements according to their main classes. Theorem 5 can

be used to determine this last distribution, because two partial Latin rectangles

P,Q ∈ SORr,s are in the same main class if and only if |Is(P,Q)|+|Is(P,Q
t)| >

0. Previously, in order to enumerate each set SORP
r,s;s, we can make use of the

ideal IPr,s;s that was defined at the beginning of the current subsection. All

these considerations have been implemented in the procedure SOR mentioned

after Theorem 3. It has also been implemented a procedure called ortisot that

computes the reduced Gröbner basis related to the ideal of Theorem 5. With the

joint use of both procedures we have determined the main classes of SORr,s;s,

for all r ≤ 3 and s ≤ r2. The number of these classes are shown in Table 4 and

have been used to obtain from Expression (6) the corresponding values of σr,s.

The use of these values in Expression (4) allow us to prove the next result.

Theorem 7. It is verified that:

1. |SOR1,n| = n+ 1.
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2. |SOR2,n| = n4 − 2n3 + 5n2 + 1.

3. |SOR3,n| = n9 − 15n8 + 122n7 − 604n6 + 1973n5 − 4201n4 + 5640n3 −

4240n2 + 1347n+ 1. �

|Pr,s;s| σr,s
r

s 1 2 3 1 2 3

1 1 2 5 1! 4 23

2 3 24 12 360

3 2 71 24 3,936

4 1 128 4! 29,376

5 122 143,280

6 67 442,080

7 22 826,560

8 4 846,720

9 1 9!

Table 4: Main classes of SORr,s;s.

5. Conclusions.

Keeping in mind the results of the current paper, we can conclude that

the Combinatorial Nullstellensatz of Alon is a good method to deal with the

enumeration and classification of self-orthogonal r × r partial Latin rectangles

based on n symbols. Based on the adjacency and independent sets of a Hamming

graph, we have identified these combinatorial objects with the zeros of a zero-

dimensional radical ideal. Besides, we have exposed two distinct strategies to

reduce the cost of computation of the reduced Gröbner basis and Hilbert series

of such an ideal. They can be used to enumerate explicitly the set of self-

orthogonal partial Latin rectangles or to obtain some general formulas about

its cardinality. All our results have been implemented into distinct procedures

that have been applied in particular to determine the number of r × s partial

Latin rectangles based on n symbols, for r, s, n ≤ 4 and that of self-orthogonal

partial Latin rectangles of order r ≤ 4.
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