
Performance Metamorphic Testing:
Motivation and Challenges

Sergio Segura, Javier Troya, Amador Durán and Antonio Ruiz-Cortés
Department of Computer Languages and Systems

Universidad de Sevilla, Seville, Spain
{sergiosegura,jtroya,amador,aruiz}@us.es

Abstract—Performance testing is a challenging task mainly due
to the lack of test oracles, that is, mechanisms to decide whether
the performance of a program under a certain workload is either
acceptable or poor due to a performance bug. Metamorphic
testing enables the generation of test cases in the absence of
an oracle by exploiting the relations (so–called metamorphic
relations) between the inputs and outputs of multiple executions
of the program under test. In the last two decades, metamorphic
testing has been successfully used to detect functional faults
in a variety of domains, ranging from web services to sim-
ulators. However, the applicability of metamorphic testing to
detect performance bugs is a topic that remains unexplored.
In this vision paper, we introduce Performance Metamorphic
Relations (PMRs) as expected relations between the performance
measurements of multiple executions of the program under test.
We hypothesize that these relations can be turned into assertions
for the automated detection of performance bugs removing the
need for complex benchmarks and domain experts guidance. As
a further benefit, PMRs can be turned into fitness functions to
guide search-based techniques on the generation of test data that
violate the relations, revealing bugs. This novel idea is motivated
with examples and an overview of some of the challenges in this
promising topic.

Keywords-Metamorphic testing, performance testing, search-
based testing

I. INTRODUCTION

Performance testing aims to reveal programming errors that
cause significant performance degradation in the system under
test [1], e.g., excessive memory consumption. Performance
defects are very common in released software programs. For
example, Mozilla developers fix between 5 and 60 perform-
ance bugs reported by users every month [2]. Similarly, the
emerging trend of mobile applications brings new challenges
in terms of performance testing like detecting the infamous
energy leaks or memory bloats [3], [4]. Overall, performance
bugs cause poor usability and a waste of resources, which
might lead to loss of users or hundred-million-dollar software
projects to be abandoned [1], [2].

In contrast to functional bugs, performance bugs do not
produce wrong results or crashes in the program under test and
therefore they cannot be detected by simply inspecting the pro-
gram output. For example, suppose that a browser takes 200ms
to render a given Web page: Is this the expected performance?
How slow should it be considered as a performance bug?
Answering these questions requires not only a good knowledge
of the application, but also considering other aspects as the

computer hardware or its current workload. Compared to
functional faults, performance bugs are significantly harder to
detect and require more time and effort to be fixed [1]. This
is partly due to the lack of test oracles, that is, mechanisms to
decide whether the performance of the program under a certain
workload is acceptable i.e., the oracle problem. Typical oracles
in performance testing are human judgement, often involving
long discussion among developers, or comparisons among
different programs with similar functionality (or different
versions of the same program) [1]–[3].

The lack of automated oracles is recognized as one of
the key challenges on performance testing. Jin et al. [2]
conducted an empirical study of 109 real-world performance
bugs and concluded that “techniques that can smartly com-
pare performance numbers across inputs and automatically
discover the existence of performance problems are desired”.
Liu et al. [3] studied 70 real-world performance bugs in
Android applications and reached the same conclusion: “ef-
fective performance testing needs automated oracles to judge
performance degradation”. Similarly, Nistor et al. [1] analysed
210 performance bugs from three mature open source projects
and concluded that “better oracles are needed for discovering
performance bugs”.

Metamorphic testing alleviates the oracle problem by
providing an alternative when the expected output of a test
execution is unknown [5]. Rather than checking the out-
put of an individual program execution, metamorphic testing
checks whether multiple executions of the program under
test fulfil certain necessary properties called metamorphic
relations. For instance, consider the program merge(L1, L2)
that merges two lists into a single ordered list. The order
of the parameters should not influence the result, which
can be expressed as the following metamorphic relation:
merge(L1, L2) = merge(L2, L1). A metamorphic relation
comprises of a so-called source test case (L1, L2) and one or
more follow-up test cases (L2, L1), derived from the source
test case. A metamorphic relation can be instantiated into one
or more metamorphic tests by using specific input values,
e.g., merge([2, 3], [1, 5]) = merge([1, 5], [2, 3]). If the outputs
of a source test case and its follow–up test case(s) violate
the metamorphic relation, the metamorphic test is said to
have failed, indicating that the program under test contains
a bug. In a recent survey, Segura et al. [6] reviewed about
120 papers on metamorphic testing and identified successful

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157759386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


applications of the technique in a variety of domains, ranging
from web services to compilers. Interestingly, it was found that
all the reviewed papers focused on the use of metamorphic
testing for the detection of functional faults. Therefore, the
potential application of metamorphic testing for the detection
of performance bugs remains unexplored.

In this paper, we present the following hypothesis:

Metamorphic testing is a helpful technique to address
the oracle problem in performance testing, supporting
the automated detection of performance bugs.

The intuitive idea is as follows. Let us suppose the call
merge(l1, l2) takes 300ms to provide an output, with l1 and l2
being two specific lists: Is this correct? Hard to say. Intuitively,
the execution time required to merge the lists should be equal
or greater if more elements are added to both lists. This can be
expressed as the following Performance Metamorphic Relation
(PMR): T (merge(L1, L2)) ≤ T (merge(L1 ∪ L3, L2 ∪ L4)),
where L3 and L4 are two lists containing k random items each,
with k > 0. Based on this, the following metamorphic test can
be constructed: T (merge(l1, l2)) ≤ T (merge(l1∪ l3, l2∪ l4)),
with l3 and l4 being two lists with 1000 random numbers
each. A key benefit of PMRs is that they are independent of
the inputs selected, i.e., the relation should be satisfied for any
L1−4. Also, if the source and follow-up test cases are executed
in the same computer and one immediately after the other,
they should be equally affected by external factors such as the
hardware settings or the computer workload, and the relation
should still hold (note that issues like cache warmup should
still be handled). Thus, PMRs may be turned into assertions
for the automated detection of performance bugs, removing
the need for complex benchmarks and human judgement.

As a further benefit of the proposal, PMRs can be turned
into fitness functions to guide search-based techniques on
the generation of test data that violate the relations. For
instance, the previous PMR could be translated into the follow-
ing fitness function (to be maximize): (T (merge(L1, L2)) −
T (merge(L1 ∪L3, L2 ∪L4))). Intuitively, this function could
be used to search for inputs where the execution time of
the source test case is greater than the execution time of
the follow-up test case. In other words, the search could be
guided toward inputs where the relation is violated as much
as possible. In practice, this means that the approach would
not only alleviate the oracle problem in performance testing,
but it would also enable the use of smart techniques for the
automated detection of performance bugs.

In what follows we first present some motivating examples
inspired by real-world performance bugs in Section II. Sec-
tion III introduces some of the challenges related to the
definition of PMRs. The management of false positives and
false negatives also raises open questions described in Sections
IV and V respectively. Section VI discusses the problem of
test data generation and how PMRs can be turned into fitness
functions to guide search-based testing techniques. Finally,
Section VII summarizes our main conclusions.

II. MOTIVATING EXAMPLES

In this section we present several PMRs inspired by real
performance bugs. Each relation is intentionally presented in
a simple and naive way for the sake of understandability, and
some of them are studied deeper in the next sections.

BookmarkAll. Users reported that Firefox took too long
when they clicked the “bookmark all (tabs)” with a large
number of open tabs1 [2]. The problem was caused by the
use of separate database transactions for bookmarking each
tab, which progressively degraded performance as the number
of tabs increased. The bug was fixed by batching all the tasks
into a single transaction. Inspired by this bug, the following
PMR could be defined:

T (bookmarkAll(x)) ≤ T (bookmarkAll(y)) (PMR1)

where x and y are positive integers representing the number of
tabs to bookmark, and x < y. Intuitively, the relation expresses
that the execution time of the operation is expected to increase
with the number of open tabs to be bookmarked.

LoadImg. Several Chrome users reported memory leaks
when manipulating images, which was classified as a bug2.
This bug caused unexpected levels of memory usage when
loading images of different sizes. Rendering large images
was expected to consume more memory than rendering small
images. However, if a small image was loaded after a bigger
one, the memory usage increased. This was due to problems
with the garbage collector, which did not work when it should.
Inspired by this bug, the following PMR could be defined:

M(loadImg(img1)) ≥M(loadImg(img2)) (PMR2)

where img2 is an image derived from img1 but with a smaller
size, for instance cropping it or decreasing its quality. This
relation expresses that loading an image with a specific size
should consume more memory, or the same, than when a
smaller image is loaded.

UpdateGUI. Zmanim is a location-aware application for
reminding Jewish people about prayer time during the day.
The app sends alerts according to users’ locations and corres-
ponding time zones. Users noted an excessive consumption of
battery power (i.e., energy leak) caused by a defect in the code3

[3]. In certain circumstances the application kept receiving
location changes to update its GUI even when the application
was switched to background, wasting valuable battery power.
Inspired by this performance bug, the following PMR could
be defined:

E(updateGUI(t,‘active’)) > E(updateGUI(t,‘paused’)) (PMR3)

where t is a certain usage test pattern (e.g., sequence of user
actions) and the second input value indicates the final state
of the app, either ‘active’ or ‘paused’. Intuitively, the relation
indicates that the mobile application should consume more
energy when it is active than when it is paused.

1https://bugzilla.mozilla.org/show bug.cgi?id=490742
2https://bugs.chromium.org/p/chromium/issues/detail?id=337425
3https://zmanim.myjetbrains.com/youtrack/issue/Z-50



III. DEFINING PERFORMANCE METAMORPHIC RELATIONS

The rationale behind metamorphic testing is that bugs can
be exhibited when observing the differences among two or
more program executions with different input values, e.g.,
merge(L1, L2) = merge(L2, L1). However, it is unclear to
what extent performance bugs can be exposed with certain
input values and remain undetected with others.

To explore this issue we reviewed some of the recent
literature on performance testing. Jin et al. found out that
two thirds of the performance bugs need inputs with special
features to manifest [2]. For instance, to trigger the bug in
Firefox, the user has to click “bookmark all” with many open
tabs. Analogously, Liu et al. [3] discovered that one third
of the bugs required special user interactions in order to be
revealed. For instance, the Zmanim’s energy leak needs the
following steps to be reproduced [3]: (1) switch on GPS,
(2) configure Zmanim to use current location, (3) start its
main activity, and (4) hit the “Home” button when GPS is
acquiring a location. These findings suggest that a significant
portion of performance bugs are revealed when exercising the
program with certain inputs only, which means that some
defect could be exhibited when comparing the behaviour of
source and follow-up test cases. Interestingly, this is in line
with the conclusions of Jin et al. [2], who wrote: “These
bugs [performance bugs] cannot be effectively exposed if
software testing executes each buggy code unit only once,
which unfortunately is the goal of most functional testing”.

However, some other results suggest that the applicability of
performance metamorphic testing might be limited. Jin et al.
[2] reported that a portion of bugs (15 out of 109 in their study)
are always active because they are located in code exercised by
all inputs, e.g., start-up or shutdown phases. In practice, this
means that PMRs would be rarely able to detect performance
bugs of this type, since the fault would affect equally the
source and follow-up test cases. For instance, suppose a fault
in the start-up phase of Firefox causing database transactions
to take ten times longer than expected. This bug would equally
affect the source and follow-up test cases in PMR1, and thus
the relation would be satisfied with any input, remaining the
bug undetected. This yields to the following challenges:

Challenge 1: Identify PMRs in different application
scenarios, preferably on realistic settings, and show
their effectiveness at detecting performance defects.

Challenge 2: Develop guidelines for the definition of
PMRs. These could be domain-dependent and hope-
fully backed by studies on the characteristics of the
typical performance bugs reported on each domain.

IV. MANAGING FALSE POSITIVES

In functional metamorphic testing, most metamorphic re-
lations are defined for deterministic programs where, for
certain inputs, the relation is either satisfied or violated, e.g.,

merge([2, 3], [1, 5]) = merge([1, 5], [2, 3]). In contrast, the
measurement of non-functional properties such as execution
time, memory consumption or energy usage is inherently
non-deterministic. For instance, the battery power consumed
by a mobile application could vary from one execution to
another due to the device workload, communication issues or
automated updates. In practice, this means that PMRs could
be sometimes violated without that being an indicator of a
performance bug, what results in a false positive.

A few approaches have addressed the problem of testing
non-deterministic programs using metamorphic testing. Guder-
lei and Mayer [7] proposed Statistical Metamorphic Testing.
The method works by generating two or more sequences of
outputs by executing source and follow–up test cases. Then,
the sequences of outputs are compared according to their
statistical properties using statistical hypothesis tests. Murphy
et al. [8] argued that in certain cases slight variations in
the outputs are not actually indicative of errors, e.g., floating
point calculations. To address this issue, the authors propose
the concept of heuristic test oracles, by defining a function
that determines whether the outputs are “close enough” to be
considered equal. Inspired by these approaches, we envision
at least two complementary methods to manage false posit-
ives caused by non-determinism on performance metamorphic
testing, namely:

1) Violation threshold: This approach consists in running
each metamorphic test multiple times and setting a threshold
in the number of violations that we consider admissible. For
instance, let us suppose that we run a metamorphic test 100
times with a violation threshold of 5%. If the number of
violations is greater than 5 the PMR is violated, otherwise
it is satisfied.

2) Relation thresholds: This approach, inspired by [8],
consists in setting thresholds to allow certain differences in the
performance measurements of source and follow-up test cases.
PMR′1 depicts a refined version of PMR1 using this approach,
where β represents the threshold for the comparison. The value
of β could be set to an absolute value (e.g., 100ms) or a relative
time value with respect to the source and follow-up test cases,
e.g., y×T (bookmarkAll(x))/x. As an example, suppose we
run a source test case with x = 5, observing an execution
time of 250ms. Next, a follow-up test case is run with y = 7
and an execution time of 210ms. This small difference (40ms)
may not indicate a bug, since external factors may influence
the execution time. However, it violates PMR1, producing
a false positive. Setting β = 350ms, however, the relation
PMR′1 would be satisfied, being the observed difference not
significant to be considered a failure, i.e., 250− 210 ≤ 350.
T (bookmarkAll(x))− T (bookmarkAll(y)) ≤ β (PMR′1)

All this can be summarized in the following challenges:

Challenge 3: Evaluate the feasibility of using viola-
tion and relation thresholds to avoid false positives
and provide guidelines for the definition of effective
threshold values.



Challenge 4: Propose new methods to address false
positives on the definition of PMRs.

V. MANAGING FALSE NEGATIVES

Analogously to the false positives produced by non–
determinism, PMRs could also produce false negatives, that
is, situations where the relation is satisfied despite the pro-
gram being faulty. Consider the BookmarkAll bug as an
example. According to the bug report, the time required for
the browser to execute the task increased dramatically with
the number of tabs to be bookmarked. This could lead to
the following situation: suppose that Firefox takes 250ms to
bookmark 5 tabs, and 15000ms to bookmark 20 tabs. The
relation T (bookmarkAll(5)) ≤ T (bookmarkAll(20)) would
be satisfied, despite the large difference in the execution times
(250 ≤ 15000), remaining the fault undetected.

As illustrated in the previous section with false positives, a
sensible approach to address false negatives could also be the
use of thresholds. PMR′′1 depicts a new version of the relation
where α represents a threshold for the comparison. Again, the
value of α could be set to an absolute or a relative time value
with respect to the source and follow-up test cases, for instance
(x− y)× 500. Continuing with the previous example, setting
α = −7500 and β = 350, the relation would be violated
(−7500 ≤ (250− 15000) ≤ 350), suggesting the presence of
a performance bug.

α ≤ T (bookmarkAll(x))− T (bookmarkAll(y)) ≤ β (PMR′′1 )

From this, the following challenges are identified:

Challenge 5: Evaluate the feasibility of using
thresholds to identify false negatives and provide
guidelines for the definition of effective threshold val-
ues.

Challenge 6: Propose new methods to address false
negatives on the definition of PMRs.

VI. TEST DATA GENERATION

Detecting performance bugs by means of testing requires
finding test inputs that manifest the unexpected performance
behaviour in the program under test. This can be extremely
challenging [1]–[4]. Consider, for example, the specific se-
quence of user interactions needed to trigger the Zmanim’s
energy leak, described in Section III. Although this work does
not address the problem of test data generation in performance
testing, we envision that PMRs could help on the search
of effective test inputs. This is because unlike functional
metamorphic relations, where the outcome is Boolean (either
satisfied or violated), PMRs can be translated to a numeric
result that reflects to what extend the relation is satisfied or
violated. In practice, this means that PMRs can be turned into
fitness functions to be used in search-based testing techniques.

For example, PMR2 can be turned into the following fitness
function (to be minimized):

M(loadImg(img1))−M(loadImg(img2))

In practice, this fitness function would favour those images
where the memory consumed by the source test cases is
less than the memory consumed by the follow-up test cases.
In other words, the function would guide the search toward
input images that violate the PMR to the maximum possible
extent, revealing potential defects. This leads to the following
challenge:

Challenge 7: Propose and evaluate search-based meth-
ods for the automated generation of test data for
performance metamorphic testing.

VII. CONCLUSIONS

The automated detection of performance bugs is recognized
as a relevant and challenging problem. In order to address
such problem, this vision paper opens the path to a promising
research topic that has remained unexplored so far, perform-
ance metamorphic testing. We have sketched how it could
effectively reveal performance bugs reported by users in well-
known real-world applications, and have enumerated some of
the challenges that need to be resolved for the successful
application of performance metamorphic testing.

ACKNOWLEDGMENT

This work has been supported by the Spanish Government
under CICYT project BELI (TIN2015-70560-R), the Excel-
lence Network SEBASENet (TIN2015-71841-RED), and the
Andalusian Government project COPAS (P12-TIC-1867).

REFERENCES

[1] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing
performance bugs,” in Proc. of the 10th Working Conference on Mining
Software Repositories, ser. MSR ’13. IEEE Press, 2013, pp. 237–246.

[2] G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and
Detecting Real-world Performance Bugs,” in Proc. of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implement-
ation, ser. PLDI ’12. ACM, 2012, pp. 77–88.

[3] Y. Liu, C. Xu, and S.-C. Cheung, “Characterizing and detecting perform-
ance bugs for smartphone applications,” in Proc. of the 36th International
Conference on Software Engineering, ser. ICSE 2014. ACM, 2014, pp.
1013–1024.

[4] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting energy bugs and hotspots in mobile apps,” in Proc. of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE 2014. ACM, 2014, pp. 588–598.

[5] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[6] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes, “A survey on meta-
morphic testing,” IEEE Transactions on Software Engineering, vol. 42,
no. 9, pp. 805–824, 2016.

[7] R. Guderlei and J. Mayer, “Statistical metamorphic testing: Testing
programs with random output by means of statistical hypothesis tests and
metamorphic testing,” in Proc. of 7th International Conference on Quality
Software, 2007. QSIC ’07, 2007, pp. 404–409.

[8] C. Murphy, K. Shen, and G. Kaiser, “Automatic system testing of
programs without test oracles,” in Proc. of the Eighteenth International
Symposium on Software Testing and Analysis, ser. ISSTA ’09. ACM,
2009, pp. 189–200.


