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Abstract

In this contribution the authors include results and conclusions from an experimental and numerical analysis of a railway bridge
belonging to the Madrid-Sevilla High-Speed railway line in Spain. This structure is monitored due to its short length and typology,
which make it susceptible to experience high transverse vibration levels. During the in-situ tests the soil properties at the site
were obtained. Also, the response of the structure under the circulation of railway convoys was measured at several points of
the deck and at the abutments. From the experimental measurements the modal parameters of the bridge are identified. Finally
the experimental results are compared to those provided by a finite element numerical model in the time and frequency domains.
Conclusions are extracted regarding the structure performance and the adequacy of the numerical model implemented.
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1. Introduction

With the advent of High-Speed trains, the Serviceability Limit State of vertical acceleration is one of the most
demanding specifications for the design or upgrading of many railway bridges. At speeds above 200 km/h, resonance
effects caused by the regular nature of train axle loads may entail inadmissible levels of vertical vibrations at the
deck level, leading to harmful consequences in the superstructure. Especially critical in this regard are short-to-
medium span simply-supported (S-S) bridges with usually low associated structural damping and mass [1,2]. These
facts point out the importance of developing accurate numerical models, able to realistically predict the vibration
levels in the bridge with reasonable computational costs. In this regard, the calibration of these models with in situ
dynamic testing becomes crucial. With this purpose a number of researchers have performed experimental campaigns
on railway bridges in the past [3-5]. In these studies, usually performed on structures of long spans, the attention
is focused on the dynamic response of the bridge deck under ambient or train induced vibrations, with the aim of
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identifying its modal properties. However, as indicated in [6], the dynamic response of short-to-medium span S-S
railway bridges is difficult to predict during the design or upgrading stages, since the influence of the environment
and the super-structure components (rails, ballast) can be significant and it is not well known. Despite this fact, the
number of reported experimental campaigns on these structures is low. In [6] the authors perform in situ dynamic
testing in short-to medium span S-S slab bridges belonging to a conventional railway line to be upgraded for higher
operating speeds. Although some studies reveal that soil-structure interaction (SSI) may significantly affect the bridge
dynamic response [7], especially in short S-S structures, the properties of the soil are seldom measured during the
tests nor included in the numerical FE models. Only when the interaction between the super-structure and the soil is
more evident due to the bridge typology, as is the case with portal frames or soil-steel composite railway bridges [8,9],
the SSI is taken into account. In this work the results and conclusions from an experimental campaign performed on
a short S-S bridge belonging to a High-Speed line in Spain are included. The main novelty is the measurement of
both the soil properties and the super-structure accelerations during the tests, and the implementation of a suitable
numerical model according to the results of the experimental campaign. Also this bridge is particularly interesting as
(i) the structure has a skew angle of 45 with a span length similar to the deck width, therefore its dynamic response
substantially differs from that of a beam-like structure; and (ii) in a preliminary numerical evaluation [10], using a three
dimensional finite element (FE) model that follows the main simplifications adopted by practitioners in accordance
with the European Standards [11,12], an important transverse vibration response was predicted at the deck level.
Conclusions are extracted regarding the structure performance and the adequacy of the numerical model implemented
for the particular soil and loading conditions.

2. Structure description

The structure under study, designated as Arroyo Bracea II bridge, belongs to the Madrid-Sevilla High-Speed rail-
way, opened in 1992. It is composed by two identical S-S spans of 15.25 m, with a 45° skew angle as shown in
Fig.1. Each deck consists of a concrete slab resting over five pre-stressed concrete I girders. The girders lean on
the supports through laminated rubber bearings. As per the substructure, the bridge deck is supported on reinforced
concrete abutments in its outermost sections and the inner sections of both bays lean on a pile foundation.
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Fig. 1. Arroyo Bracea II Bridge (from left to right): accelerometers set up and bridge deck cross section

3. Experimental campaign

The experimental program, carried out in July of 2016, included a dynamic characterization of the structure and of
the soil at the bridge site. The acquisition equipment was a portable system LAN-XI of Bruel & Kjaer. The acquisi-
tion system fed the accelerometers and the impact hammer used in the tests, and also performed the Analog/Digital
conversion (A/D). The A/D was performed at a high sampling frequency and aliasing effect was avoided applying a
low-pass filter with constant cut-off frequency to the digital signals. The sampling frequency was fs = 4096 Hz. The
acquisition equipment was connected to a laptop for data storage. The dynamic characterization of the soil was done
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Fig. 2. From left to right: impact hammer and aluminum foundation; dispersion curve and soil properties

by (i) the seismic refraction test, that allowed the identification of the P-wave velocity (Cp) of the soil layers; and (ii)
the spectral analysis of surface waves (SASW) test to determine the S-wave velocity (Cs) and the material damping
ratio of the soil layers [13].

The measurements were performed in two setups. In each setup, 100 impacts were applied to a 50 cm X 50 cm X
8 cm aluminium foundation anchored to the soil surface. The instrumented hammer was a PCB 086D50 force sensor.
The vertical free field response was recorded by means of accelerometers anchored to the soil surface every 2 m, (2 to
68 m distant from the foundation). Steel stakes of cruciform section and 0.3 m length were driven into the ground for
mounting each of the accelerometers. After each impact, a time signal of 16348 samples (4 s) was stored. The force
channel was used as a trigger, with a trigger level of 10 N, a pre-trigger of 4096 samples (or 1 s), and a post-trigger
of 12288 samples (or 3 s). The signals were decimated (order 4), filtered with a third-order Chebyshev filter with a
high-pass frequency of 5 Hz and with a third-order Chebyshev filter with a low-pass frequency of 100 Hz. On the
right hand side of Fig.2 the resulting dispersion curve along with the soil properties obtained from the resolution of
the inverse problem are shown. The dynamic characterization of the soil revealed a very stiff soil at the site.

The acceleration response of the structure was measured at 11 points of the lower flange of the pre-stressed concrete
girders and at the pile abutment upper horizontal surface, close to the girders support. For the sake of conciseness,
only the results at accelerometer 4, located at a quarter of the span center of girder 3, and at point 5, located at the span
center of girder 1 (see girders in Fig.1) will be shown. Endevco model 86 piezoelectric accelerometers were used with
a nominal sensitivity of 1000 mV/g and a low frequency limit of approximately 0.1 Hz. The sensors were attached
to the deck using circular aluminum plates of 0.09 m diameter and 0.006 m thickness, glued with epoxy resin to the
girders.

The ambient vibration response was acquired in 4184 seconds per channel. Data were decimated (order 16) to carry
out data analysis in the frequency range of interest (0 to 30 Hz). The signals were filtered applying two third-order
Chebyshev filters with high-pass and low-pass frequencies of 1 Hz and 30 Hz, respectively. The same filter is applied
to the numerical response. During the recording time, several trains crossed the bridge with circulating velocities in
the range [100, 280] km/h. In the next section the response of the structure is presented for two of these trains: a
Talgo 350 with an axle scheme as that shown in Fig.3a and a coach distribution type L-1-10x2-1-L, and an ICE 350
(Fig.3b) with a coach distribution 1-6x2-1.
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Fig. 3. (a) Talgo 350 and (b) ICE 350 trains. Coach distribution and axle distances



3024 P. Galvin et al. / Procedia Engineering 199 (2017) 3021-3026

4. Numerical model description

A finite element numerical model of the bridge is used in order to compare the predicted response with the ex-
perimental measurements. In a first approach, and due to the stiff soil properties that were measured at the site, SSI
is not included in the model. Fig.4 shows the main features of the model, which are the following: (i) the deck
behavior is simulated by means of an orthotropic thin plate discretised in Linear Varying Curvature FEs. These are
C1 compatible triangular elements with 12 degrees of freedom [14]; (ii) the laminated rubber bearings of the deck
girders are included in the model as an equivalent vertical stiffness uniformly distributed along the supports lines; (iii)
different mass density elements are employed in order to concentrate the weight of the ballast, sleepers and rails at
the central portion of the plate; (iv) a moving load model is adopted for the railway excitation, therefore neglecting
vehicle-structure interaction effects and also rail irregularities. As the track rigidity is not included in the numerical
model and in order to avoid un-realistic high-frequency modal contributions when a load enters or exits the bridge due
to the presence of the elastic bearings, the gradual nature of the wheel loads application process close to the abutments
due to the distributive effect of rails, sleepers and ballast, is simulated. To this end, the value of each axle load is
modulated at the deck entrance and exit vicinity applying a function based on the Zimmerman-Timoshenko solution
for an infinite beam on Winkler foundation [10]. Finally, the dynamic equations of motion are transformed into modal
space and numerically integrated by the Newmark-Linear Acceleration algorithm taking into account the first 20 nat-
ural modes of the structure. Initially, the plate orthotropic constants, mass and the supports flexibility are obtained
from the bridge geometry and mechanical properties. Subsequently the model properties are updated to reproduce the
proof load test performed on the structure prior to its opening [10]. In the following sections, conclusions regarding
its effect under resonant and not-resonant conditions of the structure will be exposed.
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Fig. 4. Finite Element model main features

5. Experimental vs. numerical results
5.1. Modal parameters

First, the modal parameters of the bridge are identified from ambient vibration data by state-space models using
MACEC software developed by the Structural Mechanics Section of KU Leuven [15]. The deck presents five modes
in the frequency range [0, 30] Hz, where the lowest ones in frequency order correspond to the first longitudinal
bending, first torsion and first transverse bending modes. Table 1 shows the identified natural frequencies and the
damping ratios for the first five modes, the numerical frequencies provided by the FE model and the correlation
numerical/experimental according to the MAC values [16]. The correspondence between them is reasonably accurate.
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Table 1. Experimental and numerical natural frequencies, experimental modal damping and AutoMAC values.

fexp (Hz) Srum (Hz) §e.xp(%) AutoMAC() fz’xp (Hz) Srum (Hz) §e.xp(%) AutoMAC()
1 9.25 9.19 3.64 0.98 4 17.94 17.20 0.80 0.96
2 10.63 10.34 1.66 0.96 5 24.58 24.81 0.95 0.98
3 12.75 12.65 1.30 0.97

5.2. Transient structure response under the circulation of High-Speed trains

In Fig.5 the vertical acceleration time history response and its frequency contents are represented at sensors 4 and
5 for two train passages: Talgo-350 at v = 263 km/h and ICE-350 at v = 279 km/h. Only the load passage excitation
is considered in the numerical model as it dominates the response at the track [17]. The computed results show a
reasonably good agreement with those experimentally recorded. In the frequency domain peaks coinciding with the
bogie passing frequency, the axle passing frequency and at the natural frequencies of the structure may be detected.
It should be noted that the circulation of Talgo-350 train does not induce resonance on the bridge deck. In this case,
several modal contributions are responsible for the deck response below 30 Hz. In this particular case, where no
clear resonance takes place the experimental measurements are slightly higher than the numerical prediction. On the

Talgo 350 ICE 350
—— 04z exp 1 — 05z exp 1.5 — 042 exp 1 — 05z exp
04z num 05z num —— 04z num —— 05z num

N'; 0.5 05 1
E ’ 05 05
s
'<§ 0 0 0 0
@
© -0.5 -0.5
3 0.5
< 05 » 1
1 15 15
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Time [s] Time [s] Time [s] Time [s]
0.6 1
035 — 04z exp — 05z exp — 04z exp 1.2 — 05z exp |
= —— 04z num — 05z num ——04z num — 05z num
Fos 05 0.8 1
o~
‘% 0.25 04 08
E 06 :
= 02
S 0.3 0.6
® 0.15 0.4
<2 0.2
o 01 0.4
S 0.2
< 0.05 0.1 . h 0.2
0 0 0 A 0
0 10 20 30 0 10 20 30| 0 10 20 30 0 10 20 30
Frequency [Hz] Frequency [Hz] Frequency [Hz] Frequency [Hz]

Fig. 5. Acceleration response in time and frequency domains under the passage of a S102 Talgo 350 train at v=263 km/h

other hand, train ICE-350 travelling at 279 km/h induces a third resonance of the fundamental mode of the bridge at
a theoretical velocity of v,.s3 = 3.6 - dcar - f1/3 = 275 km/h associated to the length of the cars repetitive distance
(d=24.775 m). In this case, the peak associated to the resonant mode predominates in the frequency response and
the contribution of other frequency contents is less relevant in comparison. It should be noted that even though
the correspondence between experimental and numerical results is even better in this case, the numerical model
overestimates the real response, specially at the fundamental frequency of the structure, associated to the resonant
response. This is consistent with the fact that the effect of wave radiation exerted by the soil and energy dissipation
related with vehicle-structure interaction are both especially noticeable at resonant velocities [18].
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6. Conclusions

The experimental dynamic response of a short S-S railway bridge under High-Speed traffic is presented and com-
pared to numerical predictions. The structure modal parameters are identified from ambient vibration measurements
showing good correspondence with numerical parameters. The response of the bridge under the circulation of a Talgo
350 train and an ICE 350 are shown. In the former case, the train does not induce resonance on the bridge deck,
therefore the response is not dominated by a predominant modal contribution. Also, in this case the numerical model
predicts quite accurately the experimental response of the bridge, being experimental amplitudes slightly higher than
numerical. In the second case, the train ICE 250 induces a third resonance of the fundamental mode of the structure.
The phenomenon is evident both in the experimental response and in the numerical predictions. In this case the FE
model overestimates the real response, specially at the resonant frequency. This is consistent with the fact that the
effect of wave radiation exerted by the soil and energy dissipation related with vehicle-structure interaction are both
especially noticeable at resonant velocities.
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