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Abstract 

The Calcium Looping (CaL) process, based on the carbonation/calcination of CaO, has been 

proposed as a feasible technology for Thermochemical Energy Storage (TCES) in Concentrated 

Solar Power (CSP) plants. The CaL process usually employs limestone as CaO precursor for its 

very low cost, non-toxicity, abundance and wide geographical distribution. However, the 

multicycle activity of limestone derived CaO under relevant CaL conditions for TCES in CSP 

plants can be severely limited by pore plugging. In this work, the alternative use of calcium-rich 

steel and blast furnace slags after treatment with acetic acid is investigated. A main observation 

is that the calcination temperature to regenerate the CaO is significantly reduced as compared to 

limestone. Furthermore, the multicycle activity of some of the slags tested at relevant CaL 

conditions for TCES remains high and stable if the treated samples are subjected to filtration. This 

process serves to remove silica grains, which helps decrease the porosity of the CaO resulting 

from calcination thus mitigating pore plugging.  
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1. Introduction 

 

The massive deployment of renewable energy technologies is an urgent need to limit 

global warming to 2 ºC over pre-industrial values in 2100 as was agreed in the 21st  

Climate Change Conference COP21 [1]. A critical challenge is to find efficient, low cost 

and environmentally friendly energy storage technologies to manage the intermittency of 

solar and wind as main renewable energy sources. Concentrated Solar Power (CSP) is a 

rapidly growing  technology wherein the implementation of large scale energy storage at 

relatively low cost would be feasible [2]. A relevant advantage of CSP is that energy can 

be massively stored in a primary form such as high-temperature heat usable for generating 

electricity on demand. The present paper deals with energy storage in CSP plants with 

central tower technology in which a number of heliostats are distributed on the ground to 

reflect direct solar radiation into a receptor placed at the top of a tower where temperatures 

up to about 1000ºC can be achieved.  

In currently commercial CSP plants with energy storage, heat is transferred in the solar 

receptor to a fluid composed of a mixture of nitrate salts, usually sodium nitrate (NaNO3) 

and potassium nitrate (KNO3) in a 60/40 percent ratio (solar salt) of high heat capacity. 

The solar salt is then transported into a hot salts tank where heat is stored as sensible heat 

(the energy density of solar salt is ~ 0.8 GJ/m3) [3]. Storage of heat using molten solar 

salts allows for about 15 hours of autonomy in the absence of direct solar radiation [4].  

However, the use of molten salts is hampered by their thermal decomposition at 

temperatures close to 600ºC [5]. Another inconvenient of molten salts is their relatively 

high freezing point, between 120-220ºC, which besides being a technological risk leads 

to relevant heat losses at night in deserted regions or high altitude areas where CSP 

technology allocation is more appropriate due to the elevated number of sun hours. A 

further drawback of solar salts is the impossibility of circulating them through standard 

conduction systems and valves because of their corrosiveness, which makes it necessary 

to use high cost materials [6, 7].  

An alternative to thermal energy storage (TES) as sensible heat for storing energy in CSP 

plants is thermochemical energy storage (TCES) [8, 9] currently under research and 

development. TCES is based on the use of heat to carry out an endothermic reaction. 
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When this energy is required, the separately stored by-products of the reaction are brought 

together to carry out the reverse exothermic reaction, which releases the previously used 

heat for power production on demand. Main advantages of TCES are the potentially high 

energy density as well as the possibility of storing energy in the long term without losses. 

Moreover, in addition to the enthalpy of the chemical reaction, it is also possible to use 

the heat stored as sensible heat in the reaction products [4]. 

Among the diverse possibilities explored for TCES at large scale, one of the most 

promising technologies is the Calcium Looping (CaL) process, which relies on the 

carbonation/calcination reaction of CaO (Eq. (1)) [10].  

𝐶𝑎𝑂 (𝑠) + 𝐶𝑂2(𝑔) ⇄ 𝐶𝑎𝐶𝑂3(𝑠),         𝛥𝐻𝑟
0 = −178 𝑘𝐽/𝑚𝑜𝑙                        (1) 

The energy density that can be potentially stored by the CaO/CaCO3 system in terms of 

reaction enthalpy and density of the material (~3.2 GJ/m3) is much higher than the 

sensible heat stored by solar salts currently used in CSP plants (~0.8  GJ/m3) [3]. 

Limestone is a natural CaO precursor abundantly available at low price (~10 €/ton), non-

toxic and with a high CaCO3 content (close to 100%), albeit the CaO derived from its 

calcination may present a progressive deactivation with the number of cycles depending 

on reaction conditions [11]. 

Figure 1 shows a simplified flow diagram of a possible configuration for the CaL-CSP 

integration recently proposed elsewhere [12, 13], which is based in a closed CO2 cycle 

for carbonation and power generation by means of a Brayton cycle. The process starts 

with the calcination of CaCO3 in a calciner reactor using concentrated solar power as the 

heat source. Once the sensible heat from the streams exiting the calciner (CO2 and CaO) 

is recovered, these products are stored separately. When required, the streams of CaO and 

CO2 are transferred to the carbonator, wherein heat is recovered from the enthalpy of the 

carbonation reaction.  In the carbonator, CO2 reacts with CaO at conditions to shift the 

reaction towards exothermic carbonation to produce CaCO3. The process is designed in 

such a way that the CO2 mass flow rate entering in the carbonator is well above the 

stoichiometric need. Thus, the CO2 in excess that exits the carbonator is used as fluid 

carrier to evacuate the heat released by carbonation and is looped through the closed 

power cycle for generation of electricity. The interested reader in further details is referred 

to [12, 13] for a rigorous mass-balance model of the plant taking into account the flow 

rates of solids and CO2 streams between the carbonator and calciner and a rigorous energy 
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integration analysis. One of the main advantages of this integration is that the time and 

the conditions for storage are flexible and could be adjusted according to the energy 

demand [12, 13].  

The calcination stage has an important role on the global efficiency of the process because 

for storing the highest amount of energy in sun hours decarbonation has to be fast and at 

the lowest possible temperature. The latter would allow the use of relatively cheap 

commercial solar receivers based on metal alloys thus reducing the cost and technological 

risk of the technology [14]. A possible choice to this end is to carry out calcination under 

a gas that could be easily separated from the CO2 generated in this stage as could be He 

by using membranes [15, 16]. Moreover, the high thermal conductivity of He and high 

CO2 diffusivity in this gas serves to speed up the calcination reaction [17]. This would 

help full calcination of the solids in short residence times at temperatures around 725ºC 

in the case of limestone [18]. However, the calciner technology is not yet fully developed. 

Small prototypes of solar chemical reactors have been proposed for the production of lime 

based on fluidized beds [19, 20], rotary kilns [21, 22] and cyclone atmospheric reactors 

[23]. In the CaL-CSP integration the effluent gas stream from the calciner must be cleared 

of particles before sending it to the membrane for He/CO2 separation. Thus, a cyclone 

separator should be used for removing the particulates from the gas mixture. 

 

 

Figure 1. Flow diagram for the integration of the Ca-Looping process in Concentrated Solar 

Power plants with central tower technology for thermochemical energy storage. A detailed 

description can be found in [12]. 
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According to process simulations the CaL-CSP integration may achieve a high 

thermoelectric global efficiency provided that the multicycle CaO conversion is kept 

above 0.5 after a large number of cycles  [12]. In this integration scheme, the operation 

temperature in the carbonator would be around 850ºC or higher to optimize the 

thermoelectric efficiency and carbonation would be performed under pure CO2. However, 

the global efficiency of the process decays notably if CaO conversion is decreased below 

0.2 [12]. As shown in a recent work, the multicycle activity of limestone derived CaO is 

notably limited by pore plugging at these CaL conditions for particles of size above ~50 

m to be employed in practice [11]. The relatively low calcination temperature used at 

CaL conditions for CSP storage leads to a highly porous CaO skeleton. And these small 

pores become rapidly plugged by the thick layer of CaCO3 that forms very quickly on the 

CaO particles’ surface at the high temperature and high CO2 concentration employed for 

carbonation [11]. 

The CaL process has been widely studied in the last years for CO2 capture in fossil fuel 

power plants, which has been successfully demonstrated in large pilot-scale plants (1-2 

Mwth) [24-26]. In this application the CaL process is carried out in two interconnected 

fluidized bed reactors. In the first one, carbonation of CaO solids takes place at 

temperatures near 650ºC under a ~15% CO2 vol. atmosphere, which is the typical 

concentration of CO2 in the flue gas. Then, the solids are circulated into a second reactor 

at temperatures between 900-950ºC under high concentration of CO2 for the calcination 

stage. In that way, almost pure CO2 can be extracted from this reactor for its subsequent 

compression and sequestration. After this stage, the regenerated CaO particles are 

circulated back into the carbonator for a new CaL cycle. Process conditions in the CaL 

cycle for CO2 capture such as the high temperature and CO2 concentration in the calciner 

lead to a drastic loss in the activity of CaO in short residence times as the number of 

cycles progresses. It must be stressed that the main limiting mechanism for the multicycle 

CaO activity at CaL conditions for CO2 capture is diverse from that limiting the CaO 

activity at conditions for CSP storage. In the former case,  the  multicycle sorbent activity 

is hindered by the severe sintering of the regenerated CaO at the harsh calcination 

conditions, which yields a drastic loss of its surface area and therefore a drop of activity 

in short residence times [27-29]. 
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Besides of limestone, an abundantly available Ca based material that could be used to 

store CSP by means of the CaL process is steel slag. In 2010, the production of this 

industrial waste in the European Union was around 21.8 millions of tons [30] of which 

about 76% is used for road construction, concrete manufacture and hydraulic energy and 

the rest is deposited in industrial dumps. According to the forecasted growth of the CSP 

technology, the huge amount of slag deposited in these dumps could be enough for its 

utilization as material for heat storage in CSP plants in 2050 [4, 31]. Steel slag has a 

similar heat capacity to solar salts and presents higher thermal conductivity (1.4 W/(m·K) 

for steel slag and 0.52 W/(m·K) for solar salt). Blast furnace slag is another industrial 

waste that could be used for heat storage [32-34]. According to the U.S. Geological 

Survey, in 2014 the U.S. blast furnace slag production was in the range of 16 to 22 million 

tons, with the ~70% used mainly as aggregate in concrete or feed for cement kilns [35]. 

Blast furnace slag is a by-product generated in the iron and steel industry when iron, coke 

and flux are melted in a blast furnace after the introduction of a reducer gas (usually CO). 

Then, the products, iron and flux impurities, are conducted to the sprue of the melting pot 

for their separation by density. The slag comes out of the crucible at temperatures around 

1500ºC, and materials with different physical properties are obtained depending on the 

technique employed for cooling it. The ground granulated blast furnace slag is produced 

by fast cooling of the liquid slag with large quantities of water, which yields a sand-like 

vitreous material. Blast furnace slag can also be cooled down slowly by ambient air in 

slag pits, forming a crystalline rock-like material but more porous than natural minerals. 

Valorisation of steel slag has been in fact recently proposed for the storage of CSP in the 

form of sensible heat [4] with a lower estimated cost of storage as compared to solar salts 

(1.1€/Kwh for steel slag compared to 5.2€/Kwh for solar salt) [4]. On the other hand, steel 

slag can be transformed into a CaO precursor by a simple process basically consisting of 

acetic acid treatment and its CaL performance at conditions for CO2 capture has been 

reported elsewhere [36-38]. Hu et al. [39] and Ridha et al. [40] have recently reported a 

comparison of several CaO based sorbents obtained by modifying limestone with diverse 

acids, which showed superior performance at CaL conditions for CO2 capture. 

Nevertheless, such treated sorbents react preferentially with SO2 present in the coal 

combustion gas causing their capture capacity to drop severely [40]. Thus, a main 

advantage of using the CaL process in CSP plants would be the absence of SO2 in the 

reacting gas. The present manuscript is focused on analysing the multicycle behavior of 
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diverse samples of steel and blast furnace slags modified with acetic acid for 

thermochemical energy storage in CSP plants by means of the CaL process.  

 

2. Materials and methods 

 

Electric arc furnace slag (steel slag) samples were supplied to us by Acerinox Europe 

S.A.U (Los Barrios, Spain) and Siderúrgica Sevillana, S.A. (Alcalá de Guadaira, Spain). 

Blast furnace slag samples were received from Erdesa, S.A. (Avilés, Spain). The sample 

from Acerinox Europe consists of a black powder with particle size ≤ 750μm. Siderúrgica 

Sevillana supplied us with two steel slag samples labelled as “low iron content” and “high 

iron content” with particle size ≤2 mm and between 2 and 6 mm, respectively. Finally, 

the samples from Erdesa consisted of three blast furnace slags: a white powder of 

granulated slag, granulated slag with 8% of CaCO3 added, and a grey slag with particles 

of around 2 mm size. Samples with initially large particles (≥1 mm) were subjected to a 

mechanical milling treatment in order to reduce their size and facilitate their subsequent 

acetic acid treatment. Mechanical milling was performed with a Fritsch Pulverisette 6 

(centrifugal ball mill, Idar-Oberstein, Germany) in the case of blast furnace slag, and with 

a Fritsch Pulverisette 7 (planetary ball mill, Idar-Oberstein, Germany) for the slags 

received from Siderúrgica Sevillana. The use of the latter high energetic mill was required 

due to the hardness of the particles. After particle size reduction with the planetary ball 

milling the samples were sieved using a 320 μm pore size sieve. 

The acetic acid treatment of the raw samples was aimed at obtaining calcium acetate as 

CaO precursor. It consisted of mixing the powder with an acetic acid (VWR Chemicals, 

99.9% purity) aqueous solution (25 wt%) by a ratio of 1 g of powder sample per 50 mL 

solution. In the case of the third blast furnace slag received from Erdesa, the acetic acid 

concentration had to be increased to 50 wt% and the ratio between sample and solution 

to 2 g per 50 mL. The mixture was magnetically stirred at room temperature until the 

solids were dissolved for 1-2 h and then left to rest. After the stirring and resting step, a 

segregation of two phases was observed, which consisted of a gel and a liquid. From this 

point, two batches of samples were prepared. 

For the first batch, the mixture was heated at 120ºC for 2 hours to evaporate the solvents, 

and the solids obtained were grinded in an agate mortar. For the second batch, an 
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intermediate step was introduced which consisted of separating the gel phase from the 

liquid by filtration. Once the gel phase was removed, the liquid was heated at 120ºC for 

2 hours, and the solids grinded in the agate mortar. 

The samples obtained after just the acetic acid treatment were labelled as A1 (Acerinox 

sample); E1, E2, E3 (Erdesa samples); S1, S2 (Siderurgica Sevillana samples). The 

samples resulting from removing the gel phase by filtration were labelled in the same way 

with an intercalated “F” (e.g. AF1 for sample 1 from Acerinox). 

Elemental composition of the raw powdered samples obtained after the treatment was 

analysed by X-ray microfluorescence (XRF) using an Eagle III Micro XRF instrument 

(EDAX, New Jersey, USA) equipped with an X-ray anticathode 50W rhodium tube and 

an energy dispersive X-ray detector and with a maximum operating potential of 40 keV 

and 1 mA. X-ray diffraction measurements were made using a Panalytical X’Pert Pro 

diffractometer working at 45V and 40mA with Cu-Kα radiation and equipped with an 

X’Celerator detector and a graphite diffracted beam monochromator. Besides, a Rigaku 

MiniFlex 600 instrument was employed equipped with a Cu detector, working at 40kV 

and 15 mA, using a Cu-Kα radiation. Scanning electron microscopy (SEM) analyses of 

pretreated and cycled samples were performed using a Hitachi S5200 HR microscope. 

Pore size distributions were measured by means of Hg porosimetry using an Autopore IV 

instrument and by N2 sorption at 77 K (Micromeritics ASAP 2020). 

Carbonation/calcination cycles were carried out using a thermogravimetric analyser 

(TGA) Q5000IR (TA Instruments, Crawley, UK) equipped with a high sensitive 

microbalance for accurate measurement of very small mass losses (< 1μg). The furnace 

of this instrument has four symmetrically-disposed infrared halogen lamps that ensures 

uniform heating and allows to carry out fast and controlled temperature ramps up to 

300ºC/min with 1ºC accuracy. The water-cooling system provides an efficient heat-sink 

and facilitates controlled cooling rate from 1200ºC to room temperature. The sample is 

placed inside a SiC enclosure surrounded with gold elliptical reflectors that minimizes 

undesirable effects of heat transfer phenomena and the thermocouple is located below 

and close to the sample holder to register the temperature.  

TGA experiments were initiated by calcination of the sample (precalcination stage), 

which was followed by 21 carbonation/calcination cycles. The precalcination stage was 

carried out by increasing the temperature at either 10ºC/min up to 650ºC under a pure He 
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atmosphere. Then, the temperature was rapidly increased to 850ºC at 300ºC/min and the 

atmosphere was changed to pure CO2 to introduce the carbonation stage. After this stage, 

the sample was calcined again at 650ºC under He for CaO regeneration. The residence 

time was fixed to 5 minutes for both the carbonation and calcination stages. Between 

stages, a 5 min intermediate step at 150ºC was introduced for simulating the storage stage 

of the material after extraction of sensible heat. These conditions would mimic the 

practical conditions for integrating the CaL process in the CSP technology, which involve 

cooling and storing the solids between the periods of load and discharge [12]. Small 

amounts of samples (about 10 mg) were employed in order to avoid effects caused by gas 

diffusion resistance through the sample, which could be relevant for sample masses above 

40 mg [41]. With the aim of comparing the performance of CaO precursors obtained from 

the slags with natural limestone, conversion data for limestone reported in [18] will be 

also shown in the present manuscript. In that work, the TGA experiment on a limestone 

sample was carried out at similar conditions to those used in the present work: calcination 

at 725ºC under pure He atmosphere and carbonation at 850ºC under pure CO2 atmosphere 

with 5 min as residence times. As will be seen below calcination of the treated slag 

samples was achieved at a substantially lower temperature (650ºC), which represents 

already a significant benefit as compared to limestone that requires a minimum 

temperature of 725ºC for calcination to be quickly attained. 

 

3. Results and discussion 

 

Elemental composition results of the samples obtained after treatment measured by XRF 

analysis are summarized in table 1. As can be seen, a general result is that the intermediate 

filtration step serves to increase the Ca content while the Si content was notably reduced. 
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 O Ca Si Al Fe Mg Mn Cr Other 
Sample  
          

A1 36.29 37.09 13.54 0.70 0.58 1.99 5.07 3.87 1.07 

          

AF1 29.35 54.15 0.85 0.54 0.93 3.05 7.09 3.53 0.92 

          

S1 36.07 35.97 7.42 4.12 4.65 9.00 1.28 0.16 1.33 

          

SF1 31.91 48.54 0.41 3.95 4.12 7.95 1.51 0.06 1.55 

          

S2 35.08 23.48 6.80 3.96 21.55 4.91 2.49 0.37 1.37 

          

SF2 30.39 51.77 0.14 1.71 6.19 5.74 2.8 0.08 1.18 

          

E1 40.38 31.09 16.05 5.91 0.21 4.27 0.26 0.01 1.78 

          

EF1 31.65 54.78 0.35 6.38 0.33 4.69 0.62 - 1.2 

          

E2 39.36 34.59 14.76 5.30 0.23 3.74 0.25 - 1.72 

          

EF2 32.09 53.5 0.38 7.77 0.46 4.07 0.5 - 1.23 

          

E3 40.58 30.09 16.65 5.61 1.21 3.67 0.27 - 1.81 

          

EF3 32.92 50.61 1.31 7.79 1.57 3.51 0.58 0.05 1.66 

Table 1: XRF elemental composition of the samples obtained from steel and blast furnace slag 

treated with acetic acid and those obtained employing the intermediate filtration step. 

 

Due to the complex oxides present in the raw samples and the absence of free CaO, the 

application of an acid pretreatment was needed to obtain a CaO precursor after calcination 

[42, 43]. The results of these treatments slightly differ from one slag to another as can be 

interpreted by the XRD patterns shown below, in which calcium acetate or calcium 

magnesium acetate with clearly defined peaks [44-47] are revealed as the major phases. 

SEM analysis allowed us to observe the rod-shape microstructure typical of these acetates 

[46-48] as will be seen ahead. Thermal decomposition of the pretreated samples, 

consisting mostly of calcium acetate and calcium magnesium acetate, was performed 

under He flow in the Q5000I instrument at constant heating rate (10ºC/min) for 

quantifying the mass % that would correspond to CaCO3 and CaO in the treated slag and 

the relative amount of impurities. Next sections are devoted to XRD, thermogravimetric 
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and SEM characterization of the synthesized samples after which multicycle activity 

results will be shown and discussed. 

3.1. Acerinox steel slag 

Characterization of Acerinox samples after treatment by means of XRD analysis (Fig. 2) 

shows that hydrate calcium acetate is the major phase present both in A1 (a) and AF1 (b), 

with a secondary phase of calcium magnesium acetate. The minor presence of traces of 

other metallic oxides or compounds in crystalline form was not detectable by means of 

XRD. 

 

Figure 2. XRD patterns measured for samples received from Acerinox Europe S.A.U. after 

treatment with acetic acid, A1 (a), and after acetic acid treatment that included the filtration step 

AF1 (b). As indicated, the reflection peaks reveal the presence of calcium acetate as the dominant 

phase. The 2Theta measured range was 5-90º. Only the interval 5-30º containing the most relevant 

reflection peaks is shown. 

 

Figure 3 shows thermal decomposition thermograms of the A1 and AF1 samples. It is 

seen that thermal decomposition of calcium acetate, as a main phase present in the 

samples, takes place in three stages as well-known from previous studies [44, 47]. We 
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observe also a fourth fast stage due to the presence of a small amount of calcium 

magnesium acetate [45, 49]. The first stage is due to dehydration of the precursors in two 

steps, from room temperature to 200ºC approximately, which leads to a first mass loss of 

about 17 mass % for A1 and 12 mass % for AF1. The second mass loss is due to the 

decomposition of calcium acetate and the minor phase of calcium magnesium acetate (Eq. 

(2)), which yields acetone to obtain the calcium and magnesium carbonates at 

temperatures between 345ºC and 420ºC for A1 and 430ºC for AF1, leaving the sample 

mass at 64 and 60 mass %, respectively, 

𝐶𝑎(𝐶𝐻3𝐶𝑂𝑂)2+ 𝐶𝑎𝑀𝑔2(𝐶𝐻3𝐶𝑂𝑂)6  → 2𝐶𝑎𝐶𝑂3 +  2𝑀𝑔𝐶𝑂3 + 4(𝐶𝐻3)2𝐶𝑂 ↑       (2) 

The resulting MgCO3 remains stable under the inert atmosphere for a short time and 

decomposes almost immediately to MgO at 455ºC and 470ºC for A1 (56 mass %) and 

AF1 (52 mass %), respectively (Eq. (3)). 

𝐶𝑎𝐶𝑂3 + 𝑀𝑔𝐶𝑂3 →  𝐶𝑎𝐶𝑂3 +  𝑀𝑔𝑂 +  𝐶𝑂2 ↑                        (3) 

The final stage consists of CaCO3 decomposition (Eq. (4)) and takes place between 550ºC 

and 650ºC for A1, and between 600ºC and 670ºC for the AF1 sample. The mass loss for 

A1 is about 13 mass % whereas for AF1 is about 18%. Since SiO2 was removed in AF1 

by filtration there is a higher amount of CaO in this sample. 

𝐶𝑎𝐶𝑂3 + 𝑀𝑔𝑂 →  𝐶𝑎𝑂 +  𝑀𝑔𝑂 +  𝐶𝑂2 ↑                        (4) 

 

Figure 3. Mass percentage and its derivative with temperature as a function of temperature during 

thermal decomposition under a pure He atmosphere at constant heating rate (10ºC/min) of the 

treated Acerinox steel slag samples A1 (a) and AF1 (b). 
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As seen in the SEM micrographs (Fig. 4), the treated samples show the typical rod-shape 

morphology of calcium acetate and calcium magnesium acetate crystals [46-48, 50]. The 

presence of other metal oxides (MxOy), composed mainly by Si (only in the case of A1), 

Mn, Mg and Cr according to the XRF analysis can be also appreciated in the form of 

aggregated nanoscale sized agglomerates distributed on the surface of the acetate rods. 

 

 

Figure 4. SEM micrographs of Acerinox samples obtained by acetic acid treatment, A1 (a), and 

AF1 (b). 

 

3.2. ERDESA blast furnace slags 

Blast furnace slags were divided in two sub-groups, one for the amorphous (as inferred 

from the broader peaks in the DRX scans) slags that were subjected in the industry to a 

fast cooling treatment, which includes the raw granulated slag and the one with the 

addition of 8 % of CaCO3 (to be employed for concrete production); and the slag with a 

higher crystallinity, which resulted from a slow cooling treatment in the industry. The 

similar mass % of metallic elements present in the raw slags of both groups indicates a 

common source, thus the samples only differed in the cooling treatment. The Ca mass % 

of these samples, around 31% (34% in the sample with 8% CaCO3 added), is lower than 

that corresponding to the Acerinox steel slag, which could be a relevant issue for their 

multicycle carbonation behaviour. XRF analysis shows that Si and Al are present in the 

samples in high amounts (about 16 and 5 mass %, respectively). Alumina is known to 

react with calcium carbonates to form calcium aluminate at high temperatures [51], which 

could remove a relevant amount of active CaO for carbonation from the sample. On the 
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other hand, calcium silicates could be also formed but by a small amount at the CaL 

operation temperatures [52]. As shown in previous works the presence of silica grains 

confers thermal stability to the composite, which serves to mitigate the severe sintering 

suffered by the sorbent at the harsh calcination conditions for CO2 capture  [36, 52]. Other 

metallic elements are present in the samples such as Mg, Fe or Ti are expected to remain 

inert through the carbonation/calcination cycles. 

Fig. 5 shows X-ray diffractograms of the three compounds obtained by acetic acid 

treatment on amorphous blast furnace slag (E1), the 8 % CaCO3 added slag (E2) and the 

crystalline blast furnace slag (E3). The first slag, produced after a fast cooling treatment, 

had the appearance of an amorphous white fine powder. Once treated with acetic acid 

(sample E1 in Fig 5a) it shows the presence of calcium acetate and calcium magnesium 

acetate as major phases. In the compound E2 the XRD pattern shows the same crystalline 

phases (Fig 5b). Besides, minor peaks were detected that correspond to the metal oxides 

present in the slag. A calcium acetate and calcium magnesium acetate solid mixture was 

obtained also along with secondary phases from the crystalline blast furnace slag as seen 

in Fig 5c.  

Fig. 6 shows the thermograms recorded from thermal decomposition of the compounds 

obtained from the treated blast furnace slags. Acetate precursors synthetised from the 

amorphous slag (Fig 6a), amorphous slag with 8% CaCO3 added (Fig 6b), and crystalline 

slag (Fig 6c) exhibit thermogravimetry patterns similar to those observed and previously 

reported for the mixture calcium acetate/calcium magnesium acetate [45]. The initial ~20 

mass % loss that corresponds to dehydration takes place up to 280 - 300ºC depending on 

the compound. The second mass drop is caused by the decomposition of acetates between 

350 and 430 ºC,which releases acetone to yield CaCO3 and MgCO3 (Eq. (2)), remaining 

a mass % of around 60% for a short interval of temperatures due to the subsequent fast 

decomposition of magnesium carbonate into MgO (Eq.  (3)), which ends at about 460 - 

470ºC (~52 – 55 mass % is left). The last mass loss between 580 and 650 ºC (about 10 

mass %) is caused by CaCO3 decarbonation.  
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Figure  5. X-ray diffraction patterns obtained for the ERDESA blast furnace slag samples treated 

with acetic acid: amorphous slag, E1 (a), amorphous slag with 8% CaCO3 added, E2 (b), 

crystalline slag, E3 (c). 
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Figure 6. Thermal decomposition during heating at 10ºC/min under He of the compounds 

obtained by acetic acid treatment of the Erdesa blast furnace slag samples: E1 (a), E2 (b), E3 (c). 

Mass loss (%) and its derivative are plotted as a function of temperature. 
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SEM micrographs in Fig. 7 illustrate the morphology of the compounds obtained after the 

acetic acid treatment on the amorphous and crystalline blast furnace slags. The treatment 

performed on E1 (Fig. 7a) lead to the formation of small rods typical of calcium acetate 

and calcium magnesium acetate [50]. It is also observable the presence of metal oxide 

impurities that would mostly consist of SiO2 according to the XRF analysis (Table 1). 

Larger crystals of calcium acetate/calcium magnesium acetate are visible in the case of 

the amorphous slag with 8% CaCO3 added (Fig 7b) with also metal oxide grains 

distributed on the surface of the grains. The acid treatment applied on the crystalline slag 

yields also calcium acetate and calcium magnesium acetate crystals but in the form of 

thin sheets, which are covered with some impurities (Fig 7c). Thus, the typical rod-shape 

form of the pure acetates reported elsewhere [50] is seen in our work only when these 

acetates are synthesized from the amorphous slag.  
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Figure 7. SEM micrographs of the compounds blast furnace slags treated with acetic acid: E1 (a), 

E2 (b), E3 (c). The presence of calcium acetate (CA), calcium magnesium acetate (CMA) and 

metallic oxide grains is indicated. 

 

3.3. Siderúrgica Sevillana steel slag 

XRD patterns (Fig. 8a and b) of the treated steel slag samples from Siderúrgica Sevillana, 

S1 and S2 illustrate the presence of calcium acetate and calcium magnesium acetate as 

main crystalline phases. Other peaks correspond to minor secondary phases (labelled as 
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MxOy). In these samples the relative intensity of the peaks corresponding to the calcium 

magnesium acetate phase is notably increased, which indicates a higher Mg content. 

 

 

Figure 8. X-ray diffractograms of samples received from Siderúrgica Sevillana after the treatment 

performed with acetic acid, S1 (a) and S2 (b). Main peaks indicate the dominant presence of 

calcium acetate and calcium magnesium acetate. 

 

Thermal analyses performed on the treated steel slag samples S1 (Fig. 9a) and S2 (Fig. 

9b) show the typical decomposition thermogram reported for pure calcium acetate and 

calcium magnesium acetate [44, 45, 48, 49] with small variations due to the presence of 

impurities. The first mass loss corresponds to dehydration (~15 mass % loss). The release 

of acetone in calcium acetate/calcium magnesium acetate decomposition (Eq. (2)) takes 

place between 340ºC and 420ºC, which leads to a mixture consisting of CaCO3 and 

MgCO3. In the third step, decomposition of MgCO3 occurs up to 470ºC, yielding CaCO3 

and MgO (Eq. (3)), which is stable until about 600ºC. The last stage takes place up to 

650ºC, releasing CO2 from decarbonation of CaCO3 (Eq. (4)). As seen in Figs. 9a-b, the 

samples before the last decomposition (consisting of CaCO3 plus metal oxides) present a 

49 and 54 mass % of the initial mass while the mass after decomposition (CaO with 
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oxides) remains at 39 and 45 mass % for S1 and S2, respectively. This difference between 

both samples can be attributed to the high content of Fe in S2. 

 

 

Figure 9. Mass percentage and its temperature derivative as a function of temperature during 

thermal decomposition of Siderúrgica Sevillana treated steel slag samples S1 (a) and S2 (b), 

performed under He atmosphere at constant heating rate of 10ºC/min.  

SEM micrographs of Siderúrgica Sevillana treated steel slag samples are shown in Fig. 

10 illustrating also the typical rod shaped grains of calcium acetate and calcium 

magnesium acetate [46-48]. Besides, impurities in the form of metal oxides (MxOy) 

nanoscale size agglomerates can be clearly appreciated in the surface. In this case, the 

microstructures of the S1 and S2 samples do not present relevant differences in spite of 

their diverse elemental composition, especially regarding the higher Fe content in S2. 

 

Figure 10. SEM micrographs of Siderúrgica Sevillana treated samples with low Fe mass %, S1 

(a) and high Fe mass %, S2 (b). Calcium Acetate (CA) and Calcium Magnesium Acetate (CMA) 

grains as well as metal oxide impurities are indicated. 
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3.4. CaL-CSP multicycle conversion 

The multicycle performance of the CaO precursors prepared from the diverse steel and 

blast furnace slags was assessed at CaL conditions for CSP storage. As detailed above 

(Fig. 1) these conditions involve carbonation at high temperature (850ºC in our tests) 

under pure CO2 and calcination at a relatively low temperature under He. In the case of 

limestone, calcination is completely in short residence times under He at about 725ºC 

[18] whereas for the steel slag treated samples fast calcination was fully achieved at 

around 650ºC as seen in the previous sections. 

A more practical parameter than CaO conversion to compare the multicycle performance 

of diverse materials is the effective conversion Xef, which is defined as the ratio of mass 

of CaO converted at the end of the carbonation stage to the total mass of the material 

before carbonation including impurities that remain inert at the carbonation conditions. 

Thus, this parameter serves to take into account the presence of inert solids in the slags 

that do not participate into the carbonation. Figure 11 shows the effective conversion 

measured as a function of the cycle number for the treated Acerinox steel slag sample A1 

without filtration and for the sample obtained by applying filtration as intermediate step 

AF1. Data measured for limestone (of similar particle size) are plotted for comparison. 

As may be seen, the effective conversion of sample A1 remains at relatively low although 

stable values (close to 0.2) from the first cycle. Conversion of limestone in the first cycles 

is high but it drops notably with the number of cycles as due to pore plugging (see for 

[11] for a detailed discussion).  On the other hand, the sample AF1 exhibits high and 

stable values of effective conversion from the first cycle (close to 0.6). A typical 

tThermogram showing the time evolution of weight and temperature during 

precalcination and 1st carbonation/calcination cycle is also shown in Fig 11. As can be 

seen in this thermogram carbonation occurs mainly in a first fast phase, which is 

controlled by the reaction kinetics as might be expected from the high carbonation 

temperature [26]. 

 



22 

 

 

 

Figure 11. Top: Multicycle effective conversion measured for the acetic acid treated Acerinox 

steel slag samples A1 and AF1, and for limestone at CaL conditions for CSP storage (carbonation 

under CO2 at 850ºC and calcination under He, both stages for 5 minutes). In the case of limestone 

calcination was achieved at 725ºC whereas it was attained at 650ºC for the steel slag derived 

samples. Bottom: Thermogram showing the time evolution of weight and temperature during 

precalcination and 1st carbonation/calcination cycle (sample AF1). 
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Fig. 12 shows data on the multicycle effective conversion measured for all the treated 

slags. Results for the acetic acid treated samples are plotted in Fig 12a whereas Fig 12b 

shows data on the samples obtained by applying filtration to these samples as an 

intermediate step. As observed for the Acerinox AF1 sample (Fig. 11), filtration generally 

leads to a significant improvement of the effective conversion. All the samples derived 

from Acerinox and Siderurgica Sevillana steel slags with the intermediate filtration step 

exhibit high and stable values of effective conversion.  

As derived from XRF analysis (Table 1) the main effect of filtration is to remove the 

silica particles present in the slags by a high percentage. Thus, it may be inferred that 

silica particles hinder the multicycle performance of the samples at CaL conditions for 

CSP storage. This apparently surprising result has been recently reported also for 

silica/CaO composites obtained from a physical mixture of limestone and a commercial 

nanoscale silica [53] and can be explained from the main limiting mechanism at the CaL 

conditions specific for CSP storage. Carbonation at high temperature under high CO2 

concentration leads to a very quick built up of a thick CaCO3 layer on the surface of the 

particles that would block the access of CO2 to the inner porous skeleton. Pore plugging 

would be favoured by the low calcination temperatures, which lead to a porous solid 

structure. Porosity is also enhanced by the presence of silica as shown in previous works 

focused on the performance of the material at conditions for CO2 capture [52, 54]. The 

multicycle performance of CaO at CaL conditions for CO2 capture is critically limited by 

CaO sintering at the harsh calcination conditions used in this application, which is 

mitigated by the presence of silica that confers thermal stability to the composite. This 

porosity enhancement effect of silica for the steel slags synthesized in our work can be 

seen in Fig. 13, which shows the pore size distribution measured for A1 and AF1 (with 

reduced Si content) after calcination. In the case of CaL conditions for CSP storage such 

effect of silica plays an adverse role as smaller pores are more prone to be plugged.  

Other works reported in the literature show also that a higher porosity results in a drop of 

the multicycle CaO activity at CaL conditions similar to ours. Thus, Lu et al. [55] tested 

a number of CaO-based sorbents at calcination conditions involving a relatively low 

calcination temperature (700 °C) under He and carbonation under high CO2 

concentration. In agreement with our observations, Lu et al. observed that the addition of 

nanosilica did impair the CaO carbonation activity at these CaL conditions. Remarkably, 

the pore size distribution after many cycles was seen to remain stable for a Ca-acetate-
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based sorbent, which showed a high and stable multicycle conversion. Likewise, Pinheiro 

et al. [56] tested several CaO-based sorbents at similar CaL conditions and observed a 

poor performance for the samples with increased BET surface area and smaller pores, 

indicating that pore plugging was the main mechanism limiting carbonation when 

calcination is carried out a relatively low temperature. 

In regards to the treated blast furnace slag samples, it is seen that the effective conversion 

decays with the cycle number and drops to a low value after 20 cycles even for the 

samples obtained with the intermediate filtration step (EF1, EF2, EF3 in Fig. 12b). A 

possible explanation to this behaviour can be made on the basis of the high Al content of 

these blast furnace slags, which is increased in the liquid phase recovered after filtration 

(Table 1). As well-known from previous studies on Ca based materials doped with Al, 

calcium aluminates are irreversibly formed at temperatures above 600ºC, which would 

withdraw active CaO for carbonation from the sample.  

 

 

Fig. 12. Effective conversion as a function of the cycle number for the steel slag and blast furnace 

samples prepared by acetic acid treatment (a) and the acetic acid treatment that included the 

filtration step (b).  

 

a) b) 
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Figure 13. Pore size distribution (top: measured by means of Hg porosimetry; bottom: measured 

by N2 desorption at 77 K) of calcined samples of acetic acid treated Acerinox steel slags. Data are 

shown for the treated slag directly obtained by the acetic acid treatment (A1) and for the sample 

oobtained by applying filtration as an intermediate step of the process (AF1). 

Our results suggest that the multicycle performance at CaL conditions for CSP storage of 

the calcium and magnesium acetates derived from either steel or blast furnace slags would 

be enhanced as long as these compounds are extracted as pure as possible. The presence 

of metal oxide impurities, especially Si and Al oxides, would hinder the multicycle 

conversion of these materials at the conditions of our tests. On the other hand, since the 

Tamman temperature for  CaCO3 (533 ºC)  is much smaller than the carbonation 
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temperature used at CaL conditions for thermochemical energy storage (850ºC), a rather 

low porosity should be expected for the CaCO3 formed in the carbonator and therefore a 

high degree of crystallinity as a consequence of thermal annealing. This may be seen in 

Fig. 14 where SEM micrographs are shown for the E1 and EF1 samples after being cycled 

(ending in carbonation).  In a previous work [57] we tested the effect of limestone 

annealing by prolonged isothermal heating (850 ºC for 12 h in a CO2 atmosphere) on its 

CO2 capture capacity. The results indicated only a slight decrease of the capture capacity 

while thermal annealing hardened the solid, which can be an advantage. A further effect 

of annealing would be to slow down CaCO3 calcination as crystal defects would promote 

the nucleation of decarbonation and CO2 diffusion [58]. In the present case, the presence 

of impurities in steel slag up to a certain level would serve to mitigate this effect which 

would allow calcination to be initiated at a relatively low temperature at a fast rate.  

 

 

Figure 14. SEM micrographs of E1 (a and b) and E2 (c and d) pretreated slag samples 

after been subjected to 21 cycles of calcination at 650ºC under He and carbonation at 

850ºC under CO2. 
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4. Conclusions 

This work analyses the multicycle Calcium-Looping activity at conditions for 

thermochemical energy storage in Concentrated Solar Power plants of Ca-based materials 

derived from acetic acid treatment on steel and blast furnace slags. Calcium-Looping 

conditions in this application involve carbonation at high temperature under high CO2 

concentration whereas calcination is carried out at relatively lower temperatures. Under 

these conditions, the main mechanism that limits the carbonation performance of CaO is 

pore plugging.  

The raw slag samples do not present free CaO/CaCO3 in their composition, which 

requires a simple acid pretreatment to obtain calcium acetate and calcium magnesium 

acetate that decompose to CaO upon calcination. The results obtained for the diverse steel 

and blast furnace slags analysed indicate that the multicycle conversion of the synthesized 

samples is kept at a high and stable value if the presence of Si is avoided by means of 

filtration applied as an intermediate step during the acetic acid treatment. Otherwise, 

porosity is enhanced after calcination which promotes pore plugging thus hindering the 

multicycle conversion at CaL conditions for CSP storage. The presence of Al in the blast 

furnace slags by a high amount has been also identified as a detrimental issue for the 

multicycle performance of the synthesized Ca based materials due to the irreversible 

formation of calcium aluminates upon calcination. These observations indicate that 

calcium and calcium magnesium acetates could be considered as good candidates to be 

used for thermochemical energy storage by means for the CaL process. 
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