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Abstract. Insertion-deletion operations are much investigated in lin-
guistics and in DNA computing and several characterizations of Turing
computability were obtained in this framework.

In this note we contribute to this research direction with a new
characterization of this type, as well as with representations of regular
and context-free languages, mainly starting from context-free insertion
systems of as small as possible complexity. For instance, each recur-
sively enumerable language L can be represented in a way similar to the
celebrated Chomsky-Schützenberger representation of context-free lan-
guages, i.e., in the form L = h(L(γ)∩D), where γ is an insertion system
of weight (3, 0) (at most three symbols are inserted in a context of length
zero), h is a projection, and D is a Dyck language. A similar represen-
tation can be obtained for regular languages, involving insertion systems
of weight (2,0) and star languages, as well as for context-free languages
– this time using insertion systems of weight (3, 0) and star languages.
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1 Introduction

Insertion and deletion operations were investigated in linguistics and formal lan-
guage theory since “old” times – see, e.g., [2], [6], [11]. Such operations can also
be implemented, at least theoretically, in terms of DNA biochemistry (see [4],
[5], [12] and the references therein), hence they can be the ground for performing
computations with DNA molecules. Pleasantly enough, the power of computing
models based on insertion-deletion is rather large: several characterizations of
Turing computability (technically, of recursively enumerable languages, RE lan-
guages for short) were obtained in this framework. A recent characterization uses
only context-free operations, i.e., with the strings to be inserted or deleted not
being dependent on the context where the operations are performed – see [7].

An insertion or deletion operation is based on a triple of the form (u, w, v)
(which is called a rule), where u, w, v are strings over a specified alphabet; when
using such a triple as an insertion rule, we pass from a string xuvy to xuwvy,
while in the deletion mode we pass from xuwvy to xuvy (the string w is inserted
in, respectively deleted from the context (u, v)). The length m of w and n, the
maximal length of u and v, is called the degree of the rule – we say that the rule
is of degree (m, n). An insertion-deletion (abbreviated, ins-del) system consists
of a finite set of rules and a set of axiom strings; the language generated by such
a system consists of all strings over a specified alphabet which can be produced
by using the insertion-deletion rules, starting from axioms. The descriptional
complexity of ins-del systems can be captured by various parameters, such as the
length and the number of axioms, the length and the number of ins-del rules, and
so on. In this paper we only consider the length of inserted strings (always used
in a context-free manner).

With these notations, the result from [7] gives a characterization of RE lan-
guages in terms of ins-del systems with insertion rules of degree at most (3, 0)
(resp., (2, 0)) and deletion rules of degree at most (2, 0) (resp., (3, 0)). The
optimality of this result was recently proved in [15]: if both insertion and dele-
tion rules are of degree at most (2, 0), then only context-free languages can be
obtained.

In this paper we look for characterizations of RE languages based on only
insertion or only deletion operations, applied in a context-free manner and as
restricted as possible in what concerns the length of the inserted/deleted string.
Because we separate insertion and deletion rules, in the case of devices based on
only deletion operations, the produced language is defined in a “reduction mode”,
in the sense that it consists of all strings which can be reduced to an axiom by
means of deletion operations. Following in some respect the proof technique from
[7], we get characterizations of RE languages of a form which is classic in formal
language theory for context-free languages, namely, the Chomsky-Schützenberger
one: each context-free language L can be written in the form L = h(L′∩D), where
h is a projection, L′ is a regular language, and D is a Dyck language (details and
references can be found in any formal language theory monograph; we use here as
a general reference the handbook [13]). Here we prove that each RE language L



can be written in the same way, with L′ being an insertion or a deletion language
of degree (3, 0).

The construction from the proof can be particularized for context-free and
regular languages – in the latter case, we obtain only a representation of family
of regular languages.

The optimality of these results, in terms of the length of inserted or deleted
strings remains to be checked.

In what concerns the characterizations of RE languages by using insertion
systems and morphisms, a result of this type is already given in [8]: for any lan-
guage L ∈ RE, there exist an insertion system γ of weight (4, 7) and morphisms
h1, h2 such that L = h1(h

−1
2 (L(γ))); this has been improved in [10] to an inser-

tion system of weight (3, 3). It should be noted that our characterization has a
different form, and uses only context-free insertion/deletion rules.

2 Preliminaries

We only use a few elements of formal language theory and most of them are
recalled below. For unexplained details we refer to [13].

For an alphabet V , V ∗ is the set of all strings of symbols from V ; λ is the
empty string and |x| is the length of x ∈ V ∗. The mirror image (reversal) of
x ∈ V ∗ is denoted by xR. For an alphabet V , let V = {a | a ∈ V }. If V contains
k symbols, then the Dyck language (over V ∪ V ) is the language Dk generated
by the context-free grammar G = ({S}, V ∪ V , S, P ), where P = {S → SS, S →
λ} ∪ {S → aSa | a ∈ V }. When k is not relevant, we omit it.

A morphism h : V ∗ −→ U∗ such that h(a) ∈ U for all a ∈ V is called a
coding, and it is a weak coding if h(a) ∈ U ∪ {λ} for all a ∈ V . A weak coding
is a projection if h(a) ∈ {a, λ} for each a ∈ V .

Because we separate here the insertion and the deletion operations, the inser-
tion (ins) and deletion (del) systems have the same architecture: such a system
is a triple γ = (V, A, P ), where V is an alphabet, A is a finite set of strings over
V called axioms, and P is a finite set of triples (u, w, v), where u, w, v ∈ V ∗. Two
relations are defined on V ∗ with respect to γ:

x =⇒ins y iff x = x1uvx2, y = x1uwvx2 for some (u, w, v) ∈ P, x1, x2 ∈ V ∗,

x =⇒del y iff x = x1uwvx2, y = x1uvx2 for some (u, w, v) ∈ P, x1, x2 ∈ V ∗.

The reflexive and transitive closure of =⇒α, α ∈ {ins, del}, is denoted by =⇒∗

α.
A sequence of n steps of =⇒α is denoted by =⇒n

α. When this is clear from the
context, the subscript ins or del is omitted.

For a system γ as above we define two languages:

Lins(γ) = {w ∈ V ∗ | z =⇒∗

ins w, z ∈ A},

Ldel(γ) = {w ∈ V ∗ | w =⇒∗

del z, z ∈ A}.

Lins(γ) and Ldel(γ) are called the insertion language and the deletion language
specified by γ, respectively.



An ins/del system γ = (V, P, A) is said to be of weight (m, n) iff

m = max{|w| | (u, w, v) ∈ P},

n = max{|u| | (u, w, v) ∈ P or (v, w, u) ∈ P}.

By INSn
m,DELn

m, we denote the families of languages Lins(γ), Ldel(γ), respec-
tively, generated by ins/del systems of weight (m′, n′), where m′ ≤ m and n′ ≤ n.

It is important to note that in [7], [12], etc., an ins-del system is a construct
γ = (V, T, A, P ), where V is an alphabet, T ⊆ V (terminal alphabet), A ⊂ V ∗

is a finite set of axioms, and P is a finite set of insertion or deletion rules. The
language generated by γ consists of all strings over T ∗ which can be obtained by
starting from a string in A and using finitely many times insertion and deletion
rules from P . The family of languages generated in this way by ins-del systems
with insertion rules of degree at most (m, n) and deletion rules of degree at most
(p, q) is denoted by INSn

mDELq
p. When any of the parameters m, n, p, q is not

bounded, it is replaced with ∗.
We denote by RE ,CS ,CF ,REG ,FIN the families of recursively enumerable,

context-sensitive, context-free, regular, and finite languages, respectively.
With these notations, we recall some of the results reported in the literature

about these families (those given without references can be found in [12]):

• FIN ⊂ INS 0
∗
⊂ INS 1

∗
. . . ⊂ INS ∗

∗
⊂ CS .

• REG is incomparable to all families INSn
∗
, for n ≥ 0, but we have REG ⊂

INS ∗

∗
DEL0

0.

• All families INSn
∗
, n ≥ 0, are anti-AFLs.

• INS 2
2 contains non-semilinear languages.

• RE = INS 0
3DEL0

2 = INS 0
2DEL0

3 = INS 1
1DEL0

2 = INS 1
1DEL1

1 ([7], [14]).

• INS 1
∗
DEL0

0 ⊆ CF .

• INS 0
2DEL0

2 ⊆ CF ([15]).

• Each regular language is the coding of a language in INS 1
∗
DEL0

0.

• Each language L ∈ RE can be written in the form L = g(h−1(L′)), where
g is a weak coding, h is a morphism, and L′ ∈ INS 3

3DEL0
0 ([10]).

3 Characterizing RE Languages in Terms of Ins/Del

Systems

Let us start by the observation that INSn
m = DELn

m: starting from an axiom z

from a given set A and growing strings w by insertion according to rules (u, w, v)
from a given set P is the same with starting from strings w and reducing them
by means of deletion operations until reaching a string z from A.

Therefore, all results given below are valid both for insertion and for deletion
systems; however, we only formulate these results (and the corresponding proofs)
for the insertion case.

The main result of this paper is the following Chomsky-Schützenberger-like
characterization of RE languages:



Theorem 1. Each language L ∈ RE can be represented in the form L = h(L′ ∩
D), where L′ ∈ INS 0

3, h is a projection, and D is a Dyck language.

Construction of an insertion system γ: Consider a language L ⊆ T ∗, gen-
erated by a type-0 grammar G = (N, T, S, P ) in Kuroda normal form. That is,
each rule in P is of one of the following types:

• AB → CD, where A, B, C, D ∈ N (type 1: context-sensitive rules),

• A → BC, where A, B, C ∈ N (type 2: context-free rules),

• A → a, where A ∈ N and a ∈ T ∪{λ} (type 3: terminal and empty rules).

Assume that the rules of P are labeled in a one-to-one manner with elements of
a set Lab(P ).

We construct an insertion system γ = (V ∪ V , {S}, P ′), of degree (3, 0), with

V = N ∪ T ∪ Lab(P ),

and with P ′ containing the following insertion rules.

• Group 1: For each rule r : AB → CD of type 1 in P we construct the
following two insertion rules:

(λ, CDr, λ) and (λ, BAr, λ).

• Group 2: For each rule r : A → BC of type 2 in P we construct the
following two insertion rules:

(λ, BCr, λ) and (λ, Ar, λ).

• Group 3: For each rule r : A → a ∈ P of type 3 in P we construct the
following two insertion rules:

(λ, aar, λ) and (λ, Ar, λ), where λ = λ.

For a rule r : u → v in P we say that two rules (λ, vr, λ) and (λ, uRr, λ) in P ′

are r-complementary, and denote their labels by r+ and r−, respectively. Further,
by 7→r we denote two consecutive derivation steps using r-complementary rules
(i.e., done by using by r+ and r−).

We define a projection h : (V ∪ V )∗ → T ∗ by h(a) = a for all a ∈ T , and
h(a) = λ otherwise. Let D be the Dyck language over V .

Now we will prove that L(G) = h(L(γ) ∩ D). We start by introducing some
useful notions.

For any rule r : u → v ∈ P , let Ur(u) = ruuRr; we call this an r-block. Then,
we extend this notion to define U-structures as follows:

(I) An r-block Ur(u) is a U-structure.

(II) If U1 and U2 are U-structures, then U1U2 is a U-structure.

(III) Let αi, i = 1, 2, 3, be U-structures or empty, with at least one αi being non-
empty; consider a string of the form rα1u1α2u2α3u

Rr, where u = u1u2 is
such that r : u → v ∈ P . Then, this string, denoted by Ur(α1u1α2u2α3),
is a U-structure.

(IV) Nothing else is a U-structure.



In order to prove the inclusion L(G) ⊆ h(L(γ)∩D), the following observation
is useful:

Observation 2. Suppose that a rule r : u → v ∈ P is applied in a derivation
step z = αuβ =⇒ z′ = αvβ in G. Let z̃ be a sentential form in γ corresponding to
z. Then, we can simulate this rewriting by using the rules r+ and r− as follows.
(1). If u appears as a substring in a sentential form z̃ = α̃uβ̃ in γ, then we create

z̃′ = α̃ · vr · u · uRrβ̃ = α̃vUr(u)β̃.

(2)-1. Since an insertion can occur at arbitrary location of z̃, it may happen that
u has been separated by an insertion step of (1) in an earlier step of deriving z̃.
That is, in this case z̃ is of the form α̃Aδ̃Bβ̃, where u = AB.
(2)-2. Even in such a case, one can derive z̃ so that δ̃ may contain only U-
structures.
(2)-3. Therefore, if u(= AB) appears in separate locations in z̃, then one can ap-
ply r+ and r− to immediately before A and immediately after B in z̃, respectively,
in a derivation of γ. Thus, we have

z̃′ = α̃vrAδ̃BBArβ̃.

Let us now define a mapping φ over (V ∪ V ) as follows: For any a ∈ V − T ,
let aa ∼ λ, and for any a ∈ T , let aa ∼ a. Then, one can consider a reduction
operation over (V ∪V )∗ by iteratively using the binary relation ∼. We define φ(w)
as the string finally obtained as the irreducible string in terms of this reduction
operation. (Because the symbols from T and from V − T are subject of different
“reduction rules”, the irreducible string reached when starting from a given string
is unique, hence the mapping φ is correctly defined.)

We can prove now the following lemma.

Lemma 3. Let S =⇒n−1 zn−1(= αuβ) =⇒ zn(= αvβ) in G, where r : u → v is
used in the last step. Then, there exists a derivation of γ such that S =⇒2n z̃n

and φ(z̃n) = zn.

Proof : By induction on n. If n = 1, then we have S =⇒ v(= z1) in G, where
r : S → v in P , and S 7→r vrSSr = vUr(S) is possible in γ. Let z̃1 = vUr(S);
then φ(z̃1) = v = z1. If v = a ∈ T ∪{λ}, then S 7→r aaUr(S) = z̃1 and φ(z̃1) = z1.

Suppose that the claim holds true for up to (n−1) and consider the derivation
S =⇒n−1 zn−1(= αuβ) =⇒ zn(= αvβ) in G. By the induction hypothesis, there
exists z̃n−1 such that S =⇒2(n−1) z̃2(n−1) and φ(z̃n−1) = zn−1. Then, from (1)
and (2)-1 of Observation 2 above, we have either
Case 1: there exist α̃ and β̃ such that z̃n−1 = α̃uβ̃ and φ(α̃) = α, φ(β̃) = β, or
Case 2: there exist α̃, β̃, and δ̃ such that z̃n−1 = α̃Aδ̃Bβ̃ and φ(α̃) = α, φ(δ̃) = λ,
φ(β̃) = β.

In Case 1, we have:

z̃n−1(= α̃uβ̃) 7→r α̃vruuRrβ̃ = α̃vUr(u)β̃ = z̃n. Further, φ(z̃n) = αvβ = zn.



If r is of type 3 (i.e., r : A → a with a ∈ T ∪ {λ}), then

z̃n−1 7→r α̃aaUr(A)β̃ = z̃n and φ(z̃n) = αaβ = zn.

In Case 2, we have:

z̃n−1(= α̃Aδ̃Bβ̃) 7→r α̃vrAδ̃BBArβ̃ = α̃vUr(Aδ̃B)β̃ = z̃n,

and φ(z̃n) = zn,

and this completes the proof.

Example 4. Consider the context-sensitive grammar G with the rule set P :

r0 : S → AY, r1 : S → AS′, r2 : S′ → SX, r3 : Y X → BY ′,

r4 : Y → BC, r5 : Y ′ → Y C, r6 : CX → XC, r7 : A → a,

r8 : B → b, r9 : C → c.

The generated language is L(G) = {anbncn | n ≥ 1}.
We construct an ins-system γ with the set of insertion rules P ′:

(λ, AY r0, λ), (λ, Sr0, λ), (λ, AS′r1, λ), (λ, Sr1, λ), (λ, SXr2, λ), (λ, S′r2, λ),
(λ, BY ′r3, λ), (λ, XY r3, λ), (λ, BCr4, λ), (λ, Y r4, λ), (λ, Y Cr5, λ), (λ, Y ′r5, λ),
(λ, XCr6, λ), (λ, XCr6, λ), (λ, aar7, λ), (λ, Ar7, λ), (λ, bbr8, λ), (λ, Br8, λ),
(λ, ccr9, λ), (λ, Cr9, λ).

Then, a successful derivation in G is, for instance,

S =⇒r1
AS′ =⇒r2

ASX =⇒r1
AAS′X =⇒r2

AASXX

=⇒r0
AAAY XX =⇒r3

AAABY ′X =⇒r5
AAABY CX =⇒r6

AAABY XC

=⇒r3
AAABBY ′C =⇒r5

AAABBY CC =⇒r4
AAABBBCCC =⇒3

r7
aaaBBBCCC

=⇒3

r8
aaabbbCCC =⇒3

r9
aaabbbccc.

A corresponding derivation in γ is as follows:

S 7→r1
AS′r1SSr1 7→r2

ASXr2S
′S′r2Ur1

(S)
7→r1

AAS′r1SSr1XUr2
(S′)Ur1

(S)
7→r2

AASXr2S
′S′r2Ur1

(S)XUr2
(S′)Ur1

(S)
7→r0

AAAY r0SSr0XUr2
(S′)Ur1

(S)XUr2
(S′)Ur1

(S)
7→r3

AAABY ′r3Y Ur0
(S)XXY r3Ur2

(S′)Ur1
(S)XUr2

(S′)Ur1
(S)

7→r5
AAABY Cr5Y

′Y ′r5Ur3
(Y Ur0

(S)X)Ur2
(S′)Ur1

(S)XUr2
(S′)Ur1

(S)
7→r6

AAABY XCr6CUr5
Ur3

(Y Ur0
(S)X)Ur2

(S′)Ur1
(S)XXCr6Ur2

(S′)Ur1
(S)

7→r3
AAABBY ′r3Y XXY r3CUr6

(CUr5
Ur3

(Y Ur0
X)Ur2

Ur1
X)Ur2

Ur1

7→r5
AAABBY Cr5Y

′Y ′r5Ur3
CUr6

(CUr5
Ur3

(Y Ur0
X)Ur2

Ur1
X)Ur2

Ur1

7→r4
AAABBBCr4Y Y r4CUr5

Ur3
CUr6

Ur2
Ur1

7→r7
aar7AAr7AABBBCUr4

CUr5
Ur3

CUr6
Ur2

Ur1

7→2

r7
aaUr7

aaUr7
aaUr7

BBBCUr4
CUr5

Ur3
CUr6

Ur2
Ur1

7→3

r8
aaUr7

aaUr7
aaUr7

bbUr8
bbUr8

bbUr8
CUr4

CUr5
Ur3

CUr6
Ur2

Ur1

7→3

r9
aaUr7

aaUr7
aaUr7

bbUr8
bbUr8

bbUr8
ccUr9

Ur4
ccUr9

Ur5
Ur3

ccUr9
Ur6

Ur2
Ur1

.

The following observations are useful for the proof of the reverse inclusion.



Observation 5. For a rule r : u → v in P , let r+ : (λ, vr, λ) and r− : (λ, uRr, λ)
be the two r-complementary rules.

(1). Any successful derivation of γ requires the use of both of r-complementary
rules r+ and r−.

(2). Let z̃ be any sentential form in a successful derivation of γ. Then, it
must hold that for any prefix α of z̃, #vr(α) ≥ #uRr(α), where #x(α) denotes
the number of occurrences of a string x in α.

(3). Applying insertion rules within a U-structure leads to only invalid strings.
Indeed, suppose that r+ and r− are applied on some occurrence of u appearing
in a U-structure Ur′(δ1uδ2) = r′δ1uδ2u

Rr′, where r′ : u → v′. This derives a
string r′δ1vUr(u)δ2u

Rr′ which leads to an invalid string (i.e., not in D) unless
u = v. This also occurs in the case where u appears in separate locations in the
U-structure.

(4). A location in z̃ is called valid for two r-complementary rules if it is
either immediately before u1 for r+ or immediately after u2 for r−, by ignoring U-
structures in z̃, where u = u1u2. Then, applying insertion rules at valid locations
only leads to valid strings. This is seen as follows: from (1), (2), (3) above, the
locations for r+ and r− to be inserted are restricted to somewhere in the left and
right, respectively, of u. In order to derive a valid string from z̃, it is necessary
to apply r+ and r− to u so that these two rules together with u may eventually
lead to forming a U-structure.

Now, we can prove the following result:

Lemma 6. Let S =⇒2n z̃ in γ and φ(z̃) = z(∈ (N ∪ T )∗). Then, we have
S =⇒n z in G.

Proof : By induction on n. In case n = 1, there exists r-complementary rules
r+ and r− such that r : u → v ∈ P and S 7→r vrSSr = vUr(S) = z̃. Further, it
holds that φ(z̃) = v = z. Then, it is clear that we have S =⇒ v in G.

Suppose that the claim holds true for up to (n−1) and consider the derivation
S =⇒2(n−1) z̃n−1 7→r z̃n = z̃, and φ(z̃) = z. (Without loss of generality, we may
assume here that the last two steps are performed by r-complementary rules
for some r.) Then, there exists r : u → v for which r+ and r− are used to
derive z̃n in γ such that φ(z̃n) = z ∈ (N ∪ T )∗. By induction hypothesis, we
have S =⇒n−1 zn−1 in G, where zn−1 = φ(z̃n−1). Since z̃n−1 7→2 z̃n, there
exists r : u → v for which r+ and r− are used to derive z̃n in γ such that
φ(z̃n) = z ∈ (N ∪ T )∗. There are two cases:

Case 1: z̃n−1 is of the form α̃uβ̃, where u is in N2 ∪N . Since zn−1 = φ(z̃n−1),
one can write zn−1 = αuβ with φ(α̃) = α and φ(β̃) = β. Further, z̃n−1 7→r

α̃vruuRrβ̃ = z̃n and φ(z̃n) = αvβ = zn. Thus, we have S =⇒n−1 zn−1(=
αuβ) =⇒r zn(= αvβ) in G.

Case 2: z̃n−1 is of the form α̃Aδ̃Bβ̃, where u = AB. As above, from zn−1 =
φ(z̃n−1), one can write zn−1 = αABβ with φ(α̃) = α, φ(β̃) = β and φ(δ̃) = λ,

because δ̃ only contains U-structures. Further, z̃n−1 7→r α̃vrAδB(AB)
R
rβ̃ = z̃n



and φ(z̃n) = αvβ = zn. Thus, we have S =⇒n−1 zn−1(= αABβ) =⇒r zn(= αvβ)
in G.

From the two previous lemmas, we are now in a position to prove the main
theorem.

Proof : [Proof of Theorem 1.] For any w ∈ L(G), suppose that S =⇒∗ w. Then,
by Lemma 3 there exists a derivation S =⇒∗ w̃ in γ such that φ(w̃) = w. Since
φ deletes only U-structures and elements of T , this implies that w̃ ∈ D and
h(w̃) = w ∈ T ∗. Thus, w ∈ h(L(γ) ∩ D). Hence, we have L(G) ⊆ h(L(γ) ∩ D).

Conversely, suppose that let S =⇒∗ w̃ in γ and φ(w̃) = w(∈ T ∗). Then, by
Lemma 6 we have S =⇒∗ w in G. Again, φ(w̃) ∈ T ∗ implies that w̃ ∈ D and
h(w̃) = w. Thus, we have h(L(γ) ∩ D) ⊆ L(G).

In the proof above, starting from G = (N, T, S, P ) as above, instead of con-
structing the insertion system γ, we can construct the pure context-free grammar
G′ = (V, S, P ′) with

V = N ∪ T ∪ N ∪ T ∪ Lab(P ) ∪ Lab(P ),

P ′ = {A → CDrA, B → BBAr | r : AB → CD ∈ P}

∪ {A → BCrAAr | r : A → BC ∈ P}

∪ {A → aarAAr | r : A → a ∈ P}.

Then, it is easy to derive the following corollary.

Corollary 7. Any recursively enumerable language L can be represented in the
form L = h(L′ ∩ D), where h is a projection, L′ is a pure context-free language,
and D is a Dyck language.

4 Representations/Characterizations of Regular and
Context-free Languages

Because any Dyck language belongs to INS 0
2 = DEL0

2, we can replace the Dyck
language with a language in INS 0

2 in the Chomsky-Schützenberger characteri-
zation of context-free languages. However, we can do better (but using slightly
more complex insertion systems), also restricting the type of regular languages
used. Namely, it is enough to use star languages, i.e., languages of the form F ∗,
where F is a finite set of strings.

Then, we can prove the following:

Theorem 8. A language L is context-free if and only if it can be written in the
form L = h(L′∩R), where L′ ∈ INS 0

3, R is a star language, and h is a projection.

Proof : (i) Let G = (N, T, S, P ) be a context-free grammar in Chomsky normal
form.



We construct the insertion system γ = (V ∪V , P ′, {S}), of weight (3, 0), in a
similar way as before:

V = N ∪ T ∪ Lab(P )

and P ′ contains the following insertion rules.

• For each rule r : A → BC in P , we construct the insertion rules
(λ, BCr, λ) and (λ, Ar, λ).

• For each rule r : A → a in P , we construct the insertion rules:
(λ, ar, λ) and (λ, Ar, λ).

Further, we define the projection h : (V ∪ {a | a ∈ N ∪ Lab(P )})∗ → T ∗ by
h(a) = a for all a ∈ T , and h(a) = λ otherwise.

Finally, let R = (T ∪ {rAAr | r : A → α ∈ P})∗.
From the proof of Theorem 1, it holds that S =⇒∗ z in G iff S =⇒∗ z in γ

and φ(z) = z(∈ (N ∪T )∗). From the way of constructing γ, we observe that only
r-blocks appear in z. Therefore, D in the proof of Theorem 1 can be replaced
with the star language R.

(ii) Conversely, because INS 0
3 = INS 0

3DEL0
0 ⊆ CF and the family CF is closed

under intersection with regular languages and arbitrary morphisms, any language
which can be written in the form h(L′ ∩ R) as above is context-free.

The previous representation can be particularized for regular languages, and
in this case the insertion system will be of degree (2, 0).

Theorem 9. Any regular language L can be represented in the form L = h(L′∩
R), where L′ ∈ INS 0

2, R is a star language, and h is a weak coding.

Proof : Let G = (N, T, S, P ) be a regular grammar. Without loss of generality,
we may assume that each rule in P is of the form either A → Ba or A → λ, for
A, B ∈ N, a ∈ T .

We construct the insertion system γ = (V ∪V , {Sλ}, P
′) of weight (2, 0) with

V = {Ax | A ∈ N, x ∈ T} ∪ Lab(P )

and P ′ containing the following insertion rules.

• For each rule r : A → Ba in P , we construct the following insertion rules,
for all x ∈ T ,

(λ, Bar, λ) and (λ, Axr, λ).

• For each rule r : A → λ in P , we construct the following insertion rules,
for all x ∈ T ,

(λ, r, λ) and (λ, Axr, λ).

• For each rule r : S → Ba in P , we construct the following two rules:
(λ, Bar, λ) and (λ, Sλr, λ).

Further, we define the morphism h : (V ∪ V )∗ → T ∗ by h(Aa) = a for all
A ∈ N, a ∈ T ∪ {λ}, and h(b) = λ otherwise.

Finally, let R = {rBaBar | r : A → Ba ∈ P, a ∈ T}∗.



From the proof of Theorem 1, it holds that S =⇒∗ z in G iff S =⇒∗ z in γ

and φ(z) = z(∈ (N ∪T )∗). From the way of constructing γ, we observe that only
r-blocks appear in z. Therefore, D in the proof of Theorem 1 can be replaced
with R, and this completes the proof.

Because INS 0
2 −REG 6= ∅ and V ∗ is a star language, this theorem gives only

a representation of regular languages, not a characterization.

In the above proof, it is obvious that we can replace R with a Dyck language
D (like in the proof of Theorem 1). Thus, we have:

Corollary 10. Any regular language L can be expressed in the form L = h(L′∩
D), where L′ ∈ INS 0

2, D is a Dyck language, and h is a weak coding.

In the proof above, instead of using the star language R and the projection
h, we can consider a finite substitution g defined by

g(a) = {rBaBar | r : A → Ba ∈ P} for all a ∈ T,

and then we have:

Corollary 11. (i) Any regular language L can be expressed in the form L =
g−1(L′), where L′ ∈ INS 0

2 and g is a finite substitution.
(ii) Any context-free language L can be expressed in the form L = h(g−1(L′)∩D),
where L′ ∈ INS 0

2, h is a projection, and g is a finite substitution.

The previous representations can be combined with known representations/
characterizations of context-free and of RE languages. For instance, each RE
language is the projection of the intersection of two context-free languages ([1])
and several similar results are also found in Theorem 4.14 of [16]; each of these
context-free languages can then be written as in Theorem 8, etc. However, we
leave the details to the reader.

5 Final Discussion

In a morphic characterization for a family of languages in the form L = h(L′∩D)
with L′ being from a smaller family and D being a Dyck language, one typical
instance is the Chomsky-Schützenberger characterization for the family CF . As
for the family RE , L can be expressed in that form with L′ being a minimal
linear language ([3]), while there is no such a characterization for CS ([9]).

In this paper, we have contributed to the study of insertion/deletion systems
with new characterizations of context-free and recursively enumerable languages
and a representation of regular languages. In all cases, context-free insertion
(symmetrically, deletion) systems were used, at most of degree (3, 0). Specifically,
we have shown that (i) L is in RE iff L = h(L′ ∩ D), (ii) L is in CF iff
L = h(L′∩R), and (iii) any L in REG can be expressed in the form L = h(L′∩D),



where L′ is insertion/deletion language of weight (3,0) for RE and CF , and of
weight (2,0) for REG , respectively, and R is a star regular language.

Finally, it remains left open whether or not these results can be improved, by
decreasing the degree to (2, 0) in representing RE and CF .

References

[1] B.S. Baker, R.V. Book: Reversal-bounded multipushdown machines. Journal of
Computer and System Sciences, 8 (1974), 315–332.

[2] B.S. Galiukschov: Semicontextual grammars (in Russian). Mat. logica i mat. ling.,
Kalinin Univ., 1981, 38–50.

[3] S. Hirose, S. Okawa, M. Yoneda: A homomorphic characterization of recursively
enumerable languages. Theoretical Computer Science, 35 (1985), 261–269.
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