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The magnetocaloric properties of a composite material consisting of isolated Gd2O3 nanoparticles

with a diameter of 6–8 nm embedded in the pores of a mesoporous silica matrix have been studied.

The fascinating nanostructure and composition were properly characterized by small angle X-ray

scattering, X-ray absorption near edge structure, and TEM. Almost ideal paramagnetic behavior of

the material was observed in the temperature range of 1.8–300 K. When compared to various nano-

systems, the presented composite exhibits an extraordinarily large magnetic entropy change of

40 J/kg K for a field variation of 0–5 T at cryogenic temperature (3 K). Considering only the mass

of the Gd2O3 nanoparticle fraction, this corresponds to 120 J/kg K. Calculated refrigerant capacities

are 100 J/kg and 400 J/kg for the composite and nanoparticles, respectively. Our findings suggest

that the combination of the unique porous structure of amorphous silica with fine gadolinium oxide

nanoparticles and high value of magnetic entropy change enables to extend the application of the

Gd2O3@SiO2 composite, to cryomagnetic refrigeration. In addition, the characteristics of the ther-

momagnetic behavior have been studied using the scaling analysis of the magnetic entropy change.

Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4963267]

Intensive effort put into the research on magnetic refrig-

eration in past years was driven by the ambition of replacing

less effective and environmentally unfriendly conventional

cooling methods. The phenomenon of the change in tempera-

ture of the material as a consequence of the magnetic spin

realignment under the influence of external magnetic field

variation is generally denoted as the magnetocaloric effect

(MCE).1–5 In the last few decades, gadolinium based com-

pounds showed very promising properties with respect to

MCE applications. Pure Gd has been considered the de-facto

standard for magnetic refrigeration since its application by

Brown in a prototype magnetic refrigerator.2 The focus on

Gd-based materials increased abruptly when Pecharsky and

Gschneidner6 discovered the giant magnetocaloric effect in

Gd5(Si2Ge2) at room temperature, with a maximum entropy

change (DSpk) of 20 J/kg K for a field variation from 0 to 5 T.

However, the first order nature of the phase transition implied

the presence of thermal hysteresis with detrimental influence

on energy efficiency, which was also confirmed by experi-

mental data. In general, suppression of hysteresis losses in this

kind of material can be achieved by compositional modifica-

tion or grain size reduction of the material. Provenzano et al.7

decreased these losses by more than 90% by alloying the com-

pound with a small amount of iron.

Rare earth trifluorides can be dissolved in large amounts

inside crystalline matrices, which drove the study of the

magnetocaloric response of paramagnetic single crystals of

non-stoichiometric fluorides Cd0.9R0.1F2.1 (R¼Gd, Tb, Dy,

and Ho), observing a peculiar behavior.8 The continuous

increase in magnetic entropy change (DSM) with diminishing

temperature was documented for all the samples. The only

exception was Cd0.9Ho0.1F2.1 where the unexpected peak of

DSM(T) dependence at low temperatures and high field varia-

tions was ascribed to the deviation from the Curie-Weiss

law.

An important feature which limits the magnetic refriger-

ants applications, especially in electronics, is the rate of heat

transfer between the refrigerant and its ambient. There is an

assumption that nanostructured materials, with their large

surface area, should demonstrate faster and more effective

heat exchange in comparison with their bulk counterparts.

Phan et al.9 compared the MCE in bulk and nanostructured

(50 nm and 35 nm) gadolinium iron garnets (Gd3Fe5O12).

The broad peak of DSM(T) of a bulk sample was found to

shift to lower temperatures as the size of the nanostructured

samples decreased. Moreover, an increase in the magnitude

of DSM was documented with diminishing particle size. This

enhancement of MCE is caused by surface spin disorder

in nanoparticles.9,10 However, for other kind of materials,

nanostructuring produces a deleterious effect on the magne-

tocaloric response.11 As it was demonstrated by numerous

authors,9–12 magnetocaloric properties of nanoscopic and

bulk materials may differ significantly. The advantage of

nanoparticles (in comparison with bulk materials) is the

possibility of tuning their intrinsic properties by tailoring

macroscopic parameters like size, shape, and capping layer

or hosting matrix. Monte Carlo simulations carried out by

Baldomir et al.13 suggest that for a given sample concentra-

tion there exists a particle size that produces the largest

increase of magnetic entropy, and reciprocally for a given

particle volume there exists a sample concentration allowing

to produce the largest magnetic entropy change. Huesoa)Electronic mail: adriana.zelenakova@upjs.sk
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et al.14 reported that it is even possible to change the phase

transition character by changing the particle size. They found

out that the first-order magnetic transition can be minimized

and eventually evolves towards a second-order one as the

grain size diminishes in La2/3Ca1/3MnO3. All of these effects

are considered to be the consequence of the particles’ surface

layer properties (like spin canting). Due to the decrement of

the nanoparticle size, the surface to volume ratio increases

and phenomena originating in lattice irregularities start to

dominate. However, having an ensemble of nanoparticles as

a magnetic refrigerator bed poses numerous technological

problems associated with handling the particles, confining

them to a certain region of the device even with the presence

of a heat transfer fluid, etc. A potential solution to some of

these problems is to embed the nanoparticles in a matrix that

keeps their individuality (in contrast to compact the particles

together, which might make them behave, in some aspects,

as a bulk).

In this work, we investigate the magnetocaloric proper-

ties of fine (6–8 nm) Gd2O3 nanoparticles encapsulated in a

periodic nanoporous SiO2 silica matrix. The prepared com-

posite combines the advantages of nanoporous silica15

(highly ordered porous structure, large surface area, thermal

stability up to 700 �C, preparation with high reproducibility,

biocompatibility) with gadolinium oxide in the form of nano-

particles, the production of which is more economic than

bulk Gd counterparts. Although these nanoparticles are very

promising in biomedicine as contrast agents16 for MRI diag-

nostics, they have never been studied from the MCE point of

view. With the expectation of a significant influence of parti-

cle size on the magnetocaloric properties of the nanoparticle

system, we intended to examine the magnetic characteristics

of our composite material. We observed a large magnetic

entropy change of the system and a high value of the refrig-

eration capacity at low temperatures. These features along

with the fine nanostructure of the composite allow the possi-

bility to extend the Gd2O3 nanoparticle applications even in

the field of magnetic refrigeration. Especially, the fast evolv-

ing area of delicate devices for Micro Electro Mechanical

Systems (MEMS) and Nano Electro Mechanical Systems

(NEMS) applications currently requires fast and effective

cooling methods and materials, where nanocomposites could

be essential.17,18

The studied Gd2O3@SiO2 composite was prepared by

nanocasting (wet-impregnation) of pure Gd2O3 nanoparticles

in periodic nanoporous silica. The inset of Fig. 1 represents a

scheme of the investigated material. The SBA-16 silica matrix

with cubic symmetry (Im3m space group) serves as a nanoreac-

tor which limits the particle growth during their precipitation,

thus controlling the nanoparticle size.19 The porous structure

was characterized by small angle X-ray scattering (SAXS)

experiments, carried out at B1 beamline (DESY Hamburg)

with a beam energy of 12 keV (k¼ 1.03 Å) using a PILATUS

detector. SAXS spectra confirm that the mesoporous matrix

of the gadolinium-modified sample retained the long-range

periodicity with cubic symmetry of the pure silica matrix.

The information about the phase composition was brought by

the measurements of the X-ray absorption near edge structure

(XANES), at DESY Hamburg. XANES spectra confirm the

presence of pure Gd2O3 nanoparticles. Fig. 1 shows the

XANES results of the studied Gd2O3@SiO2 sample and the

Gd2O3 reference. The small differences of the measured sam-

ple and reference may be explained by surface effects, which

should be larger in the Gd2O3@SiO2 in which nanoparticles

are embedded in the porous silica matrix. The size of Gd2O3 is

determined by the size of the cubic pores and additionally con-

firmed by TEM measurements. Magnetic measurements of the

system were performed by using a commercial SQUID magne-

tometer MPMS 5XL from Quantum Design. The material dem-

onstrated typical paramagnetic behavior in the whole measured

temperature span of 1.8–300 K documented by ZFC/FC experi-

mental data displayed in Fig. 1. Since the contribution of the

matrix to the magnetic signal of the composite is negligible (in

comparison with Gd2O3 nanoparticles), we also calculated the

magnetization values with respect to the mass of the pure iso-

lated nanoparticles (right y axis). For the determination of the

quantity of gadolinium oxide, atomic absorption spectroscopy

(AAS) was used and the determined content corresponds to

25% of Gd2O3 nanoparticles in the Gd2O3@SiO2 composite

sample. The magnetic properties of the blank silica matrix

were studied in our previous work.9,15

Isothermal magnetization data recorded for applied

magnetic fields up to 5 T in the temperature range of

1.8–40.8 K with a temperature increment of 1 K are shown in

Fig. 2(a). The sample exhibits non-saturating M(H) curves

with gradual curvature which, together with the lack of

FIG. 1. (a) XANES spectrum confirmed the presence of Gd2O3 nanopar-

ticles in the system. Inset: scheme of the composite. (b) ZFC/FC magnetiza-

tion versus temperature (measured at H¼ 10 mT) of the investigated

Gd2O3@SiO2 material. Right y axis represents the values of magnetization

corresponding to the Gd2O3 nanoparticles after excluding the silica matrix

mass contribution. Inset: TEM micrograph of blank porous matrix with

cubic symmetry.
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magnetic remanence and hysteresis, suggests a paramagnetic

behavior. The set of M(H,T) data was used for the magnetic

entropy change calculation. The basis of the relationship

between magnetic measurements and the change in entropy

is the Maxwell relation20 l0(@M/@T)H¼ (@S/@H)T, which for

an isothermal-isobaric process after numerical approximated

integration yields4

DSM
Tnþ1 þ Tn

2
;Himax

� �
¼ l0

Ximax

i¼1

Mnþ1 �Mnð ÞH
Tnþ1 � Tn

Hiþ1 �Hið Þ;

(1)

where Mn and Mnþ 1 are the magnetization values measured

in magnetic field Hi at temperatures Tn and Tnþ 1, respec-

tively. Fig. 2(b) presents the magnetic entropy change of

the whole investigated composite consisting of Gd2O3

nanoparticlesþSiO2 matrix as well as the DSM(T) calcu-

lated after considering only the mass contribution of Gd2O3

nanoparticles. The maximum of DSM(T) with extraordinary

large values of DSM
pk(T)� 40 J/kg K for a magnetic field

variation of 0–5 T was observed at a low temperature of

T� 3 K. Recently, Paul et al.18 investigated the MCE at

cryogenic temperatures in Gd2O3 nanotubes with average

diameter 200 nm, constituting of nanoclusters with average

diameter 7.5 nm. The magnitude of DSM(T) does not exceed

16 J/kg K for maximal field variation of 0–7 T. Li et al.21

studied GdNi5 superparamagnetic nanoparticles of average

diameter 15 nm and observed enhanced cryogenic MCE

ascribed to high atomic moments and small anisotropy

energy barrier induced by small particle size. They

established the value DSM
pk¼ 13.5 J/kg K at 5 K under a

magnetic field change of 5 T. Comparably large values of

magnetic entropy change have been reported in GdAl2@

Al2O3 nanocapsules4 and oxalate-bridged Gd(III) coordina-

tion polymers22 (DSM� 32 J/kg K and DSM� 48 J/kg K,

respectively), however, at significantly larger field varia-

tions of 0–7 T. The occurrence of the peak in Fig. 2(b) is

caused by the fact that isothermal magnetization values

measured at 1.8 K are lower than the values recorded at

2.8 K. The rest of the M(H) values gradually decrease with

increasing temperature, as expected for a standard paramag-

netic material. We suppose that surface spin disorder and

formation of a spin glass-like state can cause this anoma-

lous effect, similarly as Kodama and Berkowitz23 and

Martinez et al.24 reported. Interestingly, if we did not

take into account the mass fraction of the silica matrix,

which causes the dilution of the magnetic species by a non-

magnetic material and thereby reduces the entropy change

per unit mass, the observed DSM
pk(T)� 120 J/kg K contribu-

tion of Gd2O3 nanoparticles would be extraordinarily high

(Fig. 2(b)).

Neither the MCE nor such a high value of magnetic

entropy change has ever been measured and detected in

Gd2O3 nanoparticles. Phan et al.9 reported a similar abrupt

increase of �DSM(T) at low temperatures in nanostructured

Gd3Fe5O12 samples and a shift of the DSM
pk(T) towards lower

temperatures with diminishing diameter (from bulk down to

�35 nm) of the nanoparticles. They ascribed this phenomenon

to the strong effect of the applied magnetic field on the disor-

dered surface spins. In our case of 6–8 nm nanoparticles, this

effect is significantly enhanced because of the high surface to

volume ratio, thus very high DSM(T) at very low temperature

was observed. Recognizably, a second peak can be observed

at T� 9 K in DSM(T) experimental data of the composite, Fig.

2(b). This maximum, in contrast with the first one at T� 3 K,

does not appear at lower field variations and becomes appar-

ent at Dl0H> 1 T. As its magnitude is significantly lower in

comparison with the first one, in the current paper we focus

on the examination of the main peak.

Since we ascribe the presence of the DSM(T) maximum

of the Gd2O3@SiO2 material to a second order phase transi-

tion (SOPT) from paramagnetic to spin glass-like state, we

attempted to employ scaling analysis and consider the depen-

dence of the most relevant magnetocaloric response parame-

ters on the magnitude of magnetic field. It has been

FIG. 2. (a) Isothermal magnetization curves recorded from 1.8 K to 40.8 K,

(b) magnetic entropy change of the whole composite and values correspond-

ing to the nanoparticles (colorbar). (c) Collapse of DSM(T) curves determined

for magnetic field variation from 20 mT to 5 T onto a single master curve.

122412-3 Zele�n�akov�a et al. Appl. Phys. Lett. 109, 122412 (2016)



shown25,26 that, in the case of SOPT materials, DSM(T)

curves obtained for different magnetic field variations

collapse onto a single master curve. This curve is phenome-

nologically constructed by normalizing the DSM(T) curves

with respect to their peak, DSM
pk(T), and rescaling the tem-

perature axis using a reference temperature,27 Tref (in our

case the one corresponding to DSM(Tref)¼ 0.5DSM
pk). The

rescaled temperature axis becomes h¼ (T� Tpk)/(Tref – Tpk),

where Tpk is the DSM(T) peak temperature. Fig. 2(c) shows

processed data of DSM(T) which obviously collapsed onto a

single curve resembling the master curve typical of magneto-

caloric materials with a second order phase transition27 in a

temperature interval corresponding to the first DSM(T) maxi-

mum. It is worth noting that the smaller magnetic entropy

change peak is also visible in this figure, with a position

which is field dependent in the rescaled temperature axis h.

Critical exponents characterizing the second order phase

transition temperature could be extracted from the field

dependence of the magnetocaloric magnitudes,25–27 namely,

DSM
pk, Tref, and refrigerant capacity RC, which is the mea-

sure of the energy that can be transferred between the hot

and cold reservoirs and is defined as28

RCðDHÞ ¼
ðThot

Tcold

DSMðT;DHÞdT; (2)

where DH is the difference between minimum and maximum

applied fields. Usually, it is calculated as the full width at

half maximum of the DSM(T) peak times the peak value

DSM
pk. In the case of the SOPT, RC should obey a scaling

law25–27 RC / H1þ 1/d. The RC(H) data fit for DH> 1 T for

the investigated material presented in Figure 3 yields the

value of d¼ 2.97 which is in good accordance with the value

d¼ 3 corresponding to the mean field theory.22 Fig. 3 also

shows the fit of DSM
pk / Hn for field variations DH> 1 T,

which produced n¼ 0.68. Since at the transition tempera-

ture25,26 n¼ 1þ 1/d(1� 1/b), critical exponent b¼ 0.52 was

calculated for the investigated Gd2O3@SiO2 composite,

which agrees well with the mean field theory. Finally,

D¼ 1.54 and c¼ 1.02 were calculated employing the rela-

tions between critical exponents26 D¼bd and D¼ bþ c.

However, the value of D does not match with the value of

Dref¼ 0.34 established from Tref / H1/D data fit for field var-

iations above 1 T. The investigation of the peculiar Tref(H)
behavior is beyond the scope of this study and it should be

related to the presence of the minor peak at higher

temperatures.

To conclude, magnetocaloric properties of fine Gd2O3

nanoparticles, embedded in the periodic nanoporous SiO2

matrix, were investigated. Large magnetic entropy change

DSM
pk(T)� 40 J/kg K was observed for maximum field varia-

tion 5 T at low temperatures. Excluding the mass of the non-

magnetic silica matrix, extraordinary high value DSM
pk(T)

� 120 J/kg K was calculated for the Gd2O3 nanoparticles.

This finding along with an easy to prepare fine nanostructure

could extend the current Gd2O3 NPs application to the area

of cryogenic refrigeration, e.g., as a material for Nano

Electro Mechanical Systems (NEMS).
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