The Menger number of the strong product of graphs

E. Abajo, R.M. Casablanca, A. Diánez, P. García-Vázquez
Departamento de Matemática Aplicada I, Universidad de Sevilla, Sevilla, Spain

Keywords:

Menger number
Bounded edge-connectivity
Edge-fault-tolerant diameter Edge-deletion problem

A B S TRACT

Abstract

The $x y$-Menger number with respect to a given integer ℓ, for every two vertices x, y in a connected graph G, denoted by $\zeta_{\ell}(x, y)$, is the maximum number of internally disjoint $x y$-paths whose lengths are at most ℓ in G. The Menger number of G with respect to ℓ is defined as $\zeta_{\ell}(G)=\min \left\{\zeta_{\ell}(x, y): x, y \in V(G)\right\}$. In this paper we focus on the Menger number of the strong product $G_{1} \boxtimes G_{2}$ of two connected graphs G_{1} and G_{2} with at least three vertices. We show that $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ and furthermore, that $\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$ if both G_{1} and G_{2} have girth at least 5. These bounds are best possible, and in particular, we prove that the last inequality is reached when G_{1} and G_{2} are maximally connected graphs.

1. Introduction

Throughout this paper, all the graphs are simple, that is, with neither loops nor multiple edges. Notations and terminology not explicitly given here can be found in the book by Chartrand and Lesniak [2].

Let G be a graph with a vertex set $V=V(G)$ and an edge set $E=E(G)$. Let x and y be two distinct vertices of G. A path from x to y, also called an $x y$-path in G, is a subgraph P with vertex set $V(P)=\left\{x=u_{0}, u_{1}, \ldots, u_{r}=y\right\}$ and edge set $E(P)=\left\{u_{0} u_{1}, \ldots, u_{r-1} u_{r}\right\}$. This path is usually denoted by $P: u_{0} u_{1} \ldots u_{r}$ and r is the length of P, denoted by $l(P)$. Two $x y$-paths P and Q are said to be internally disjoint if $V(P) \cap V(Q)=\{x, y\}$. A cycle in G of length r is a path $C: u_{0} u_{1} \ldots u_{r}$ such that $u_{0}=u_{r}$. The girth of G, denoted by $g(G)$, is the length of a shortest cycle in G, and if G contains no cycles, then $g(G)=\infty$. The set of vertices adjacent to $v \in V(G)$ is denoted by $N_{G}(v)$. The degree of v is $d_{G}(v)=\left|N_{G}(v)\right|$, whereas $\delta(G)=\min _{v \in V(G)} d_{G}(v)$ is the minimum degree of G.

The distance between two vertices $x, y \in V(G)$, denoted by $d_{G}(x, y)$, is the length of a shortest $x y$-path. If there is no $x y$-path in G, it is said that $d_{G}(x, y)=\infty$. The diameter of G is defined as $\operatorname{Diam}(G)=\max \left\{d_{G}(x, y): x, y \in V(G)\right\}$. A graph G is connected if for any two distinct vertices $x, y \in V(G)$ there is an $x y$-path. The connectivity $\kappa(G)$ of a graph G is the minimum number of vertices whose deletion from G produces a disconnected or a trivial graph. There is an important research on this topic (see, e.g., [3]). From Menger's Theorem, Whitney [9] proved in 1932 that a graph G is r-connected, that is, $\kappa(G) \geq r$, if and only if every pair of vertices in $V(G)$ is connected by r internally disjoint paths. In [9] the author also shows that $\kappa(G) \leq \delta(G)$. A graph G is maximally connected if the previous bound is attained, that is, if $\kappa(G)=\delta(G)$.

Given two distinct vertices x, y in a connected graph G, the $x y$-Menger number with respect to a positive integer ℓ is the maximum number of internally disjoint $x y$-paths in G whose lengths are at most ℓ. It is denoted by $\zeta_{\ell}(x, y)$. The Menger number of G with respect to ℓ is defined as $\zeta_{\ell}(G)=\min \left\{\zeta_{\ell}(x, y): x, y \in V(G)\right\}$. This parameter was introduced in [5]. Clearly, if $\ell<\operatorname{Diam}(G)$, then $\zeta_{\ell}(G)=0$ and also, for every integer $\ell \geq|V(G)|-1$, the Menger number $\zeta_{\ell}(G)=\kappa(G)$.

[^0]The determination of $\zeta_{\ell}(G)$ is an open and interesting problem when $\operatorname{Diam}(G) \leq \ell \leq|V(G)|-2$. Observe that $\zeta_{\ell}(G)$ is an increasing function on ℓ and that $\zeta_{\ell}(G) \leq \kappa(G)$ for every positive integer ℓ.

For an information system modeled by a graph G, the Menger number can be an important measure of the communication efficiency and fault tolerance. For instance, in a parallel computing system, the efficiency can be analyzed in terms of the number of disjoint routes of information which are able to connect two points in a short period of time. In a real-time system, the information delay must be limited since any message obtained beyond the bound may be worthless. A natural question is to compute or estimate how many routes ensure the transmission of information in an effective time.
Ma, Xu, and $\mathrm{Zhu}[6]$ found a lower bound on the Menger number of the Cartesian product of two connected graphs G_{1} and G_{2}. Namely, they prove that $\zeta_{\ell_{1}+\ell_{2}}\left(G_{1} \square G_{2}\right) \geq \zeta_{\ell_{1}}\left(G_{1}\right)+\zeta_{\ell_{2}}\left(G_{2}\right)$. This bound is an equality when G_{1} and G_{2} are paths and, therefore, $G_{1} \square G_{2}$ is a grid network.

In this work we study the Menger number of the strong product of two connected graphs. The strong product $G_{1} \boxtimes G_{2}$ of two connected graphs G_{1} and G_{2} is defined on the Cartesian product of the vertex sets of the generators, so that two distinct vertices (x_{1}, x_{2}) and $\left(y_{1}, y_{2}\right)$ of $G_{1} \boxtimes G_{2}$ are adjacent if $x_{1}=y_{1}$ and $x_{2} y_{2} \in E\left(G_{2}\right)$, or $x_{1} y_{1} \in E\left(G_{1}\right)$ and $x_{2}=y_{2}$, or $x_{1} y_{1} \in E\left(G_{1}\right)$ and $x_{2} y_{2} \in E\left(G_{2}\right)$. From this definition, it follows that the strong product of two connected graphs is commutative.

It is well known that the product of graphs is an important research topic in Graph Theory (see, e.g. [1,4,7,8,10]). A fundamental principle for network design is extendibility. That is to say, the possibility of building larger versions of a network preserving certain desirable properties. For designing large-scale interconnection networks, the strong product is a useful method to obtain large graphs from smaller ones whose invariants can be easily calculated.

In this paper, we prove that the Menger number $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$, for any two connected graphs with at least three vertices. Moreover, if both G_{1} and G_{2} have also girth at least 5, then we prove that $\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right) \geq$ $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$. These two lower bounds are best possible in a double sense. On the one hand, we provide examples that show that the hypothesis cannot be relaxed. And on the other hand, we give examples of graphs G_{1} and G_{2} for which both these lower bounds are sharp.

2. Main results

Given two connected graphs G_{1} and G_{2}, in this paper we focus on $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right)$, the Menger number of the strong product $G_{1} \boxtimes G_{2}$ with respect to an integer ℓ. First of all, let us notice that $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right)=0$ for integers $\ell<\operatorname{Diam}\left(G_{1} \boxtimes G_{2}\right)=$ $\max \left\{\operatorname{Diam}\left(G_{1}\right), \operatorname{Diam}\left(G_{2}\right)\right\}$, hence, from now on we assume that $\ell \geq \max \left\{\operatorname{Diam}\left(G_{1}\right), \operatorname{Diam}\left(G_{2}\right)\right\}$.

To estimate the Menger number $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right)$, we must find a lower bound on the number of internally disjoint paths of length at most ℓ that join any two arbitrary vertices in $V\left(G_{1} \boxtimes G_{2}\right)$. The proof is constructive and in the following lemmas we provide these paths. To do that, for distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$, we consider $\zeta_{1}=\zeta_{\ell}\left(x_{1}, y_{1}\right)$ internally disjoint $x_{1} y_{1}$-paths $P_{1}, \ldots, P_{\zeta_{1}}$ in G_{1} of length at most ℓ. Similarly, for distinct vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, we consider $\zeta_{2}=\zeta_{\ell}\left(x_{2}, y_{2}\right)$ internally disjoint $x_{2} y_{2}$-paths $Q_{1}, \ldots, Q_{\zeta_{2}}$ in G_{2} of length at most ℓ. Without loss of generality we assume that $l\left(P_{1}\right)=\min \left\{l\left(P_{i}\right): i \in\left\{1, \ldots, \zeta_{1}\right\}\right\}$ and that $l\left(Q_{1}\right)=\min \left\{l\left(Q_{j}\right): j \in\left\{1, \ldots, \zeta_{2}\right\}\right\}$. Also, for any $x_{2} y_{2}$-path Q_{j} in G_{2} of length at least 2 , we denote by $\left(Q_{j}\right)^{\prime}$ the new path obtained from Q_{j} by removing its endvertices.

Observe that for every $v \in V\left(G_{2}\right)$, the subgraph of $G_{1} \boxtimes G_{2}$ induced by the set $\left\{\left(x_{1}, v\right): x_{1} \in V\left(G_{1}\right)\right\}$ is isomorphic to G_{1}. For this reason, this subgraph will be denoted by G_{1}^{v}. Analogously, for each $u \in V\left(G_{1}\right)$, the set $G_{2}^{u}=\left\{\left(u, x_{2}\right): x_{2} \in V\left(G_{2}\right)\right\}$ induces a subgraph isomorphic to G_{2}. Thus, each $x_{2} y_{2}$-path Q_{j} in G_{2} induces an $\left(u, x_{2}\right)\left(u, y_{2}\right)$-path in G_{2}^{u}, which will be denoted by Q_{j}^{u}.

The first result provides a lower bound on the Menger number between two distinct vertices $\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)$ in $V\left(G_{1} \boxtimes G_{2}\right)$ such that either $x_{1}=y_{1}$ or $x_{2}=y_{2}$.

Lemma 2.1. Let G_{1} and G_{2} be two connected graphs with at least three vertices. Let $x_{i}, y_{i} \in V\left(G_{i}\right)$ be two distinct vertices, $i=1$, 2 . For every integer $\ell \geq \max \left\{\operatorname{Diam}\left(G_{1}\right)\right.$, $\left.\operatorname{Diam}\left(G_{2}\right)\right\}$ the following assertions hold:
(i) There exist at least $\left(\delta\left(G_{1}\right)+1\right) \zeta_{\ell}\left(G_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths of length at most ℓ in $G_{1} \boxtimes G_{2}$. Furthermore, if G_{1} has girth at least 5 , then there exist at least $\delta\left(G_{1}\right)$ additional internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths of length at most $\ell+2$.
(ii) There exist at least $\zeta_{\ell}\left(G_{1}\right)\left(\delta\left(G_{2}\right)+1\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)$-paths of length at most ℓ in $G_{1} \boxtimes G_{2}$. Moreover, if G_{2} has girth at least 5 , then there exist at least $\delta\left(G_{2}\right)$ additional internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)$-paths of length at most $\ell+2$.

Proof. By the commutativity of the strong product of two graphs, it suffices to prove (i). Denote by $\zeta_{2}=\zeta_{\ell}\left(G_{2}\right)$. Let us consider any vertex $x_{1} \in V\left(G_{1}\right)$ and two distinct vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$. Then there are at least ζ_{2} internally disjoint $x_{2} y_{2}$-paths, $Q_{1}, \ldots, Q_{\zeta_{2}}$, in G_{2} of length at most ℓ.

Now, we introduce some general constructions of $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$. Let $u \in N_{G_{1}}\left(x_{1}\right)$ and $j \in\left\{1, \ldots, \zeta_{2}\right\}$. If $l\left(Q_{j}\right) \geq 2$, then vertices $\left(x_{1}, x_{2}\right)$ and (x_{1}, y_{2}) are adjacent to the first and to the last internal vertex of Q_{j}^{u}, respectively. Hence, it makes sense to consider the path $R_{u, j}:\left(x_{1}, x_{2}\right)\left(Q_{j}^{u}\right)^{\prime}\left(x_{1}, y_{2}\right)$ in $G_{1} \boxtimes G_{2}$. Notice that $l\left(R_{u, j}\right) \leq \ell$. Also, when there exists a vertex $w_{u} \in N_{G_{1}}(u) \backslash\left\{x_{1}\right\}$, we can consider the $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-path $R_{w_{u}}:\left(x_{1}, x_{2}\right)\left(u, x_{2}\right)\left(Q_{1}^{w_{u}}\right)^{\prime}\left(u, y_{2}\right)\left(x_{1}, y_{2}\right)$ of length at $\operatorname{most} \ell+2$.

Observe that vertices (x_{1}, x_{2}) and (x_{1}, y_{2}) belong to the same copy $G_{2}^{x_{1}}$ of $G_{1} \boxtimes G_{2}$. Therefore, $Q_{1}^{x_{1}}, \ldots, Q_{\zeta_{2}}^{x_{1}}$ are ζ_{2} internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ of length at most ℓ. To construct the remaining paths, we distinguish whether $x_{2} y_{2}$ belongs to $E\left(G_{2}\right)$ or not.

First, assume that $x_{2} y_{2} \in E\left(G_{2}\right)$, that is, $l\left(Q_{1}\right)=1$. Let $u \in N_{G_{1}}\left(x_{1}\right)$. The paths $\widetilde{R}_{u}:\left(x_{1}, x_{2}\right)\left(u, x_{2}\right)\left(x_{1}, y_{2}\right)$ and $\widehat{R}_{u}:\left(x_{1}, x_{2}\right)\left(u, y_{2}\right)\left(x_{1}, y_{2}\right)$ are contained in $G_{1} \boxtimes G_{2}$ and they have length $2 \leq \ell$. Moreover, since G_{2} is a simple graph, for every $j \in\left\{2, \ldots, \zeta_{2}\right\}$, the path Q_{j} has length at least 2 and there exists the path $R_{u, j}$. Hence, $Q_{1}^{x_{1}}, \ldots, Q_{\zeta_{2}}^{x_{1}}, \widetilde{R}_{u}, \widehat{R}_{u}, R_{u, 2}, \ldots, R_{u, \zeta_{2}}$, for every $u \in N_{G_{1}}\left(x_{1}\right)$ are at least $\zeta_{2}+2 \delta\left(G_{1}\right)+\delta\left(G_{1}\right)\left(\zeta_{2}-1\right)=\left(\delta\left(G_{1}\right)+1\right) \zeta_{2}+\delta\left(G_{1}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths of length at most ℓ in $G_{1} \boxtimes G_{2}$.

Second, assume that $x_{2} y_{2} \notin E\left(G_{2}\right)$. For $j \in\left\{1, \ldots, \zeta_{2}\right\}$ and $u \in N_{G_{1}}\left(x_{1}\right)$, we consider the path $R_{u, j}$. Thus, we have $\left(d_{G_{1}}\left(x_{1}\right)+1\right) \zeta_{2}$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths of length at most ℓ. If there exists a vertex $u \in N_{G_{1}}\left(x_{1}\right)$ such that $d_{G_{1}}(u)=1$, notice that $d_{G_{1}}\left(x_{1}\right) \geq 2$ and then $\left(d_{G_{1}}\left(x_{1}\right)+1\right) \zeta_{2} \geq 3 \zeta_{2} \geq 2 \zeta_{2}+1=\left(\delta\left(G_{1}\right)+1\right) \zeta_{2}+\delta\left(G_{1}\right)$. Otherwise, there exists a vertex $w_{u} \in N_{G_{1}}(u) \backslash\left\{x_{1}\right\}$ for every $u \in N_{G_{1}}\left(x_{1}\right)$. We assume that $g\left(G_{1}\right) \geq 5$, then $w_{u} \neq w_{v}$ for all $u, v \in N_{G_{1}}\left(x_{1}\right)$ with $u \neq v$. Hence, the paths $R_{w_{u}}, u \in N_{G_{1}}\left(x_{1}\right)$, are at least $\delta\left(G_{1}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$.

Now in the following two lemmas we study the number of internally disjoint paths between two vertices in $V\left(G_{1} \boxtimes G_{2}\right)$ which come from two different vertices in G_{1} and from another two different ones in G_{2}. Using paths of length at most ℓ in the generator graphs G_{1} and G_{2}, we construct paths in $G_{1} \boxtimes G_{2}$ whose lengths are also at most ℓ.

Lemma 2.2. Let G_{1} and G_{2} be two connected graphs with at least three vertices and $\ell \geq \max \left\{\operatorname{Diam}\left(G_{1}\right)\right.$, $\left.\operatorname{Diam}\left(G_{2}\right)\right\}$ be an integer. For every two distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$ and every two distinct vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, there exist at least $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ of length at most ℓ.

Proof. Denote by $\zeta_{1}=\zeta_{\ell}\left(G_{1}\right)$ and $\zeta_{2}=\zeta_{\ell}\left(G_{2}\right)$. Let $P_{1}, \ldots, P_{\zeta_{1}}$ be ζ_{1} internally disjoint $x_{1} y_{1}$-paths of length at most ℓ in G_{1} and $Q_{1}, \ldots, Q_{\zeta_{2}}$ be ζ_{2} internally disjoint $x_{2} y_{2}$-paths of length at most ℓ in G_{2}. Let us assume that $P_{i}: u_{0}^{i} u_{1}^{i} \ldots u_{r_{i}}^{i}$, for $i \in\left\{1, \ldots, \zeta_{1}\right\}$, and that $Q_{j}: v_{0}^{j} v_{1}^{j} \ldots v_{s_{j}}^{j}$, for $j \in\left\{1, \ldots, \zeta_{2}\right\}$, where $\left(u_{0}^{i}, v_{0}^{j}\right)=\left(x_{1}, x_{2}\right)$ and $\left(u_{r}^{i}, v_{s_{j}}^{j}\right)=\left(y_{1}, y_{2}\right)$. For each $i \in\left\{1, \ldots, \zeta_{1}\right\}$ and each $j \in\left\{1, \ldots, \zeta_{2}\right\}$, associated to the $x_{1} y_{1}$-path P_{i} in G_{1} and to the $x_{2} y_{2}$-path Q_{j} in G_{2}, we consider the (x_{1}, x_{2}) $\left(y_{1}, y_{2}\right)$-path $R_{i, j}$ in $G_{1} \boxtimes G_{2}$ as follows:
(i) If $r_{i}<s_{j}$ then

$$
R_{i, j}: \begin{cases}\left(u_{0}^{i}, v_{0}^{j}\right)\left(u_{1}^{i}, v_{1}^{j}\right) \ldots\left(u_{1}^{i}, v_{s_{j}}^{j}\right), & \text { if } r_{i}=1 \\ \left(u_{0}^{i}, v_{0}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{r_{i}-1}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{j}-1}^{j}\right)\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right), & \text { if } r_{i} \geq 2\end{cases}
$$

(ii) If $r_{i} \geq s_{j}$ then

$$
R_{i, j}: \begin{cases}\left(u_{0}^{i}, v_{0}^{j}\right)\left(u_{1}^{i}, v_{1}^{j}\right) \ldots\left(u_{r_{i}}^{i}, v_{1}^{j}\right), & \text { if } s_{j}=1 \\ \left(u_{0}^{i}, v_{0}^{j}\right) \ldots\left(u_{s_{j}-1}^{i}, v_{s_{j}-1}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{j}-1}^{j}\right)\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right), & \text { if } s_{j} \geq 2\end{cases}
$$

The length of the path $R_{i, j}$ is $l\left(R_{i, j}\right)=\max \left\{r_{i}, s_{j}\right\} \leq \ell$. Since each path $R_{i j}$ is associated to specific paths P_{i} and Q_{j}, they are internally disjoint in $G_{1} \boxtimes G_{2}$ and the proof is complete.

Using paths of length at most ℓ in the generator graphs G_{1} and G_{2}, we have just constructed $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ internally disjoint paths in $G_{1} \boxtimes G_{2}$ of length at most ℓ which join two given vertices in $G_{1} \boxtimes G_{2}$. But if we allow the length of the paths in $G_{1} \boxtimes G_{2}$ to be at most $\ell+2$, it is possible to construct $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$ such paths.

Lemma 2.3. Let G_{1} and G_{2} be two connected graphs with at least three vertices and girth at least 5 . Let $\ell \geq \max \{D i a m$ $\left(G_{1}\right)$, $\left.\operatorname{Diam}\left(G_{2}\right)\right\}$ be an integer. For every two distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right)$ and every two distinct vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$ there exist at least $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$.
Proof. Let us denote by $\zeta_{1}=\zeta_{\ell}\left(G_{1}\right)$ and $\zeta_{2}=\zeta_{\ell}\left(G_{2}\right)$. Let $P_{1}, \ldots, P_{\zeta_{1}}$ and $Q_{1}, \ldots, Q_{\zeta_{2}}$ be internally disjoint paths defined as in the proof of Lemma 2.2, that is, $P_{i}: u_{0}^{i} u_{1}^{i} \ldots u_{r_{i}}^{i}$ and $Q_{j}: v_{0}^{j} v_{1}^{j} \ldots v_{s_{j}}^{j}$, where $\left(x_{1}, x_{2}\right)=\left(u_{0}^{i}, v_{0}^{j}\right)$ and $\left(y_{1}, y_{2}\right)=\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right)$, for $i \in\left\{1, \ldots, \zeta_{1}\right\}$ and $j \in\left\{1, \ldots, \zeta_{2}\right\}$. Next, we provide $\zeta_{1} \zeta_{2}+\zeta_{1}+\zeta_{2}$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ of length at most $\ell+2$.
(I) First, by considering the $x_{1} y_{1}$-path P_{1} in G_{1} and the $x_{2} y_{2}$-path Q_{1} in G_{2}, we construct three pairwise internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ of length at most $\ell+2$. These paths are denoted by $R_{1,1}^{\prime}, \widetilde{R}_{1,1}$ and R^{*} and their construction is done according to the length of the paths P_{1} and Q_{1}, that is, depending on r_{1} and s_{1}.
(a) If $r_{1}=1$ and $s_{1}=1$, that is, if $P_{1}: x_{1} y_{1}$ and $Q_{1}: x_{2} y_{2}$, then

$$
\begin{aligned}
& R_{1,1}^{\prime}:\left(x_{1}, x_{2}\right)\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right), \\
& \widetilde{R}_{1,1}:\left(x_{1}, x_{2}\right)\left(y_{1}, x_{2}\right)\left(y_{1}, y_{2}\right) \text { and } \\
& R^{*}:\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)
\end{aligned}
$$

are such paths. Their lengths are $l\left(R_{1,1}^{\prime}\right)=l\left(\widetilde{R}_{1,1}\right)=2$ and $l\left(R^{*}\right)=1$.
(b) If $r_{1}=1$ and $s_{1} \geq 2$, then

$$
\begin{aligned}
& R_{1,1}^{\prime}:\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{0}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{1}^{1}, v_{s_{1}}^{1}\right), \\
& \widetilde{R}_{1,1}:\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{1}^{1}, v_{s_{1}}^{1}\right) .
\end{aligned}
$$

Notice that $l\left(R_{1,1}^{\prime}\right)=l\left(\widetilde{R}_{1,1}\right)=s_{1} \leq \ell$. In this case, it is impossible to construct in $G_{1} \boxtimes G_{2}$ one more path induced only by P_{1} and Q_{1}. We solve this problem in two different ways depending on the value ζ_{1}.

Assume that $\zeta_{1}=1$. Since $x_{1} y_{1} \in E\left(G_{1}\right)$ and G_{1} has at least three vertices, there exists a vertex $u \in V\left(G_{1}\right)$ such that either $u x_{1} \in E\left(G_{1}\right)$ or $u y_{1} \in E\left(G_{1}\right)$. Without loss of generality, we consider that $u x_{1} \in E\left(G_{1}\right)$ and hence the first and the last internal vertex of the path Q_{1}^{u} are adjacent in $G_{1} \boxtimes G_{2}$ to (x_{1}, x_{2}) and (x_{1}, y_{2}), respectively. Thus, we obtain the $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-path

$$
R^{*}:\left(x_{1}, x_{2}\right)\left(Q_{1}^{u}\right)^{\prime}\left(x_{1}, y_{2}\right)\left(y_{1}, y_{2}\right),
$$

which has length $1+s_{1}-2+1+1 \leq \ell+1$.
If $\zeta_{1} \geq 2$, since $g\left(G_{1}\right) \geq 5$ and $r_{1}=1$, the path P_{2} exists and has length $r_{2} \geq 4$. Recall that $u_{0}^{1}=u_{0}^{2}=x_{1}, u_{1}^{1}=u_{r_{2}}^{2}=$ $y_{1}, v_{0}^{1}=x_{2}$ and $v_{s_{1}}^{1}=y_{2}$. We consider the path $R^{*}:\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{0}^{1}\right) R\left(u_{0}^{1}, v_{s_{1}}^{1}\right)\left(u_{1}^{1}, v_{s_{1}}^{1}\right)$, where

$$
R: \begin{cases}\left(u_{r_{2}-1}^{2}, v_{0}^{1}\right)\left(u_{r_{2}-2}^{2}, v_{1}^{1}\right) \ldots\left(u_{2}^{2}, v_{1}^{1}\right)\left(u_{1}^{2}, v_{2}^{1}\right), & \text { if } s_{1}=2 \\ \left(u_{r_{2}-1}^{2}, v_{0}^{1}\right) \ldots\left(u_{r_{r_{2}}}^{2}, v_{s_{1}-1}^{1}\right) \ldots\left(u_{1}^{2}, v_{s_{1}-1}^{1}\right), & \text { if } r_{2}>s_{1} \text { and } s_{1} \neq 2 \\ \left(u_{r_{2}-1}^{2}, v_{1}^{1}\right) \ldots\left(u_{r_{2}-1}^{2}, v_{s_{1}-r_{2}+1}^{1}\right) \ldots\left(u_{1}^{2}, v_{s_{1}-1}^{1}\right), & \text { if } r_{2} \leq s_{1} \text { and } s_{1} \neq 2\end{cases}
$$

The design of this path R^{*} must be combined with the ones of $R_{2,1}$ and $\widehat{R}_{2,1}$ described below. That is the reason why it becomes necessary to distinguish several cases to construct these three internally disjoint paths associated to the paths P_{1}, P_{2} in G_{1} and Q_{1} in G_{2}. Notice that $l\left(R^{*}\right)=\max \left\{s_{1}, r_{2}\right\}+2 \leq \ell+2$.
(c) The case $r_{1} \geq 2$ and $s_{1}=1$ is similar to the previous one due to the commutativity of the strong product of graphs.
(d) If $r_{1} \geq 2$ and $s_{1} \geq 2$, then

$$
\begin{aligned}
& R_{1,1}^{\prime}: \begin{cases}\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{0}^{1}, v_{s_{1}-r_{1}+1}^{1}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{s_{1}}^{1}\right)\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1} \leq s_{1} \\
\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{0}^{1}, v_{1}^{1}\right) \ldots\left(u_{s_{1}-1}^{1}, v_{s_{1}}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1}>s_{1},\end{cases} \\
& \widetilde{R}_{1,1}: \begin{cases}\left(u_{0}^{1}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{r_{1}-1}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1} \leq s_{1} \\
\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}-s_{1}+1}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1}>s_{1},\end{cases}
\end{aligned}
$$

and

$$
R^{*}: \begin{cases}\left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{r_{1}-1}^{1}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1} \leq s_{1} \\ \left(u_{0}^{1}, v_{0}^{1}\right) \ldots\left(u_{s_{1}-1}^{1}, v_{s_{1}-1}^{1}\right) \ldots\left(u_{r_{1}-1}^{1}, v_{s_{1}-1}^{1}\right)\left(u_{r_{1}}^{1}, v_{s_{1}}^{1}\right), & \text { if } r_{1}>s_{1} .\end{cases}
$$

In this case $l\left(R_{1,1}^{\prime}\right)=l\left(\widetilde{R}_{1,1}\right)=\max \left\{r_{1}, s_{1}\right\}+1 \leq \ell+1$, whereas $l\left(R^{*}\right) \leq \ell$. These three paths prove constructively the desired result when $\zeta_{1}=\zeta_{2}=1$.
(II) If $\zeta_{1} \geq 2$, then associated to the $x_{2} y_{2}$-path Q_{1} in G_{2} and to each $x_{1} y_{1}$-path P_{i} in $G_{1}, i \in\left\{2, \ldots, \zeta_{1}\right\}$, we construct two (x_{1}, x_{2}) (y_{1}, y_{2})-paths $R_{i, 1}$ and $\widehat{R}_{i, 1}$ of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$ as follows.

If $s_{1}=1$, then

$$
\begin{aligned}
& R_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{0}^{1}\right)\left(u_{r_{i}}^{i}, v_{1}^{1}\right), \\
& \widehat{R}_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{1}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{1}^{1}\right) .
\end{aligned}
$$

As we have previously mentioned, the difficulty to construct the paths $R_{i, 1}$ and $\widehat{R}_{i, 1}$ takes root in the fact that they must be internally disjoint with the path R^{*} considered in (I).

If $s_{1}=2$, then

$$
\begin{aligned}
& R_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-2}^{i}, v_{0}^{1}\right)\left(u_{r_{i}-1}^{i}, v_{1}^{1}\right)\left(u_{r_{i}}^{i}, v_{2}^{1}\right), \\
& \widehat{R}_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{1}^{1}\right)\left(u_{2}^{i}, v_{2}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{2}^{1}\right)
\end{aligned}
$$

If $r_{i}=3$ and $s_{1} \geq 3$, then

$$
\begin{aligned}
& R_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{1}^{1}\right) \ldots\left(u_{1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{2}^{i}, v_{s_{1}}^{1}\right)\left(u_{3}^{i}, v_{s_{1}}^{1}\right), \\
& \widehat{R}_{i, 1}:\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{0}^{1}\right)\left(u_{2}^{i}, v_{1}^{1}\right) \ldots\left(u_{2}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{3}^{i}, v_{s_{1}}^{1}\right) .
\end{aligned}
$$

If $r_{i}>s_{1} \geq 3$, then

$$
\begin{aligned}
& R_{i, 1}: \begin{cases}\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{r_{i}-s_{1}}^{i}, v_{1}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } s_{1} \text { is odd } \\
\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{r_{i}-s_{1}+1}^{i}, v_{1}^{1}\right) \ldots\left(u_{r_{i}-2}^{i}, v_{s_{1}-2}^{1}\right)\left(u_{r_{i}-2}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{r_{i}-1}^{i}, v_{s_{1}}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } s_{1} \text { is even, }\end{cases} \\
& \widehat{R}_{i, 1}: \begin{cases}\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-s_{1}+1}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}-2}^{1}\right)\left(u_{r_{i}-1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } s_{1} \text { is odd } \\
\left(u_{0}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-s_{1}+2}^{i}, v_{0}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}-3}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } s_{1} \text { is even. }\end{cases}
\end{aligned}
$$

If $s_{1} \geq r_{i}>3$, then

$$
\begin{aligned}
& R_{i, 1}: \begin{cases}\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{1}^{i}, v_{s_{1}-r_{i}+3}^{1}\right) \ldots\left(u_{r_{i}-2}^{i}, v_{s_{1}}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } r_{i} \text { is odd } \\
\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{1}, v_{1}^{1}\right) \ldots\left(u_{1}^{i}, v_{s_{1}-r_{i}+2}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } r_{i} \text { is even, }\end{cases} \\
& \widehat{R}_{i, 1}:\left\{\begin{array}{lll}
\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{0}^{1}\right)\left(u_{2}^{i}, v_{1}^{1}\right) \ldots\left(u_{2}^{i}, v_{s_{1}-r_{i}+2}^{1}\right) \ldots\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } r_{i} \text { is odd } \\
\left(u_{0}^{i}, v_{0}^{1}\right)\left(u_{1}^{i}, v_{0}^{1}\right)\left(u_{2}^{i}, v_{1}^{1}\right) \ldots\left(u_{2}^{i}, v_{s_{1}-r_{i}+1}^{1}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{1}-2}^{1}\right)\left(u_{r_{i}-1}^{i}, v_{s_{1}-1}^{1}\right)\left(u_{r_{i}}^{i}, v_{s_{1}}^{1}\right), & \text { if } r_{i} \text { is even. }
\end{array}\right.
\end{aligned}
$$

The length of the paths $R_{i, 1}$ and $\widehat{R}_{i, 1}$ is at $\operatorname{most} \max \left\{r_{i}, s_{1}\right\}+2 \leq \ell+2$. Notice that they are internally disjoint with all the paths described in (I).

If $\zeta_{2}=1$ and $\zeta_{1} \geq 2$, then (I) and (II) provide $3+2\left(\zeta_{1}-1\right)$ internally disjoint ($\left.x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$, as it is desired.
(III) If $\zeta_{2} \geq 2$, then the commutativity of the strong product of graphs leads us to deduce the existence of $2\left(\zeta_{2}-1\right)$ internally disjoint (x_{1}, x_{2}) $\left(y_{1}, y_{2}\right)$-paths $R_{1, j}$ and $\widehat{R}_{1, j}$, for $j \in\left\{2, \ldots, \zeta_{2}\right\}$ in $G_{1} \boxtimes G_{2}$, constructed in an analogous way as in (II). They are associated to the $x_{1} y_{1}$-path P_{1} in G_{1} and to the $x_{2} y_{2}$-paths $Q_{2}, \ldots, Q_{\zeta_{2}}$ in G_{2}.

If $\zeta_{1}=1$ and $\zeta_{2} \geq 2$, then (I) and (III) provide $3+2\left(\zeta_{2}-1\right)=2 \zeta_{2}+1$ internally disjoint ($\left.x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$ and the proof is finished.
(IV) If $\zeta_{1} \geq 2$ and $\zeta_{2} \geq 2$ then, for $i \in\left\{2, \ldots, \zeta_{1}\right\}$ and $j \in\left\{2, \ldots, \zeta_{2}\right\}$, associated to each $x_{1} y_{1}$-path P_{i} in G_{1} and to each $x_{2} y_{2}$-path Q_{j} in G_{2}, we consider the path

$$
R_{i, j}: \begin{cases}\left(u_{0}^{i}, v_{0}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{r_{i}-1}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{j}-1}^{j}\right)\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right), & \text { if } r_{i}<s_{j} \\ \left(u_{0}^{i}, v_{0}^{j}\right) \ldots\left(u_{s_{j}-1}^{i}, v_{s_{j}-1}^{j}\right) \ldots\left(u_{r_{i}-1}^{i}, v_{s_{j}-1}^{j}\right)\left(u_{r_{i}}^{i}, v_{s_{j}}^{j}\right), & \text { if } r_{i} \geq s_{j} .\end{cases}
$$

It is easy to see that $l\left(R_{i j}\right)=\max \left\{r_{i}, s_{j}\right\} \leq \ell$ and that these $\left(\zeta_{1}-1\right)\left(\zeta_{2}-1\right)$ paths $R_{i j}$ are internally disjoint with all the previous paths because they are associated to different paths in the generator graphs G_{1} and G_{2}.

If $\zeta_{1} \geq 2$ and $\zeta_{2} \geq 2$, (I) to (IV) provide $3+2\left(\zeta_{2}-1\right)+2\left(\zeta_{1}-1\right)+\left(\zeta_{1}-1\right)\left(\zeta_{2}-1\right)=\zeta_{1} \zeta_{2}+\zeta_{1}+\zeta_{2}$ pairwise internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$ of length at most $\ell+2$.

Making use of these previous lemmas, we provide next two lower bounds on the Menger number of the strong product of two connected graphs.

Theorem 2.1. Let G_{1} and G_{2} be two connected graphs with at least three vertices and $\ell \geq \max \left\{\operatorname{Diam}\left(G_{1}\right), \operatorname{Diam}\left(G_{2}\right)\right\}$ be an integer. The following assertions hold:
(i) $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$.
(ii) $\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$ if $g\left(G_{i}\right) \geq 5$ for $i=1,2$.

Proof. Let us consider vertices x_{1}, y_{1} in $V\left(G_{1}\right)$ and x_{2}, y_{2} in $V\left(G_{2}\right)$.
(i) If $x_{1}=y_{1}$ and $x_{2} \neq y_{2}$ (resp. if $x_{1} \neq y_{1}$ and $x_{2}=y_{2}$), then, by Lemma 2.1, there exist at least $\left(\delta\left(G_{1}\right)+1\right) \zeta_{\ell}\left(G_{2}\right)>$ $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ (resp. $\left.\zeta_{\ell}\left(G_{1}\right)\left(\delta\left(G_{2}\right)+1\right)>\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most ℓ in $G_{1} \boxtimes G_{2}$. If $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$ then, by Lemma 2.2, there exist at least $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$ paths of length at most ℓ in $G_{1} \boxtimes G_{2}$. Therefore, $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$.
(ii) Assume also that G_{1} and G_{2} have girth at least 5. If $x_{1}=y_{1}$ and $x_{2} \neq y_{2}$, then, by Lemma 2.1, there exist at least $\left(\delta\left(G_{1}\right)+1\right) \zeta_{\ell}\left(G_{2}\right)+\delta\left(G_{1}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)$ internally disjoint ($\left.x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$. The same conclusion is obtained when $x_{1} \neq y_{1}$ and $x_{2}=y_{2}$, due to Lemma 2.1. If $x_{1} \neq y_{1}$ and $x_{2} \neq y_{2}$ then, by Lemma 2.3, there exist at least $\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$ internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths of length at most $\ell+2$ in $G_{1} \boxtimes G_{2}$. Hence, $\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right) \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right)$.
Theorem 2.1(i) provides a tight bound. In fact, the equality $\zeta_{\ell}\left(G_{1} \boxtimes G_{2}\right)=\zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)$ holds, for instance, when G_{1} and G_{2} are both isomorphic to the path $P_{\ell+1}$ of length ℓ, or when G_{1} and G_{2} are isomorphic to the cycle $C_{2 \ell+1}$ of length $2 \ell+1$ or when $G_{1}=P_{\ell+1}$ and $G_{2}=C_{2 \ell+1}$ (see Fig. 1).

Also, Theorem 2.1(ii) is best possible in the sense that the hypothesis cannot be relaxed. On the one hand, the bound in Theorem 2.1(ii) may not be attained when at least one of the generator graphs has two vertices. For example, $\zeta_{\ell}\left(P_{2} \boxtimes P_{3}\right) \leq$ $\kappa\left(P_{2} \boxtimes P_{3}\right)=2<\zeta_{\ell}\left(P_{2}\right) \zeta_{\ell}\left(P_{3}\right)+\zeta_{\ell}\left(P_{2}\right)+\zeta_{\ell}\left(P_{3}\right)$ for $\ell \geq 2$. On the other hand, the same bound may fail when the hypothesis of girth at least five is not fulfilled. For example, let G_{1} be the graph formed by two cycles of length 5 which share a common vertex z, and let G_{2} be a cycle of length 4 . We consider an integer $\ell \geq \max \left\{\operatorname{Diam}\left(G_{1}\right), \operatorname{Diam}\left(G_{2}\right)\right\}=4$. Clearly $\zeta_{\ell}\left(G_{1}\right)=1$, because z is a cut vertex of G_{1}, and $\zeta_{\ell}\left(G_{2}\right)=2$. Let us consider two distinct vertices $x_{1}, y_{1} \in V\left(G_{1}\right) \backslash\{z\}$ such that any $x_{1} y_{1}$-path in G_{1} passes through z. For any two vertices $x_{2}, y_{2} \in V\left(G_{2}\right)$, it is impossible to construct five internally disjoint $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)$-paths in $G_{1} \boxtimes G_{2}$, because each of these paths must contain a vertex of the subgraph G_{2}^{z}. But this graph has only four vertices because it is isomorphic to G_{2}, that is, to the cycle of length 4.

As a consequence of Theorem 2.1 we obtain the following result.
Corollary 2.1. Let G_{1} and G_{2} be two maximally connected graphs with at least three vertices and girth at least 5 . If ℓ is an integer such that $\zeta_{\ell}\left(G_{1}\right)=\kappa\left(G_{1}\right)$ and $\zeta_{\ell}\left(G_{2}\right)=\kappa\left(G_{2}\right)$, then $\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right)=\delta\left(G_{1} \boxtimes G_{2}\right)$.

Fig. 1. Unique path of length 2 in $P_{3} \boxtimes C_{5}$ joining vertices $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$.
Proof. Taking into account Theorem 2.1, the maximal connectivity of graphs G_{1} and G_{2} and the fact that $\delta\left(G_{1} \boxtimes G_{2}\right)=$ $\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right)$, it follows that

$$
\begin{aligned}
\zeta_{\ell+2}\left(G_{1} \boxtimes G_{2}\right) & \geq \zeta_{\ell}\left(G_{1}\right) \zeta_{\ell}\left(G_{2}\right)+\zeta_{\ell}\left(G_{1}\right)+\zeta_{\ell}\left(G_{2}\right) \\
& =\kappa\left(G_{1}\right) \kappa\left(G_{2}\right)+\kappa\left(G_{1}\right)+\kappa\left(G_{2}\right) \\
& =\delta\left(G_{1}\right) \delta\left(G_{2}\right)+\delta\left(G_{1}\right)+\delta\left(G_{2}\right) \\
& =\delta\left(G_{1} \boxtimes G_{2}\right) .
\end{aligned}
$$

Since the other inequality is trivial, the desired result is proved.
As $\zeta_{\ell}(G) \leq \kappa(G)$ for every graph G and there exists an integer $\ell \leq|V(G)|-1$ for which the previous inequality is in fact an equality, from Corollary 2.1 it follows the following corollary whose proof is straightforward.

Corollary 2.2. Let G_{1} and G_{2} be two maximally connected graphs with at least three vertices and girth at least 5 . Then $G_{1} \boxtimes G_{2}$ is maximally connected.

Applying Corollary 2.1 and considering that for integers $n \geq m$ the Menger number $\zeta_{n-1}\left(C_{n}\right)=\zeta_{n-1}\left(C_{m}\right)=2$, we determine $\zeta_{n+1}\left(C_{n} \boxtimes C_{m}\right)$.

Corollary 2.3. For integers $n \geq m \geq 5$, let C_{n} and C_{m} be two cycles of lengths n and m respectively. Then $\zeta_{n+1}\left(C_{n} \boxtimes C_{m}\right)=8$.

References

[1] J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, On the geodetic and the hull numbers in strong product graphs, Comput. Math. Appl. 60 (11) (2010) 3020-3031.
[2] G. Chartrand, L. Lesniak, Graphs and Digraphs, Chapman and Hall/CRC, 2005.
[3] A. Hellwig, L. Volkmann, Maximally edge-connected and vertex-connected graphs and digraphs: a survey, Discrete Math. 308 (15) (2008) $3265-3296$.
[4] H. Li, X. Li, Y. Sun, The generalized 3-connectivity of Cartesian product, Discrete Math. Theoret. Comput. Sci. 14 (1) (2012) 43-54.
[5] L. Lovász, V. Neumann-Lara, M.D. Plummer, Mengerian theorems for paths of bounded length, Period. Math. Hungar. 9 (1978) $269-276$.
[6] M. Ma, J. Xu, Q. Zhu, The Menger number of the Cartesian product of graphs, Appl. Math. Lett. 24 (2011) 627-629.
[7] J. Ou, On optimizing edge connectivity of product graphs, Discrete Math. 311 (6) (2011) 478-492.
[8] S. Špacapan, Connectivity of strong products of graphs, Graphs Combin. 26 (2010) 457-467.
[9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
[10] D. Wood, Colouring the square of the cartesian product of trees, Discrete Math. Theoret. Comput. Sci. 13 (2) (2011) 109-112.

[^0]: This research was supported by the Ministry of Education and Science, Spain, and the European Regional Development Fund (ERDF) under project MTM2011-28800-C02-02; and under the Catalonian Government project 1298 SGR2009.

 * Corresponding author.

 E-mail addresses: eabajo@us.es (E. Abajo), rociomc@us.es (R.M. Casablanca), anadianez@us.es (A. Diánez), pgvazquez@us.es (P. García-Vázquez).

