
Separating the navigational aspect

Antonia M. Reina Quintero, Jesus Torres Valderrama
Languages and Computing Systems Department

University of Seville
Avda. Reina Mercedes, s/n, Sevilla, Spain

{reinaqu,jtorres}@lsi.us.es

Abstract

The first step given to separate concepts in web environ-
ments has been to take apart presentation from data. This
split has been gotten due to the appearance of the Extensi-
ble Mark-up Language (XML) and the application of style
sheets. The new ideas from the advanced separation of
concerns community and the new abstractions like aspects
make us think this original division isn’t rich enough. There
are important concepts of Internet applications that should
be defined separately. If we look at new web design method-
ologies, we can realize that one of these aspects is naviga-
tion. Following the way started by XML, we propose the
use of the XML Linking Language (XLink) as a first stage to
obtain the separation of the navigational aspect.

1. Introduction

The divide-and-win principle is one of the basis of soft-
ware engineering. Some of the results of this principle are
the ideas that have been arisen in the field of advanced sep-
aration of concerns,whose most representative example is
the notion of aspect.

An aspect is a new abstraction to wrap concerns that are
scattered all over the program code.

In web application environments a separation between
presentation and data has been achieved. This division can
be gotten due to the appearance of the Extensible Markup
Language (XML) [3] and style sheets (CSS [2], XSL [5]).

If we analyze the trends of the last web design method-
ologies (OOHDM [14], RMM [10], HDM [9] and so
on), we will realize that a very important concept involved
with web applications is navigation. The term navigation
includes the intrinsic notion of movement through an infor-
mation space [4], where the current position or context is a
crucial factor. That is because many times the next page to
visit while you are navigating will depend on the previous
navigation.

Web design methodologies treat navigation separately.
This fact demonstrates that navigation should be kept apart
from other concerns and reinforces the idea that the division
between presentation and data isn’t enough.

In this paper we propose the separation of the naviga-
tional aspect. As a first stage to get this division we use the
XML Linking Language to specify links keeping them apart
from data and presentation.

In section Navigation we define navigation concept as
it is understood in the scope of this paper. Section 3 is a
review of the state of the art in the separation of concerns
area. Afterwards we introduce the approaches proposed by
the last design methodologies to model navigation. Then
we discuss an example to illustrate some navigation prob-
lems and how the separated specification of links could help
us to handle this problems. Later we propose a solution
to separate the link structure using XLink. And finally we
summarize and conclude the paper.

2. Navigation

Navigation is a concept widely used in web environ-
ments. Its original meaning was bound to the semantic de-
fined in hypertext, that is, it represented the action of jump-
ing from page to page through a hyperlink. The advance
of technology has made us have a wider vision of the nav-
igation concept, being not only the action of jumping from
page to page, but the idea of moving through an information
space.

This extension of the semantic of the navigation concept
implies that we do not consider all the links as part of the
navigational process. For example, when we are using a
search machine like google or altavista, and we submit a
query, we obtain a web page as the result. This web page
usually has a few links on the bottom which are pointing
to other web pages with more results. We do not think that
we are navigating when we push on one of these specific
links, since we are not moving from an information space
to another one. These links are just a way to do scrolling.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Context is a very important concept in navigation. Let
us suppose we have a web-based application for a museum,
and we want some information on a concrete painting. If we
got the information navigating through the author, and then
we push on a link Next, we will move to the next painting
by the same author. However, if we got the painting through
a pictorial movement, the result of the navigation will be
different. In this case, we should move to another painting
related to the same movement.

In [13] navigation is defined as the sensation that the
user has when he navigates through an object space from the
application domain, but distinguishing these objects from
conceptual objects, as they are customized according to the
user’s profile and the tasks that are being made.

3. Separation of concerns

One of the approaches that have emerged strongly in the
last few years is separation of concerns, a principle which
has being applied in the area of software engineering prac-
tically from its very beginnings. However, the current tech-
nology has been focused mainly on the programming level.
The aspect-oriented programming (AOP) [8] proposal is
that it is possible to make programs better if you specify
separately the different concerns, properties or areas of in-
terest of a system, and the description of their relationships,
leaving the weaving or composition tasks to the AOP mech-
anisms (Figure 1).

Figure 1. Aspect-oriented programming
mechanisms.

Although generally speaking we know it as
aspect-oriented programming, there have arisen a
few different approaches in different researching
groups. The most important are: adaptive meth-
ods [12], which can be implemented using the DJ
library (http://www.ccs.neu.edu/research/demeter/DJ),

multidimensional separation of concerns
[15], whose result has been Hyper/J
(http://www.research.ibm.com/hyperspace/HyperJ/
HyperJ.htm), composition filters [1], and aspect-
oriented programming [11], whose main tool is As-
pectJ(http://www.aspectj.org).

AspectJ is an aspect-oriented, general purpose extension
to Java. It tries to abstract the concerns that are scattered
all over the program code. These concepts are known as as-
pects, and they use pointcuts to mix them with the code that
implements the basic functionality . Pointcuts are points
where the code that implements the basic functionality can
be augmented, either before, or after the join point. This
code is wrapped into an aspect.

Adaptive methods encapsulate the behavior of an oper-
ation in a concrete place, avoiding the scattering problem,
abstracting over the structure of classes, and avoiding the
tangling problem as well.

To achieve its objectives, adaptive methods express the
behavior like a high level description of how reaching to
the participants of the calculation (called traversal strategy)
and what to do when each participant has gotten it (known
as adaptive visitor). As a result, this group of research has
developed the DJ (Demeter/Java) library, which is a Java
package that gives us some tools to interpret the traversal
strategy and the adaptive visitor.

Multidimensional separation of concerns allows us to en-
capsulate any arbitrary class of concepts simultaneously,
and to integrate these concepts. This separation is based on
the idea of hyperspaces. They have made a tool called Hy-
per/J, which doesn’t extend Java, as Aspect/J does. Hyper/J
works with .class files, not with source files.

4. Navigation in methodologies

One of the pioneer methodologies in introducing naviga-
tion as a different aspect to treat during the design stage of
the development of a web application has been HDM [9].
This methodology presented some new primitives which
have served as basis to many methodologies that came later.

OOHDM (Object-Oriented Hypermedia Design Model)
may be one of the most consolidated web design method-
ologies. It considers navigation as a critical step in the de-
sign of a hypermedia application [13]. During the design
phase a model is constructed. This model is a view of the
classes from the conceptual model, so you can construct dif-
ferent navigation models for the same conceptual model.

A few primitives are used to define navigation: nodes
(they are views of the conceptual classes), links (they are
views of the relationships from de conceptual schema) and
access structures (they are alternative ways to navigate, as
indexes, guided tours and indexed guided tours).

Figure 2. Aspect-oriented programming mechanisms.

Apart from these primitives, which already appeared in
the first methodologies that treated navigation, OOHDM
has contributed with navigational context, a new primitive
to structure the navigational space.

Navigational context is a set of nodes, links, context
classes and other navigational contexts that are used to orga-
nize navigation space in consistent sets that can be traversed
following a particular order.

5. Navigation and aspects

Since navigation is an aspect that already has been
treated separately by the new design methodologies for the
development of web and multimedia applications, we think
the next step is to bridge the gap between design and imple-
mentation and take this separation to the latest stages of a
software project development. In order to obtain this sepa-
ration at the programming level, aspect-oriented program-
ming and multidimensional separation of concerns have
arisen. It is interesting to do a study to cross the gap be-
tween design and implementation using this technology.

We will introduce the next example to study what ad-
vantages we will obtain if we succeed separating clearly the
navigational aspect. Let us suppose a web application has
been made for a museum, and one of the initial requirements
was you should navigate from a painter to all his paintings.

To implement this requirement, you decided to use an in-
dex access structure. So, you had to implement something
like it is shown in (Figure 2(a)). Later, when a prototype
of the application was shown to the customer, he decided
he also wanted to navigate from one painting to another
painting by the same author. This new requirement made
you modify the design, because the access structure we had
chosen wasn’t the best one, and an Indexed Guided Tour
(Figure 2(b)) was chosen to fulfill this new requirement.

Such a conceptually simple change (the access structure
modification) can be an arduous and tedious work when you

Figure 3. HTML page (code and picture) im-
plementing the Guitar node using an Index
access structure.

modify the application. In Figure 3 we show the implemen-
tation of the original Guitar node (with the access structure
Index), and in Figure 4 we depict the same node but with
the Indexed Guided Tour access structure. We have empha-
sized the HTML code that we have to add to implement the
new access structure using bold fonts. Although they seem
only two lines of HTML code, it should have been noticed
that this web page is very simple (we decided to design it
so simply to appreciate clearly the problem) and, also, you
should notice this isn’t the only page we have to modify.
We have to change all the nodes of the context (Guernica
and Avignon, in this case).

Figure 5 describes the Index implementation classes
(Figure 5 (a)) and the Indexed Guided Tour implementation
classes (Figure 5(b)).

In this paper we propose something like it is described
in Figure 6 to separate the navigational elements com-
pletely. If we define these elements as an aspect, we can use
the aspect-oriented mechanisms to specify the new access
structure somehow, and weave it with the basic functional-
ity.

If we look at how most of the aspect-oriented tools work,
we will deduce the following things:

Figure 4. HTML page (code and picture) im-
plementing the Guitar node using an Guided
Tour Indexed access structure.

Figure 5. Implementation classes.

1. Somehow we should describe the main functionality of
the application. We should implement the conceptual
model.

2. On the other hand, we should define navigation sepa-
rately. Are the current aspect-oriented tools powerful
enough to obtain this separation at the implementation
level? And, if they are, which of the approaches ad-
justs better to the definition of this aspect?

3. We should look for one or many join points, that
means, where are we going to join the navigation as-
pect with the classes of the conceptual model?

4. We should implement a composition mechanism to
make functionality and navigation become one pro-
gram. How can we mix both concepts?

6. A first stage to separate navigation

With the appearance of the Extensible Mark-up Lan-
guage (XML) [3] and the Extensible Stylesheet Language
(XSL) [5] we have obtained a separation between presen-
tation and content. Nowadays there are some new specifi-
cations coming from the W3C Consortium like XLink [7]
and XPointer [6] which are based on XML and can help us
to separate navigation.

XLink is an specification which defines the way an
XML document should be linked, whereas XPointer de-
scribes how to point to a concrete place in a document. In
other words, XLink determines the document to access and
XPointer determines the exact point in the document.

Figure 6. Separation of navigational aspect.

In this paper we propose these new specification lan-
guages as a first stage to get the desired separation between
navigation and basic functionality. To face this problem,
we propose the use of the new link definitions specified in
XLink, in order that we can obtain data in one or more XML
files, on the one hand, and links in another XML file, on the
other hand.

If we apply this principle to the example proposed in sec-
tion Navigation and aspects, the files depicted in Figure 7,
Figure 8 and Figure 9 will be produced. On the one hand,
we have the data in the files picasso.xml, and avignon.xml.
On the other hand, we have defined the links among the dif-
ferent XML files in the link.xml file.

Figure 7. File picasso.xml.

Figure 8. File avignon.xml.

The main disadvantage of the use of this technology is
its youth, because the browsers aren’t ready to work with
XLink yet. So we can not appreciate the effect of the mix-
ture of data, presentation and links.

7. Conclusions and further work

If we pay attention to the current approaches in web
design methodologies, we can realize that navigation is a

Figure 9. File links.xml.

key concept in this kind of applications. The most recent
methodologies treat it separately, spending a whole stage
to design the navigational structure and creating different
models, one for conceptual classes and another one for nav-
igational classes.

This separation should be taken from design to imple-
mentation. We could use separation of concerns technolo-
gies to accomplish it. We propose to make a study to check
if aspect-oriented approaches fit well with the separation of
this concern. If they do, which of them fits better.

We consider that a first stage to obtain a separation of
navigation is to take apart links and we could specify them
separately with XLink.

We want to study if the primitives that are used by web
design methodologies can be defined using these technolo-
gies and how aspect-oriented languages can be embedded
in web pages and web applications.

References

[1] L. Bergmans and M. Aksits. Composing Crosscutting Con-
cerns Using Composition Filters. Communications of the
ACM, 44(10):51–57, October 2001.

[2] B. Bos, B. W. Lie, C. Lilley, and I. Jacobs. Cascading Style
Sheets, level 2. CSS2 Specification. W3C Recommendation.
(http://www.w3.org/TR/REC-CSS2), May 1998.

[3] T. Bray, J. Paoli, C. Sperberg-McQueen, and E. Maler. Ex-
tensible Markup Language (XML) 1.0 (Second Edition).
W3C Recommendation. (http://www.w3.org/TR/REC-
xml), October 2000.

[4] D. Cunliffe, C. Taylor, and D. Tudhope. Query-based Navi-
gation in Semantically Indexed Hypermedia. In Proceedings
of the Hypertext’97 Conference, 1997.

[5] S. Deach. Extensible Stylesheet Language (XSL) Specifica-
tion. (http://www.w3.org/TR/WD-xsl), April 1999.

[6] S. DeRose, E. Maler, and R. Daniel. XML Pointer
Language (XPointer) 1.0. W3C Recommendation.
(http://www.w3.org/TR/xptr/), September 2001.

[7] S. DeRose, E. Maler, and D. Orchad. XML Link-
ing Language (XLink) 1.0. W3C Recommendation.
(http://www.w3.org/TR/xlink/), June 2001.

[8] T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Pro-
gramming. Communications of the ACM, 44(10):29–31, Oc-
tober 2001.

[9] F. Garzotto, D. Schwabe, and P. Paolini. HDM - A Model
Based Approach to Hypermedia Application Design. ACM
Transactions on Information Systems, January 1993.

[10] T. Isakowitz, E. A. Stohr, and P. Balasubramanian. RMM: A
Methodology for Structured Hypermedia Design. Commu-
nications of the ACM, 38(8), August 1995.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An Overview of AspectJ. In In Pro-
ceedings of the European Conference on Object-Oriented
Programming. Springer-Verlag, 2001.

[12] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-Oriented
Programming with Adaptative Methods. Communications
of the ACM, 44(10):39–41, October 2001.

[13] D. Schwabe and G. Rossi. An Object Oriented Approach
to Web-Based Applications Design. TAPOS - Theory and
Practice of Object Systems, 4, 1998.

[14] D. Schwabe, G. Rossi, and S. Barbosa. Systematic Hyper-
media Design with OOHDM. In ACM International Confer-
ence on Hypertext’ 96, 1996.

[15] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. N Degrees of
Separation: Multi-dimensional Separation of Concerns. In
Proceedings of the 21st International Conference on Soft-
ware Engineering, May 1999.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

