
Efficient computation in rational-valued P systems

NADIA BUSI, MIGUEL A. GUTI ÉRREZ-NARANJO,

and MARIO J. P ÉREZ - J IM ÉNEZ

Research Group on Natural Computing, Department of Computer Science and Artificial Intelligence,
University of Sevilla, Spain

Email: {magutier,marper}@us.es

In memory of Nadia Busi

In this paper, we describe a new representation for deterministic rational-valued P systems

that allows us to form a bridge between membrane computing and linear algebra. On the

one hand, we prove that an efficient computation for these P systems can be described using linear
algebra techniques. In particular, we show that the computation for getting a
configuration in such P systems can be carried out by multiplying appropriate matrices. On

the other hand, we also show that membrane computing techniques can be used to get the

nth power of a given matrix.

1. Introduction

Since Gh. Păun introduced membrane computing in Păun (2000), a great diversity of P
system variants have been presented and a big effort has gone into proving important
theoretical properties of such devices. Most of these variants are computationally complete,
that is, if a problem can be solved algorithmically, then a P system of that kind can be
designed to solve the problem.

Such theoretical results are basic in the development of new computational paradigms.
Moreover, an important research branch in theoretical research on membrane systems
shows that whenever new membranes can be created along the computation, some P
systems are able to solve NP-complete problems in linear time by trading space for time.

After an initial wave of theoretical results, in recent years there has been an increasing
interest in practical applications within the P system community (see Ciobanu et al. (2006)).
This paper joins this research line and proposes a new representation for rational-valued P
systems that allows us to form a bridge between membrane computing and linear algebra,
and enriches P systems with successful techniques. We will prove that an efficient
computation can be performed for these P systems using linear algebra techniques.

Throughout this paper we consider deterministic P systems with restricted types of rules
(evolution and communication rules without cooperation).

The paper is organised as follows. We first describe an example that shows the difficulty
of finding effective solutions to large problems with current P system techniques. We then
give a brief introduction to rational-valued P systems and present a new representation for
configurations and rules in such a P system. We prove that computing a new configuration

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

from a given one can be performed by multiplying a vector by an appropriate matrix.

In Section 5, we show that well-known linear algebra techniques can be applied to solve

membrane computing problems using this new representation. Finally, we present some

conclusions and describe some new open lines of research.

2. Motivation

We will consider the following toy world:

A factory produces a good a. It can be produced as a secondary product in the transformation

of product b into c or c into b. Although, the factory needs energy, transport, storage and other

production costs, they are not taken into account in this toy description. In order to settle the ideas,

we consider that for each unit of raw material b the factory produces two units of a and one unit

of c. Analogously, for each unit of c, two units of a and one unit of b are produced.

The factory is also able to recycle product a. In order to simplify the description, we will suppose

that at each time unit, all objects a in the market are sent to the factory to be recycled. The factory

recycles them and obtains the fourth part of each object a sent into the factory.

All objects a produced by the factory are sent to the market.

In this toy problem, we do not consider other factories. We only consider that there are certain

numbers of objects coming out of the factory, which evolve according to some market rules. For

example, in one time unit we will consider that in the market for each unit of b, one unit of a and

four units of c are produced, and that each unit of c produces one unit of b.

Given a description of the stock in the factory and in the market for a time t = 0 (for example,

one unit of b inside the factory and one unit b in the market), the problem is to know how many

units of a will be in the market at some instant in the future, such as t = 100.

This toy problem can be easily translated into a P system. However, for the moment we

will not worry about the model – technical considerations will be discussed in the next

section.

We can consider our factory as a processor unit inside a market where three types of

objects a, b and c are transformed or sent from or into the factory. So we can consider

a membrane structure with only two membranes. The inner membrane, with label f, will

represent the factory, and the outer membrane, the skin, will be labelled by s and will

represent the market, that is, the membrane structure will be [[]f]s. The evolution of the

goods described above can be easily translated into a set of P system rules:

Rule 1: [a]f → a []f Rule 4: a []f → [a1/4]f
Rule 2: [b → a2c]f Rule 5: [b → ac4]s
Rule 3: [c → a2b]f Rule 6: [c → b]s

The description of the stock at t = 0 is the initial configuration of the P system. In this

case wf = b and ws = b.

This toy example shows how a system where the universe is split into regions with

different evolution rules and communication among adjacent regions can be easily

translated into a P system, where we focus on the evolution of the system instead of

the results encoded by the halting computations. It can be obviously generalised to more

complex situations. We can consider different departments in the factory or a market

composed of more factories with a hierarchical structure of departments inside. We will

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Fig. 1. An example

need a great number of membranes and rules, but the types of rules (rewriting rules inside

the membranes and communication rules for the interchange of objects between adjacent

regions) are the same.

Despite the advantages of describing the problem by means of a P system, it is not so

clear that this description is useful for computing an effective solution to the problem.

From a practical point of view, there are two possibilities within the current P system

techniques for computing the disposition of the stocks at t = 100:

1 Carry out all the computation steps in turn until the configuration at t = 100 is

reached. Although the new generation of software simulators has improved in efficiency

compared with the earliest ones, the application of a large set of rules many times is

not viable.

2 Produce a general scheme that provides the number of objects a in any configuration

from the initial configuration, and prove that the general scheme gives the right answer,

then obtain the solution for the case t = 100.

In our example, if we use Ct(a, s) to denote the multiplicity of the object a in the

membrane s (in the market) at time t, we have

C0(a, s) = 0, C1(a, s) = 1, C2(a, s) = 2, C3(a, s) = 25
4
,

C4(a, s) = 5
2
, C5(a, s) = 313

16
, C6(a, s) = 21

8
, C7(a, s) = 4537

64
,

C8(a, s) = 85
32
, C9(a, s) = 70585

256
C10(a, s) = 341

128
. . .

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

We leave the problem of finding the general expression for the sequence {Cn(a, s) | n ∈ �}
to the reader. However, in general, the task of finding the general term for such sequences

is very hard.

We will come back to this problem in later sections, but before that, we will give some

technical details for the P system model.

3. Rational-valued P systems

The extension of integer-valued P systems to rational-valued P systems is quite natural.

A multiset over a set A is a mapping m : A → � from A to the set of natural numbers.

A rational-valued multiset over the set A is a mapping m : A → � from A to the set

of rational numbers. The use of rational numbers in P systems is not new, and the

biological motivation is that symbol a can represent a mol of molecules of a instead of a

single molecule. In this way, it is reasonable to consider a non-integer portion of a. The

remaining ingredients for P systems used in this paper are as follows:

A rational-valued P system† of degree m is a tuple of the form

Π = (Γ, H, μ, w1, . . . , wm, R)

where:

1 Γ is an alphabet of objects.

2 H is a finite set of labels.

3 μ is a membrane structure whose nodes are called membranes. These membranes are

injectively labelled with labels from H .

4 w1, . . . , wm are rational-valued multisets over Γ associated with the membranes of μ.

5 R is a finite set of rules, using the following forms:

(a) [a → v]h where h ∈ H , a ∈ Γ and v is a rational-valued multiset over Γ. These are

object evolution rules associated with cells and depending only on the label of the

cell.

(b) a[]h → [v]h where h ∈ H , a ∈ Γ and v is a rational-valued multiset over Γ. These

are send-in rules. An object outside a membrane sends a multiset of objects into the

membrane.

(c) [a]h → v[]h where h ∈ H , a ∈ Γ and v is a rational-valued multiset over Γ. These

are send-out rules. An object inside a membrane sends a multiset of objects out of

the membrane.

During the computation, the multisets associated with the membranes can change, but

the alphabet Γ, the set of labels H , the membrane structure μ and the set of rules R are

fixed. We will call the 4-tuple (Γ, H, μ, R) the skeleton of the P system.

† We make an abuse of notation here. In general, the expression ‘rational-valued P system’ denotes any P system

in which the multisets can take rational values rather than just natural values. In this paper, however, we use

‘rational-valued P system’ for a specific variant with a membrane structure that does not change during the

computation, and where the rules used consider communication and evolution of the objects. Other variants

of P systems, using such further rules as division, dissolution, and so on, can also be rational-valued.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Rules are applied according to the following principles:

— All rules are applied in parallel: the rules are applied in one step to all objects to

which they can be applied. An object in a membrane can be used by only one rule,

chosen non-deterministically, but any object that can evolve by a rule of any form

should evolve.

— The objects to evolve in a step and the rules by which they evolve are chosen non-

deterministically, but in such a way that in each region we have a maximally parallel

application of rules.

— All objects and membranes not specified in a rule and that do not evolve are passed

unchanged to the next step.

We have here a double parallelism: one at the level of each membrane (the rules are used

in parallel) and one at the level of the system (all membranes evolve concomitantly).

Although rational-valued P systems are defined in a general way, in this paper we only

consider deterministic P systems, that is, at any step, at most one rule can be applied to

each object.

4. A new point of view

The key idea of the present paper is to consider a new representation for the configurations

and rules of a P system. The starting point is the representation used in Cordón-Franco

et al. (2005), but we introduce several changes.

First, our elementary objects are pairs of the type (a, h) ∈ Γ × H , meaning that the

object a ∈ Γ is in the membrane (labelled by) h ∈ H .

Roughly speaking, transitions in P systems are performed by rules in which the

occurrence of an element a0 in a membrane h0 produces the occurrence of β1 copies

of the element a1, β2 copies of the element a2, and so on, in a membrane h1.

More formally, the rules in the P system model presented above can be reformulated

as follows:

(a0, h0) → (a1, h1)
β1 (a2, h1)

β2 . . . (an, h1)
βn .

If h0 �= h1, we have a communication rule. In this case, both membranes must be

adjacent (one membrane is the father of the other one). If h0 is the father of h1,

we have a send-in communication rule. If the opposite holds, we have a send-out

communication rule. On the other hand, if h0 = h1, we have an evolution rule. For each

i ∈ {1, . . . , n}, βi represents the multiplicity of (ai, h1) on the right-hand side (RHS) of the

rule.

Note that according to this new representation, if all the left-hand sides (LHS) of the

rules are different, the P system is deterministic. We will consider P systems such that for

any object a and any membrane (labelled by) h we have a unique rule such that the LHS

is (a, h), adding the identity rule (a, h) → (a, h) if necessary. With the identity rules, we

obtain P systems whose computations may never stop. In this paper we are only interested

in the evolution of computation in time and not in halting conditions.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

4.1. Orders and rules

The second basic idea in the new representation consists of setting a total order in the

set Γ × H . In the rest of this paper, in order to simplify the notation, given an alphabet

Γ and a set of labels H , we will use d to denote the cardinal Γ × H . Let us consider a

total order O on the set Γ ×H , O : {1, . . . , d} → Γ ×H . Using this order, we will represent

Γ × H as the finite sequence {γ1, . . . , γd}, where γi is the ith pair of Γ × H in the order O.

Using this order, each rule

(a0, h0) → (a1, h1)
β1 (a2, h1)

β2 . . . (an, h1)
βn

can be represented as

γi → γα1

1 γα2

2 . . . γαdd

where (a0, h0) = γi and for all i ∈ {1, . . . , d}:

— if there exist j ∈ {1, . . . , n} such that γi = (aj , h1), then αi = βj;

— otherwise, αi = 0.

The use of an order on Γ × H leads us to a more homogeneous representation of the

rule γi → γα1

1 γα2

2 . . . γαdd . It can be represented by a pair 〈i,�v〉 where i is a natural number

between 1 and d, encoding the LHS of the rule, and �v is a rational valued vector of

dimension d.

Definition 4.1. Consider a rational-valued P system Π with Γ the alphabet, H the set of

labels and Γ × H the ordered set {γ1, . . . , γd}. The algebraic representation of the rule

γi → γα1

1 γα2

2 . . . γαdd

is the pair (i,�v) where�v = (α1, . . . , αd).

Note that given an order {γ1, . . . , γd} on Γ×H , any pair 〈n,�v〉, where n is a natural number

between 1 and d, and �v is a rational-valued vector of dimension d, defines a unique rule

and vice versa. In addition, each rule has a unique algebraic representation.

Example 4.1. Consider the P system described in Section 2. The set of objects is Γ =

{a, b, c} and the set of labels is H = {f, s}. Consider the following total order in Γ × H:

{(a, f), (b, f), (c, f), (a, s), (b, s), (c, s)}

The six rules of the P system

Rule 1: [a]f → a []f Rule 4: a []f → [a1/4]f
Rule 2: [b → a2c]f Rule 5: [b → ac4]s
Rule 3: [c → a2b]f Rule 6: [c → b]s

can be written as

r1: (a, f) → (a, s) r4: (a, s) → (a, f)1/4

r2: (b, f) → (a, f)2(c, f) r5: (b, s) → (a, s)(c, s)4

r3: (c, f) → (a, f)2(b, f) r6: (c, s) → (b, s).

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Using the previous total order in Γ × H , these rules have the following algebraic

representation:

Rule 1: 〈1, (0, 0, 0, 1, 0, 0)〉 Rule 4: 〈4, (1
4
, 0, 0, 0, 0, 0)〉

Rule 2: 〈2, (2, 0, 1, 0, 0, 0)〉 Rule 5: 〈5, (0, 0, 0, 1, 0, 4)〉
Rule 3: 〈3, (2, 1, 0, 0, 0, 0)〉 Rule 6: 〈6, (0, 0, 0, 0, 1, 0)〉.

4.2. Configurations

A configuration of such a rational-valued P system is the description of the multiset placed

in the membranes of the P system at a given moment. Formally, given a rational-valued P

system with working alphabet Γ and set of labels H , a configuration C is a rational-valued

multiset over Γ × H , and we use C(a, m) to denote the multiplicity of the object a in the

membrane labelled by m of that configuration. The support of C , supp(C), is defined as

supp(C) = {(a, m) ∈ Γ × H |C(a, m) �= 0} and, as usual in multisets theory, C will be

represented as {(a, m)C(a,m) | (a, m) ∈ supp(C)}. For example, the initial configuration of

our example [[b]f b]s can be represented as {(b, f), (b, s)}. This representation is adequate

because the membrane structure does not change during the evolution.

In order to formalise the concept of computation with this new representation, we will

fix some notation. Consider the order {γ1, . . . , γd} on Γ ×H . For each i (1 � i � d) we will

use ri to denote the unique rule having the pair γi as the LHS of the rule. We also use

RHSi to denote the right-hand side of the rule ri, and for all σ ∈ Γ ×H , we use |RHSi(σ)|
to denote the multiplicity of σ in RHSi.

Example 4.2. Consider the P system described in Section 2, and let

((a, f), (b, f), (c, f), (a, s), (b, s), (c, s))

be the total order on Γ × H . Since (b, s) is the fifth element in the order, we have

r5 : (b, s) → (a, s)(c, s)4, RHS5 = (a, s)(c, s)4 and |RHS5(c, s)| = 4.

In order to obtain a new configuration C ′ from a given configuration C and from the

set of rules {ri | 1 � i � d}}, we need to describe the multiplicity of any σ ∈ Γ × H in

C ′. In such a multiplicity, each rule ri : γi → RHSi adds the multiplicity of σ on the

right-hand side of the rule multiplied by the multiplicity of γi in the configuration C .

Formally, for every r (1 � r � d), we have

C ′(γr) =

d∑
i=1

C(γi) · |RHSi(γr)|.

Example 4.3. In our example, the initial configuration is C0 = {(b, s), (b, f)}. In order to

know the multiplicity of the pair (a, s) in the configuration C1, it suffices to compute

C ′((a, s)) = C(γ1) · |RHS1(a, s)| + C(γ2) · |RHS2(a, s)| + C(γ3) · |RHS3(a, s)|
+ C(γ4) · |RHS4(a, s)| + C(γ5) · |RHS5(a, s)| + C(γ6) · |RHS6(a, s)|
= 0 · 1 + 1 · 0 + 0 · 0 + 0 · 0 + 1 · 1 + 0 · 0

= 1.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Given the idea of fixing an order on Γ × H , the representation of a configuration by

means of a vector is quite natural.

Definition 4.2. Consider a rational-valued P system Π with Γ the alphabet, H the set of

labels and Γ×H the ordered set {γ1, . . . , γd}. An algebraic representation of a configuration

C : Γ × H → � is a rational-valued vector

�C = (C(γ1), . . . , C(γd)).

That is, the jth element in �C is a rational number representing the multiplicity of the jth

element of Γ × H .

Example 4.4. As we have already seen, the initial configuration [[b]f b]s can be expressed

as the multiset C = {(b, f), (b, s)}. If we consider the order

{(a, f), (b, f), (c, f), (a, s), (b, s), (c, s)},

then the algebraic representation of the configuration is �C = (0, 1, 0, 0, 1, 0).

Note that there exists a bijective correspondence between a configuration C and its

algebraic representation �C .

4.3. Matrices associated with sets of rules

Having defined the algebraic representation of rules and a configuration, we will now

define a matrix to compute a new configuration from a given one.

Definition 4.3. Consider a rational-valued P system Π with Γ the alphabet, H the set

of labels and Γ × H the ordered set {γ1, . . . , γd}. Let R = {〈1, �v1〉, . . . 〈d, �vd〉} be the set of

algebraic representations of the rules of Π. The d × d matrix MΠ whose rows are the

vectors �v1, . . . , �vd, respectively, is the matrix associated with Π.

Notice that the matrix associated with a given P system depends only on the skeleton

of the P system and not on a specific initial configuration.

Example 4.5. In our example, the matrix associated with the P system Π is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

2 0 1 0 0 0

2 1 0 0 0 0
1
4

0 0 0 0 0

0 0 0 1 0 4

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

The definition of these algebraic objects allows us to define an algebraic method for

obtaining a new configuration from a given one.

Theorem 4.1. Let Π a rational-valued P system Π with Γ the alphabet, H the set of

labels and Γ × H the ordered set {γ1, . . . , γd}. Let MΠ be its associated matrix. Given

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

a configuration C , the next configuration C ′ of the P system can be obtained as the

configuration associated with the algebraic configuration �C · MΠ.

Proof. It suffices to show that for every r (1 � r � d), the multiplicity of γr in C ′

coincides with the rth component of the vector �C · MΠ.

Let C be the given configuration and {γi → RHSi | 1 � i � d} be the set of rules of the

P system. Then, the configuration obtained from C by the application of the rules is the

new configuration C ′, verifying that for every r (1 � r � d)

C ′(γr) =

d∑
i=1

C(γi) · |RHSi(γr)|.

On the other hand, the rth component of the vector �C · MΠ is

(�C · MΠ)r =

d∑
j=1

�Cj · (MΠ)jr

where �Cj is the jth component of the vector �C and (MΠ)jr is the jth element in the rth

row of the matrix MΠ. Let us analyse such a �Cj and (MΠ)jr .

— By definition, the jth component of the vector �C is the multiplicity of γj in the

configuration C , that is, C(γj).

— The jth element in the rth row of the matrix MΠ is the multiplicity of γr in the RHS

of the rule rj , that is, |RHSj(γr)|.
Therefore, for every r (1 � r � d), we have

(�C · MΠ)r =

d∑
j=1

�Cj · (MΠ)jr =

d∑
i=1

C(γi) · |RHSi(γr)| = C ′(γr).

Example 4.6. In our example we consider the initial configuration C0 with wf = ws = 1:

[b]f b]s. Applicable rules are rule 2: [b → a2c]f and rule 5: [b → ac4]s, so

C1 = [[a2c]f ac
4]s.

In order to obtain the next configuration we should consider rules 1: [a]f → a []f , 3:

[c → a2b]f , 4: a []f → [a1/2]f and 6: [c → b5]f . We obtain

C2 = [[a
9
4 b]f a

2b4]s

Using the algebraic representation, �C0 = (0, 1, 0, 0, 1, 0) and considering the matrix MΠ

from Example 4.5, we get

�C1 = �C0 · MΠ = (2, 0, 1, 1, 0, 4)

and

�C2 = �C1 · MΠ =

(
9

4
, 1, 0, 2, 4, 0

)
.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

5. From membrane computing to linear algebra

From Theorem 4.1 we deduce that in order to know the nth configuration of a P system

Π from a given configuration C0, it is only necessary to consider the algebraic expression

of C0, �C0 and the application matrix MΠ, and compute

�Cn = �C0 · Mn
Π

where Mn
Π is the nth power of the matrix MΠ. Then, we just have to translate �Cn into Cn

to get the desired configuration.

The translation of the membrane computing techniques into linear algebra opens up a

new perspective, since the use of rational number and simple arithmetic operations such

as addition and multiplication can elucidate the evolution of the P systems.

However, this solution is not suitable for real-world problems since the dimension of

the matrix is d × d, where d is the product of the number of objects of the alphabet

and the number of membranes. Computing the nth power of the d × d matrix MΠ is a

very hard task whenever n is large enough. Using the Coppersmith–Winograd algorithm

(Coppersmith and Winograd 1990), this problem can be solved in time O(n · d 2.376).

Fortunately, this problem has been studied deeply in linear algebra and a successful

solution has been found: given a square matrix A, it is possible to find two square matrices

P and B such that A = P · B · P−1 with B as simple as possible†. In the best case, B is a

diagonal matrix.

In this way, given a square matrix A and its associated matrices P and B, if A = P ·B·P−1,

we have An = P ·Bn ·P−1, for all n ∈ �. The computation of B and P is hard if the order

of A is high, but it is justified if the power n is large enough.

Example 5.1. Given our application matrix MΠ, we consider the matrices

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 15
2

− 15
2

0 0

0 −1 −10 30 1 0

0 1 −10 30 1 0

0 0 − 15
4

− 15
4

0 0

−2 0 − 1
2

1
2

0 2

1 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 0 0 0

0 −1 0 0 0 0

0 0 − 1
2

0 0 0

0 0 0 1
2

0 0

0 0 0 0 1 0

0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The nth power of B is

Bn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(−2). 0 0 0 0 0

0 (−1)n 0 0 0 0

0 0 (− 1
2
)n 0 0 0

0 0 0 1
2n

0 0

0 0 0 0 1 0

0 0 0 0 0 2n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

† Such matrix is called the Jordan canonical form of the matrix, see Horn and Johnson (1985) for details.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Bearing in mind that P−1 is the matrix

P−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
60

0 0 2
15

− 1
4

1
2

0 − 1
2

1
2

0 0 0
1
15

0 0 − 2
15

0 0

− 1
15

0 0 − 2
15

0 0
8
3

1
2

1
2

8
3

0 0
1
60

0 0 2
15

1
4

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

if we use v4(n) to denote the fourth component of �Cn and considering �Cn = �C0 ·P ·Bn ·P−1,

then

v4(n) =
8

3
+

1

15

(
−1

2

)n

− 1

2n−2
+

1

3
(−1)n

1

2n−2
− 1

15

1

2n
+

2n+2

15
− 1

15
(−1)n2n+2.

Finally, v4(n) can be expressed in a simpler way as

v4(n) =

⎧⎨
⎩

1
15

1
2n

(40 2n + 22n+3 − 82) if n is odd

8
3

(
1 − 1

2n

)
if n is even.

For the problem in Section 2, we wanted to know the amount of good a in the market

at time t = 100. Using the general expression above, we can now say that v4(100) is very

close to 8
3
: more precisely, v4(100) = 8

3

(
1 − 1

2100

)
.

6. From linear algebra to membrane computing

In the previous section we saw that the nth power of a matrix can help us describe the

configuration of a rational-valued P system after n transition steps. In this section we will

study the reverse question: can we use membrane computing techniques to compute the

nth power of the matrix? We will now show that we can give an affirmative answer to

this question.

The first step is to obtain a rational-valued P system associated with a given rational-

valued square matrix.

Theorem 6.1. Let M be a rational-valued square matrix of dimension d × d. We can

construct a rational-valued P system Π such that M is the matrix associated with Π.

Proof. As we pointed out earlier, the matrix associated with a given P system depends

only on the skeleton of the P system and not on a specific initial configuration. So, in

order to prove the theorem, it is enough to give the alphabet, the set of labels and the

rules of a P system. Consider:

— the ordered alphabet Γ = {a1, . . . , ad};
— the set of labels H = {s}, that is, the P system has only a membrane, the skin;

— the membrane structure []s.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Consider the order {(a1, s), . . . , (ad, s)} on Γ × H associated with the total order in Γ, and

the set of rules R obtained from the set of algebraic representations {(i,�vi) | 1 � i � d}
(where�vi is the ith row of M) after removing identity rules.

By construction, M is the matrix associated with any rational-valued P system with

skeleton (Γ, H, μ, R).

Given a rational-valued square matrix M of dimension d × d, the P system Π(M)

constructed from M according to the previous theorem is not unique. Moreover, there

can exist two or more such P systems with different skeletons, as the following example

shows.

Example 6.1. Consider again the square matrix from Example 4.5:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0

2 0 1 0 0 0

2 1 0 0 0 0
1
4

0 0 0 0 0

0 0 0 1 0 4

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

As we saw earlier, it is the associate matrix of the P system

Π = (Γ, H, μ, wf, ws, R)

where Γ = {a, b, c}, H = {f, s}, μ = [[]f]s,wf = b, ws = b and R is the set of rules

Rule 1: [a]f → a []f Rule 4: a []f → [a1/4]f
Rule 2: [b → a2c]f Rule 5: [b → ac4]s
Rule 3: [c → a2b]f Rule 6: [c → b]s.

On the other hand, following the construction of the theorem, we also have, for example,

the P system

Π′ = (Γ, H, μ, ws, R)

where Γ = {a1, . . . , a6}, H = {s}, μ = []s, ws = a1 and R is the set of rules

Rule 1: [a1 → a4]s Rule 4: [a4 → a
1/4
1]s

Rule 2: [a2 → a2
1a3]s Rule 5: [a5 → a4a

4
6]s

Rule 3: [a3 → a2
1a2]s Rule 6: [a6 → a5]s.

We will now define a concept that is basic for the computation of the power of a matrix

using P systems. We have seen that, in general, we can find several skeletons of P systems

associated with a given matrix. In order to obtain the computation, we need to consider

an initial configuration together with the skeleton of the P system. Given the skeleton of

a P system, the next definition shows a set of initial configurations that will be helpful for

our purposes.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Definition 6.1. Let Γ be the alphabet and H be the set of labels of a given P system,

and let {γ1, . . . , γd} be an order on Γ × H . We will say that the set of configurations

{C1
0 , . . . , C

d
0 } is the basis for this order on Γ × H whenever for every i ∈ {1, . . . , d}, the

algebraic representation of Ci
0 is a vector of dimension d with all its components equal to

zero except the ith component, which is equal to one.

Example 6.2. Consider the ordered alphabet Γ = {a, b, c} and H = {f, s} with the

order {(a, f), (b, f), (c, f), (a, s), (b, s), (c, s)}. Then the associated basis is B = {C1
0 , . . . ,C6

0}
where C1

0 = {(a, f)}, C2
0 = {(b, f)}, C3

0 = {(c, f)}, C4
0 = {(a, s)}, C5

0 = {(b, s)} and C6
0 =

{(c, s)}.

Finally, the next theorem provides a method for computing the power of a rational-

valued square matrix using membrane computing techniques.

Theorem 6.2. Let M be a rational-valued square matrix of dimension d. Let (Γ, H, μ, R) be

the skeleton of a P system Π such that M is the matrix associated with Π. Let {γ1, . . . , γd}
be an order on Γ × H and let B = {C1

0 , . . . , C
d
0 } be the basis for this order on Γ × H .

Consider n ∈ � and for every i (1 � i � d) let Ci
n be the configuration obtained in the P

system with skeleton (Γ, H, μ, R) and initial configuration Ci
0 after n steps of transitions.

Then the nth power of M is the matrix having �C1
n , . . . ,

�Cd
n as rows, where �Ci

n is the algebraic

representation of Ci
n for every i (1 � i � d).

Proof. We must prove that �Ci
n = (Mn)i for every i (1 � i � d), where (Mn)i is the ith

row of Mn.

From Theorem 4.1 we know that for any configuration C0, the next configuration

C1 is the configuration associated with the algebraic configuration �C0 · M, and then the

nth configuration obtained from C0 is the configuration associated with the algebraic

configuration �C0 · Mn.

This holds for any configuration, and thus, in particular, for the element of the basis.

Therefore, for each i ∈ {1, . . . , d},
�Ci
n = �Ci

0 · Mn.

However, �Ci
0 · Mn is the ith row of Mn, since �Ci

0 is a vector with all its components equal

to zero, apart from the ith component, which is equal to 1.

Corollary 6.1. P systems can be used to compute the n-power of a d × d matrix in time

Θ(n · d).

Example 6.3. Consider the rational-valued square matrix of dimension 3 × 3

M =

⎛
⎝2 0 1

1 1 0

3 1 1

⎞
⎠

sand consider the skeleton (Γ, H, μ, R) where Γ = {a, b, c}, H = {s}, μ = [] , and R is the
set of rules

R1 ≡ [a → a2c]s R2 ≡ [b → ab]s R3 ≡ [c → a3bc]s.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Consider the order ((a, s), (b, s), (c, s)) and the basis B = {C1
0 , C

2
0 , C

3
0 } with C1

0 = {(a, s)},
C2

0 = {(b, s)} and C3
0 = {(c, s)}. The first three steps of the computation, starting with the

elements of the basis, are as follows:

C1
0 = [a]s C1

1 = [a2c]s C1
2 = [a7bc3]s C1

3 = [a24b4c10]s
C2

0 = [b]s C2
1 = [ab]s C2

2 = [a3bc]s C2
3 = [a10b2c4]s

C3
0 = [c]s C3

1 = [a3bc]s C3
2 = [a10b2c4]s C3

3 = [a34b6c14]s.

Since �C1
3 = (24, 4, 10), �C2

3 = (10, 2, 4) and �C3
3 = (34, 6, 14), according to Theorem 6.2, we

have

M3 =

⎛
⎝24 4 10

10 2 4

34 6 14

⎞
⎠

7. Conclusions and future work

In the early years of membrane computing research, a big effort was made to prove the

computational completeness and computational efficiency of the different models of P

systems. Recently, a wide research line has opened up looking for solutions to real-world

problems. Membrane computing provides a framework flexible enough to adapt to many

different problems, as shown in Ciobanu et al. (2006), and this increasing extension to

other scientific areas requires ever more efficient techniques.

In this paper we have presented a new point of view on the representation of P systems.

The consideration of rational-valued P systems is not new, and the representation of

configurations and rules using object–label pairs has been the basis for other successful

results (see Gutiérrez-Naranjo et al. (2006) or Gutiérrez-Naranjo et al. (2005)). The main

novelty in the current paper is the use of a total order on the set of object–label pairs.

This order has also allowed us to represent the multiplicities of the objects in the different

membranes as a vector on the right-hand side of the rules. We have shown that the

associated matrix is a powerful tool for computing the configuration after n transition

steps and, being a rational-valued matrix, we can operate on it with all the well-known

linear algebra techniques. In particular, the Jordan matrix computation can be applied to

solve real-world problems described in terms of membrane computing.

The use of this new representation opens up a wide range of possibilities by translating

linear algebra results into P systems. From the membrane computing point of view, the

question is whether this representation can be extended to other P system models, and, in

particular, to non-deterministic models and/or to models where the membrane structure

can change during the computation.

Furthermore, we have shown that membrane computing techniques can be used to

compute the nth power of a given matrix. The current state of P system simulators cannot

compete with dedicated software for computation with matrices, but if the research leads

us to an implementation of P systems (in vivo, in vitro or in electronic media), our results

provide algorithms for a realistic computation of the powers of matrices using membrane

computing devices.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

Acknowledgement

The authors acknowledge the support of both the project TIN2006-13425 of the Ministerio

de Educación y Ciencia of Spain, co-financed by FEDER funds, and the project of

excellence TIC-581 of the Junta de Andalucı́a.

References

Ciobanu, G., Păun, Gh. and Pérez-Jiménez, M. J. (eds.) (2006) Applications of Membrane Computing,

Springer-Verlag.

Coppersmith, D. and Winograd, S. (1990) Matrix multiplication via arithmetic progressions. Journal

of Synbolic Computation 9 251–280.

Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M. J. and Riscos-Núñez, A. (2005)

Exploring Computation Trees Associated with P Systems. In: Membrane Computing. Springer-

Verlag Lecture Notes in Computer Science 3365 278–286.

Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M. J., Riscos-Núñez, A. and Romero-Campero, F. J.

(2005) P Systems with Active Membranes, without Polarizations and with Dissolution: A

Characterization of P. In: Unconventional Computation. Springer-Verlag Lecture Notes in

Computer Science 3699 105–116.

Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M. J., Riscos-Núñez, A. and Romero-Campero, F. J. (2006)

On the Power of Dissolution in P Systems with Active Membranes. In: Membrane Computing.

Springer-Verlag Lecture Notes in Computer Science 3850 224–240.

Horn, R.A. and Johnson, C.R. (1985) Matrix Analysis, Cambridge University Press.

Păun, Gh. (2000) Computing with membranes. Journal of Computer and System Sciences 61 (1)

108–143.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129509990144
https://www.cambridge.org/core

