
A Quasi-Metric for Machine Learning

Miguel A. Gutiérrez-Naranjo, José A. Alonso-Jiménez, and
Joaqúın Borrego-Dı́az

Dept. of Computer Science and Artificial Intelligence – University of Sevilla
{magutier, jalonso, jborrego}@us.es

Abstract. The subsumption relation is crucial in the Machine Learn-
ing systems based on a clausal representation. In this paper we present
a class of operators for Machine Learning based on clauses which is a
characterization of the subsumption relation in the following sense: The
clause C1 subsumes the clause C2 iff C1 can be reached from C2 by
applying these operators. In the second part of the paper we give a for-
malization of the closeness among clauses based on these operators and
an algorithm to compute it as well as a bound for a quick estimation.

1 Introduction

In a Machine Learning system based on clausal logic, the main operation lies on
applying an operator to one or more clauses with the hope that the new clauses
give a better classification for the training set. This generalization must fit into
some relation of order on clauses or sets of clauses. The usual orders considered
in Machine Learning based on clauses are the subsumption order, denoted by
�, and the implication order |=. Most of the systems use the subsumption order
to carry out the generalization, in spite of the implication order is stronger, i.e.,
if the clause C1 subsumes the clause C2, C1 � C2, then C1 |= C2. The reason
for choosing the subsumption order is easy: The subsumption between clauses is
decidable, whereas the implication order is not [10].

Therefore the subsumption between clauses is the basic relation of order in
the generalization processes in Machine Learning with clausal representation, but
how is this generalization carried out? The subsumption relation was presented
by G. Plotkin [7]. In his study about the lattice structure induced by this relation
on the set of clauses, he proved the existence of the least general generalization
of two clauses under subsumption and defined the least generalization under
relative subsumption. Both techniques are the basis of successful learning systems
on real-life problems.

Later, different classes of operators on clauses, the so-called refinement opera-
tors, were studied by Shapiro [9], Laird [4] and Nienhuys-Cheng and de Wolf [11]
among others. In their works, the emphasis is put on the specialization operators,
which are operators such that the obtained clause is implied or subsumed by the
� Work partially supported by the MCyT project TIC 2000-1368-C03-0 and the project
TIC-137 of the Plan Andaluz de Investigación.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

original clause, and the generalization operators are considered the dual of the
first ones.

In this paper we present new generalization operators for clausal learning,
the Learning Operators under Subsumption (LOS) which allow us to generalize
clauses in the subsumption order, i.e., if C is a clause, {∆/x} is a LOS and
C{∆/x} is the output clause, then C{∆/x} subsumes C.

This property states that the LOS are operators of generalization under
subsumption in the set of clauses, but the main property of these operators
is that the LOS represent a characterization by operators of the subsumption
relation between clauses in the following sense: If C1 and C2 are clauses, C1

subsumes C2 if and only if there exists a finite sequence (a chain) of LOS
{∆1/x1}, . . . , {∆n/xn} such that

C1 = C2{∆1/x1} . . . {∆n/xn}

If C1 subsumes C2, we know that the set of chains of LOS from C2 to C1 is not
empty, but in general the set has more than one element.

The existence of a non-empty set of chains gives us the idea for a formalization
of closeness among clauses as the length of the shortest chain from C2 to C1, if
C1 subsumes C2, and infinity otherwise.

This mapping, which will be denoted by dc, is the algebraic expression of the
subsumption order: for every pair of clauses, C1 and C2, C1 subsumes C2 if and
only if dc(C2, C1) is finite. Since the subsumption order is not symmetric, the
mapping dc is not either. Therefore dc is not a metric, but a quasi-metric.

Finally, dc is computable. We give in this paper an algorithm which calculates
the quasi-distance between two clauses and present a bound which allows to
estimate the closeness between clauses under the hypothesis of subsumption.

2 Preliminaries

From now on, we will consider some fixed first-order language L with at least
one function symbol. V ar, Term and Lit are, respectively, the sets of variables,
terms and literals of L. A clause is a finite set of literals, a program is a finite
set of clauses and C is the set of all clauses.

A substitution is a mapping θ : S → Term where S is a finite set of variables
such that (∀x ∈ S)[x 	= θ(x)]. We will use the usual notation θ = {x/t : x ∈ S},
where t = θ(x), Dom(θ) for the set S and Ran(θ) = ∪{V ar(t) : x/t ∈ θ}. A
pair x/t is called a binding. If A is a set, then |A| is the cardinal of A and PA
its power set. We will denote by |θ| the number of bindings of the substitution
θ. The clause C subsumes the clause D, C � D, iff there exists a substitution θ
such that Cθ ⊆ D.

A position is a non-empty finite sequence of positive integers. Let N
+ denote

the set of all positions. If t = f(t1, . . . , tn) is an atom or a term, ti is the term at
position i in t and the term at position î u in t is s if s is at position u in ti. Two
positions u and v are independent if u is not a prefix of v and vice versa. A set

of positions P is independent if (∀u, v ∈ P)[u 	= v ⇒ u and v are independent]
and the set of all positions of the term t in L will be denoted by Pos(L, t).
If t is a term (resp. an atom), we will denote by t[u ← s] the term (resp. the
atom) obtained by grafting the term s in t at position u and, if L is a literal, we
will write L[P ← s] for the literal obtained by grafting the term s in L at the
independent set of positions P .

3 The Operators

In the generalization process, when a program P is too specific, we replace it
by P ′ with the hope that P ′ covers the examples better than P . The step from
P to P ′ is usually done by applying an operator to some clause C of P . These
operators can be defined as mappings from C to C where C is the set of clauses
of the language. Before giving the definition of the operator, we will give some
intuition with an example.

C2 = { sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z) }
z z

P1 = {1} P2 = ∅ P3 = {1, 3}

s(x)

sum(s(x), 0, s(x)) }C1 = {

. .

Fig. 1. Example of generalization

Consider the one–literal clause C1 = {L} with L = sum(s(x), 0, s(x)). In
order to generalize it with respect to the subsumption order, we have to obtain
a new clause C2 such that there exists a substitution θ verifying C2θ ⊆ C1. For
that, we firstly choose a term t in L, say t = s(x), then we choose several subsets
of Pos(L, t), e.g. P1 = {1}, P2 = ∅, P3 = {1, 3} and a variable not occurring
in L, say z, and finally we build the clause C2 = {L[Pi ← z] | i = 1, 2, 3} =
{sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z)}. Obviously θ = {z/s(x)} satis-
fies C2θ ⊆ C1 (see Fig. 1).

If the clause has several literals, for example, C1 = {L1, L2, L3}, with
L1 = num(s(x)), L2 = less than(0, s(x)) and L3 = less than(s(x), s(s(x))),
the operation is done with all literals simultaneously. First, the same term is
chosen in every literal of C1, say t = s(x). Then, for each literal Li ∈ C1, some
subsets of Pos(Li, t) are chosen, e.g.,

P ∗
1 = { ∅, {1} } ⊆ PPos(L1, t)

P ∗
2 = ∅ ⊆ PPos(L2, t)

P ∗
3 = { {1, 2·1}, {1} } ⊆ PPos(L3, t)

After taking a variable which does not occur in C1, say z, the following sets are
built

L1
P ∗

1−−−−−−−−−→ {num(s(x)), num(z)}
L2

P ∗
2−−−−−−−−−→ ∅

L3
P ∗

3−−−−−−−−−→ {less than(z, s(z)), less than(z, s(s(x)))}
Finally, the clause C2 is the union of these sets, i.e.,

C2 = {num(s(x)), num(z), less than(z, s(z)), less than(z, s(s(x)))}

and C2{z/s(x)} ⊆ C1. In our general description, we will begin with a study of
the relations between substitutions and grafts.

Definition 1. Let L be a literal and t a term. The set of positions P is called
compatible with the pair 〈L, t〉 if P ⊆ Pos(L, t).

Definition 2. Let P ∗ be a set whose elements are sets of positions. Let L be a
literal and t a term. P ∗ is called compatible with the pair 〈L, t〉 if every element
of P ∗ is compatible with 〈L, t〉

For example, if L = sum(s(x), 0, s(x)) and t = s(x), then P1 = {1}, P2 = ∅ and
P3 = {1, 3} are compatible with 〈L, t〉 and P4 = {1·1, 2} and P5 = {1, 4·3} are
not. If P ∗

1 = {P1, P2, P3} and P ∗
2 = {P2, P4}, then P ∗

1 is compatible with 〈L, t〉
and P ∗

2 is not.
The next mappings are basic in the definition of our operators. As we saw

in the example, the key is to settle a set of sets of positions for each literal, all
them occupied by the same term. This one is done by the following mappings.

Definition 3. A mapping ∆ : Lit → PPN
+ is called an assignment if there

exists a term t such that, for every literal L, ∆(L) is compatible with the pair
〈L, t〉.
Note that the term t does not have to be unique, for example, consider the
identity assignment (∀L ∈ Lit)[∆(L) = {∅}], the empty assignment (∀L ∈
Lit)[∆(L) = ∅] or any mixture of both.

The assignments map a literal into a set of sets of positions. Each element of
this set of positions will produce a literal, and the positions are the places where
the new term is grafted. If ∆ : Lit→ PPN

+ is an assignment of positions and s
is a term, we will denote by L{∆(L)/s} the set of literals, one for each element
P ∈ ∆(L), obtained by grafting s in L at P . Formally

L{∆(L)/s} = {L[P ← s] |P ∈ ∆(L)}

For example, if L = sum(s(x), 0, s(x)), z is a variable, P ∗
1 is taken from the

above example and ∆ is an assignment such that ∆(L) = P ∗
1 then

L{∆(L)/z} = {L[P ← z] |P ∈ ∆(L)}
= {L[P ← z] |P ∈ P ∗

1 }
= {L[P1 ← z]}, L[P2 ← z], L[P3 ← z]}
= {sum(z, 0, s(x)), sum(s(x), 0, s(x)), sum(z, 0, z)}

We can now define our Learning Operators under Subsumption.

Definition 4. Let ∆ be an assignment and x a variable. We say that the map-
ping

{∆/x} : C −→ C

C �→ C{∆/x} =
⋃

L∈C

L{∆(L)/x}

is a Learning Operator under Subsumption (LOS) if for all literal L, if ∆(L) 	= ∅
then x 	∈ V ar(L).
Turning back to a previous example, if C = {L1, L2, L3}, with L1 = num(s(x)),
L2 = less than(0, s(x)), L3 = less than(s(x), s(s(x))), and the assignment

∆(L) =




P ∗
1 = { ∅, {1} } if L = L1

P ∗
2 = ∅ if L = L2

P ∗
3 = { {1, 2·1}, {1} } if L = L3
∅ otherwise

and considering the variable z as the variable to be grafted, then

C{∆/z} = {num(s(x)), num(z), less than(z, s(z)), less than(z, s(s(x)))}
These operators allow us to generalize a given clause and go up in the subsump-
tion order on clauses as we see in the next theorem.

Theorem 1. Let C be a clause and {∆/x} a LOS. Then C{∆/x} � C.

As we pointed above, the LOS define an operational definition of the subsump-
tion relation. The last result states one way of the implication. The next theorem
claims that all the learning processes based on subsumption of clauses can be
carried out only by applying LOS.

Theorem 2. Let C1 and C2 be two clauses such that C1 � C2. Then there exists
a finite sequence (a chain) {∆1/x1}, . . . , {∆n/xn} of LOS such that

C1 = C2{∆1/x1} . . . {∆n/xn}
For example, if we consider C1 = {p(x1, x2)} and C2 = {p(x2, f(x1)), p(x1, a)}
and the substitution θ = {x1/x2, x2/f(x1)}. Then C1θ ⊆ C2 holds and there-
fore C1 � C2. Decomposing θ we can get σ1 = {x2/x3}, σ2 = {x1/x2},
σ3 = {x3/f(x1)} and C1σ1σ2σ3 ⊆ C2 holds. Hence, considering the assignments

∆1(p(x2, f(x1)) = {{2}} and ∆1(L) = ∅ if L 	= p(x2, f(x1))
∆2(p(x2, x3)) = {{1}} and ∆2(L) = ∅ if L 	= p(x2, x3)
∆3(p(x1, x3)) = {{2}} and ∆3(L) = ∅ if L 	= p(x1, x3)

we have C1 = C2{∆1/x3}{∆2/x1}{∆3/x2}. Note that if we consider the assign-
ment ∆(p(x1, a)) = {{2}} and ∆(L) = ∅ if L 	= p(x1, a), then C1 = C2{∆/x2}
also holds.

4 A Quasi-Metric Based on Subsumption

The operational characterization of the subsumption relation given in the pre-
vious section gives us a natural way of formalizing the closeness among clauses.
As we have seen, if C1 � C2 then there exists at least one chain of LOS from C2

to C1 and we can consider the length of the shortest chain from C2 to C1.

Definition 5. A chain of LOS of length n from the clause C2 to the clause C1

is a finite sequence of n LOS {∆1/x1}, {∆2/x2}, . . . , {∆n/xn} such that

C1 = C2{∆1/x1}{∆2/x2} . . . {∆n/xn}

If C1 = C2, we will consider that the empty chain, of length zero, maps C2 into
C1. The set of all the chains from C2 to C1 will be denoted by L(C2, C1) and |C|
will denote the length of the chain C.
Following the geometric intuition, if we consider these chains as paths from C2

to C1, we formalize the closeness between clauses as the shortest path C2 to C1.
If C1 does not subsume C2, we will think that C1 cannot be reached from C2 by
applying LOS, so both clauses are separated by an infinite distance.

Definition 6. We define the mapping dc : C × C→ [0,+∞] as follows:

dc(C2, C1) =
{
min{|C| : C ∈ L(C2, C1)} if C1 � C2
+∞ otherwise

The subsumption relation is not symmetric, so the mapping dc is not either.
Instead of being a drawback, this property gives an algebraic characterization
of the subsumption relation, since for any two clauses, C1 � C2 iff dc(C2, C1) 	=
+∞.
Definition 7. A quasi–metric on a set X is a mapping d from X × X to the
non–negative reals (possibly including +∞) satisfying:
– (∀x ∈ X) d(x, x) = 0
– (∀x, y, z ∈ X) d(x, z) ≤ d(x, y) + d(y, z)
– (∀x, y ∈ X) [d(x, y) = d(y, x) = 0⇒ x = y]

Notice that a quasi–metric satisfies the conditions to be a metric, except for
the condition of symmetry. The next result states the computability of dc and
provides an algorithm to compute it.

Theorem 3. dc is a computable quasi–metric.

Proof (Outline). Proving that dc is a quasi-metric is straightforward from the
definition. The proof of the computability is split in several steps. Firstly, for
each substitution θ we define the set of the splittings up:

Split(θ) =
{
σ1 . . . σn :

σi = {xi/ti} xi 	∈ V ar(ti)
(∀z ∈ Dom(θ))[zθ = zσ1 . . . σn]

}

with length(σ1 . . . σn) = n and weight(θ) = min{length(Σ) |Σ ∈ Split(θ)}.
The next equivalence holds

dc(C2, C1) =




0 if C1 = C2
1 if C1 	= C2 and C1 ⊆ C2
min{weight(θ) |C1θ ⊆ C2} if C1 � C2 and C1 	⊆ C2
+∞ if C1 	� C2

Input: A non-empty substitution θ
Output: An element of Split(θ)
Set θ0 = θ and U0 = Dom(θ) ∪ Ran(θ)
Step 1:

If θi is the empty substitution
Then stop
Otherwise: Consider θi = {x1/t1, . . . , xn/tn} and go to Step 2.

Step 2:
If there exists xj ∈ Dom(θi) such that xj �∈ Ran(θi)

Then for all k ∈ {1, . . . , j − 1, j + 1, . . . , n} let t∗
k be a term

such that tk = t∗
k{xj/tj} Set

θi+1 = {x1/t∗
1, . . . , xj−1/t∗

j−1, xj+1/t∗
j+1, . . . , xn/t∗

n}
σi+1 = {xj/tj}
Ui+1 = Ui

set i to i + 1 and go to Step 1.
Otherwise: Go to Step 3.

Step 3:
In this case let zi be a variable which does not belong to Ui and set
Ui+1 = Ui ∪ {zi}

choose j ∈ {1, . . . , n} y let T be a subterm of tj such that T is not a variable
belonging to Ui+1. Then, for all k ∈ {1, . . . , n} let t∗

k be a term
such that tk = t∗

k{z/T}. Set
θi+1 = {x1/t∗

1, . . . , xn/t∗
n}

σi+1 = {z/T}
set i to i + 1 and go to Step 1.

Fig. 2. The algorithm to compute the subset of Split(θ)

We can decide if C1 � C2 and, if it holds, we can get the finite set of all θ such that
C1θ ⊆ C2, so to conclude the theorem we have to give an algorithm which com-
putes weight(θ) for each θ. The Fig. 2 shows a non-deterministic algorithm which

generates elements of Split(θ). We prove that the algorithm finishes and for all
Σ ∈ Split(θ) the algorithm outputs a Σ∗ verifying length(Σ∗) ≤ length(Σ).

The previous theorem provides a method for computing dc, but deciding whether
two clauses are related by subsumption is an NP-complete problem [1], so, from
a practical point of view we need a quick estimation of the quasi-metric before
deciding the subsumption. The next result settles an upper and lower bounds
for the quasi-metric under the assumption of subsumption.

Theorem 4. Let C1 and C2 be two clauses such that C1 	⊆ C2. If C1 � C2 then

|V ar(C1)−V ar(C2)| ≤ dc(C2, C1) ≤ min{2 · |V ar(C1)| , |V ar(C1)|+ |V ar(C2)|}

Proof (Outline). For each θ such that C1θ ⊆ C2, θ has at least |V ar(C1) −
V ar(C2)| bindings and we need at least one LOS for each binding, hence the first
inequality holds. For the second one, if C1θ ⊆ C2 then we can find n substitutions
σ1, . . . , σn with σ1 = {xi/ti} and xi 	∈ V ar(ti) such that C1σ1 . . . σ2 ⊆ C2

verifying n = |θ| + |Ran(θ) ∩ Dom(θ)|. The inequality holds since Ran(θ) ⊆
V ar(C2), Dom(θ) ⊆ V ar(C1) and |θ| ≤ V ar(C1).

If C1 = {p(x1, x2)}, C2 = {p(a, b)} and C3 = {p(f(x1, x2), f(x2, x1))} then
dc(C2, C1) = |V ar(C1)− V ar(C2)| = 2
dc(C3, C1) = min{2 · |V ar(C1)| , |V ar(C1)|+ |V ar(C2)|} = 4

The above examples show that these bounds cannot be improved.

5 Related Work

The problem of quantifying the closeness among clauses has already been stud-
ied previously by offering distinct alternatives of solution to the problem. In the
literature, a metric is firstly defined on the set of literals and then, the Haus-
dorff metric is used to get, from this metric, a metric on the set of clauses. This
approach has two drawbacks. On the one hand, the Hausdorff metric exclu-
sively depends on the extreme points, on the other, these literals are considered
isolated: the possible relations among the literals of the same clause are not
considered. Next we will see an example.

In [6], Nienhuys-Cheng defines a distance for ground atoms

– dnc,g(e, e) = 0
– p/n 	= q/m⇒ dnc,g(p(s1, . . . , sn), q(t1, . . . , tm)) = 1
– dnc,g(p(s1, . . . , sn), p(t1, . . . , tn)) = 1

2n

∑n
i=1 dnc,g(si, ti)

and then, she uses the Hausdorff metric to define a metric on sets of ground
atoms

dh(A,B) = max
{
max
a∈A
{min

b∈B
{dnc,g(a, b)}},max

b∈B
{min

a∈A
{dnc,g(a, b)}}

}

The aim of this distance was to define a distance between Herbrand interpreta-
tions, so dnc,g was only defined on ground atoms. In [8], Ramon and Bruynooghe
extended it to handle non–ground expressions:

– dnc(e1, e2) = dnc,g(e1, e2) if e1, e2 are ground expressions
– dnc(p(s1, . . . , sn), X) = dnc(X, p(s1, . . . , sn)) = 1 with X a variable.
– dnc(X,Y) = 1 and dnc(X,X) = 0 for all X 	= Y with X and Y variables.

This metric can be easily extended to literals: If A and B are atoms, we consider
dnc(¬A,B) = dnc(A,¬B) = 0 and dnc(¬A,¬B) = dnc(A,B). By applying the
Hausdorff metric to dnc we have a metric dh on clauses. We have implemented
dc and dh with Prolog programs. The following example allows us to compare
this metric with our quasi-metric.

For all n ≥ 0, consider the clauses

Cn ≡ sum(sn+1(x1), sn(y1), sn+1(z1)) ← sum(sn(x1), sn(y1), sn(z1))
Dn ≡ sum(s2n+1(x2), s2n(y2), s2n+1(z2))← sum(s2n(x2), s2n(y2), s2n(z2))

and the substitution θn = {x1/sn(x2), y1/sn(y2), x3/sn(y3)}. Then Cnθn = Dn

for all n and hence, Cn � Dn. The next table shows the values of the quasi-metric
dc(Cn, Dn) and the metric of Hausdorff dh(Cn, Dn) for several values of N as
well as the time of computation on a Pentium III 800 Mhz. in an implementation
for SWI-Prolog 4.0.11.

N dc(Cn, Dn) dh(Cn, Dn)
Seg Q–dist Seg Dist

64 0.02 3 0.11 ∼ 2.7 10−20

128 0.06 3 0.21 ∼ 1.4 10−39

256 0.1 3 0.43 ∼ 4.3 10−78

512 0.26 3 0.93 ∼ 3.7 10−155

1024 0.67 3 2.03 ∼ 2.7 10−309

It can be easily calculated that, for all n ≥ 0, dc(Cn, Dn) = 3. If we use the
Hausdorff metric dh based on dnc we have that, for all n ≥ 0

dh(Cn, Dn) =
1

2n+1

which tends to zero in spite of the subsumption relation holds for all n.
In the literature, it can be found other formalizations of the closeness among

clauses (e.g. [3] or [8]), but in all them there exists a strong dependence on the
distance between individual elements.

6 Conclusions and Future Work

In the nineties, the success reached in real-life problems by learning systems
based on clausal representation encouraged the development of techniques of

generalization, most of them designed ad hoc for a specific problem. The opera-
tors presented in this paper1 might be a significant improvement in the field. The
operators are not related to any specific system, they can be easily implemented
and used in any system. But the main property is that the LOS are sufficient for
all generalization process of clauses based on subsumption. As we have proved,
the LOS are a complete set of generalization operators: If C1 subsumes C2 then
C1 can be reached from C2 by solely applying LOS.

In the second part of the paper we define a quasi-metric on the set of clauses
and give an algorithm to compute it and a method for a quick estimation. The
process of quantifying qualitative relations (as subsumption) is a hard and ex-
iting problem which arises in many fields of Computer Science (see [5]) which is
far from a complete solution. We present a contribution to its study by defining
a quasi-metric on the set of clauses in a natural way, as the minimum number of
operators which map a clause into another. As we have seen, this quasi-metric
considers the clauses as members of a net of relations via subsumption and
overcomes the drawbacks found in others formalizations of closeness.

Finally the definition of quasi-metric is completed with an algorithm to com-
pute it and a bound for a quick estimation. This estimation can be a useful tool
for the design of new learning algorithms based on subsumption.

References

1. M.R.Garey and D.S. Johnson: Computers and Intractability: A Guide to the The-
ory of NP-Completeness. Freeman, New York, 1979.

2. M.A. Gutiérrez-Naranjo, J.A. Alonso-Jiménez and J. Borrego-Dı́az: A topological
study of the upward refinement operators in ILP. In: Proceedings of the 10th
International Conference on Inductive Logic Programming, Work in progress track,
2000.

3. A. Hutchinson: Metrics on Terms and Clauses. Proceedings ECML–97, Prague,
April 1997 (Springer).
ftp://ftp.dcs.kcl.ac.uk/pub/ tech-reports/ tr96-11.ps.gz

4. P.D. Laird: Learning from Good and Bad Data. Kluwer Academic Publishers, 1988
5. R. Lowen: Approach Spaces, the Missing Link in the Topology-Uniformity-Metric

Triad. Oxford Mathematical Monographs, Oxford University Press, 1997.
6. S-H. Nienhuys-Cheng: Distance between Herbrand interpretations: a measure for

approximations to a target concept. Technical Report EUR–FEW–CS–97–05.
Department of Computer Science, Erasmus University, the Netherlands, 1997.
http://www.few.eur.nl/few/research/pubs/cs/1997/eur-few-cs-97-05.pdf

7. G.D. Plotkin: A Note on Inductive Generalization. In Machine Intelligence 5, pp.:
153–163. Edinburgh University Press, Edinburgh, 1970.

8. J. Ramon and M. Bruynooghe: A framework for defining distances between first–
order logic–objects. Report CW 263, Department of Computer Science, Katholieke
Universiteit Leuven, May 1998.
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW263.ps.gz

9. E.Y. Shapiro: Inductive Inference of Theories from Facts. Technical Report 624,
Department of Computer Science, Yale University, New Haven, CT, 1981

1 A preliminary version of these operators appeared in [2].

10. M. Schmidt-Schauss. Implication of clauses is undecidable. Theoretical Computer
Science, 59-3, pp. 287–296, 1988.

11. P.R.J. van der Laag, S.-H. Nienhuys-Cheng: Completeness and properness of refine-
ment operators in Inductive Logic Programming. Journal of Logic Programming,
Vol 34, n.3, pp.: 201–225, March 1998

	A Quasi-Metric for Machine Learning
	Introduction
	Preliminaries
	The Operators
	A Quasi-Metric Based on Subsumption
	Related Work
	Conclusions and Future Work
	References

