
Long time behavior of stochastic parabolic problems with white noise in
materials with thermal memory

Linfang Liua,b, Tomás Caraballob, Peter Kloedenc

aDepartment of Mathematics, Shanghai Key Laboratory of PMMP,East China Normal University, Shanghai 200241, P.R. China.
bDepartamento de Ecuaciones Diferenciales y Análisis Num´erico, Universidad de Sevilla, 41080 Sevilla, Spain

cSchool of Mathematics Statistics, Huazhong University of Science Technology, Wuhan 430074, China.

Abstract

The existence and limiting behavior of the solutions of stochastic parabolic problems with thermal memory

are investigate in the cases that the nonlinear term satisfies subcritical and critical growth conditions. The

existence, uniqueness and continuity of solutions is proved by a semigroup method and the Lax-Milgram

theorem, then the dynamics of solutions is analyzed by a priori estimates. In particular, the existence of

pullback random attractors for the random dynamical systemassociated to the problem is established and

the upper semi-continuity of the pullback random attractors is verified.

Key words: : Parabolic equation with memory; pullback random attractor; critical nonlinearity; semigroup

method; upper semi-continuity.
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1. Introduction

A large class of physical phenomena in which delay effects occur, such as viscoelasticity, population

dynamics or heat flow in real conductors, is modelled by equations in materials with memory, where the

dynamics is influenced by the past history of the state variables. This is because that materials with memory

have the property that the mathematical-physical description of their state at a given point of time includes

such states in which the materials have been at earlier points of time.

Here we consider the stochastic parabolic equation in materials with thermal memory with subcritical

and critical nonlinearities

∂u
∂t
−
∂

∂t

∫ t

−∞

µ1(t − s)u(x, s)ds− λ∆u−
∫ t

−∞

µ2(t − s)∆u(x, s)ds+ f (u)

= g(x, t) + ǫh(x)
dW
dt

, x ∈ O, t ≥ τ,

(1.1)

with the initial and boundary values

u(x, τ) = uτ(x), x ∈ O, u(x, t) = 0, x ∈ ∂O, t ≥ τ, (1.2)
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whereO ⊂ Rn, n ≥ 3, be a bounded domain with smooth boundary,λ > 0 andǫ are constants. In addition,

u(x, t) is the unknown function,µ1, µ2 : R+ → R are the heat flux memory kernels,f is the nonlinear

heat supply satisfying some dissipativeness and growth conditions, g(x, t) is time-dependent forcing term,

h ∈ H2(O) ∩W2,p(O) (p will be specified later) andW is real valued two-sided Wiener process on some

probability space which will be specified later.

Equations with memory have received increasing interest inrecent years. The authors of [5, 26, 28,

30, 31] studied the existence of pullback attractor, globalattractors, uniform attractors and exponential

stability of heat equation (1.1) withµ1 = 0. Damped wave equations with memory were investigated in

[15, 22, 23, 36, 44], while hyperbolic phase-field systems with memory were considered in [25, 32]. Li

[35] proved the existence of uniform attractors for parabolic problems with memory in the cases that the

nonlinearities term is subcritical and critical. Nevertheless, as far as we know, most of those models are

considered in deterministic case, namely they did not take into account white noise effects. But the authors

of [34, 39] have demonstrated that, under certain circumstances, the noise can benefit the system in some

way. This is an interesting phenomenon because noise is generally considered as a nuisance to systems. To

the best of our knowledge, no work has been reported on the existence and uniqueness of mild solution and

limit behavior of solutions for equation (1.1) with critical nonlinear term.

Motivated by the above considerations, we will analyze the dynamics of solutions to (1.1) when the

nonlinear heat supplyf has a subcritical growth exponent and a critical growth exponent. More precisely,

we will focus on (1.1) in three aspects: (i) Existence, uniqueness and continuity of mild solutions will be

studied by a semigroup method (see [37]). (ii) The existenceand uniqueness of pullback random attractor

will be proved by a priori estimates and solution decomposition method. (iii) The upper semi-continuity

of pullback random attractor will also be checked. We mention that Caraballo [3] considered the existence

and asymptotic behavior for a stochastic heat equation withmultiplicative noise in materials with memory,

mean-square random attractors of stochastic delay differential equations with random delay were studied

in [43]. Readers are referred to [4, 6, 10, 11, 12] for more information about stochastic partial differential

equations with memory or delay.

The framework of this paper is as follows. In the next section, we will recall some basic concepts

about random dynamical system and basic theory of pullback random attractor. In Section 3, we prove the

existence of solution by semigroup method and the Lax-Milgram theorem. We obtain the pullback random

attractor in Section 4 and verify the upper semi-continuityof pullback random attractor in Section 5.

2. Preliminaries

We recall some notation that will be used in this paper and some basic concepts about random dy-

namical system as well as some theory of pullback random attractors, see [1, 8, 9, 20, 33, 41] for more

information. We begin with the concepts of parametric dynamical system, see [2, 17]. LetX be a separable

Banach space. To define a cocycle for a non-autonomous stochastic equation inX, we need to use two

parametric spaces, say,Ω1 andΩ, whereΩ1 is responsible for non-autonomous deterministic externalterms

andΩ for stochastic terms. We may takeΩ1 either as the collection of translations of deterministic time

dependent terms [8, 24] or simply as the collection of initial times [41]. In this paper, we chooseΩ1 as the

collection of initial times and writeΩ1 = R. For random parameters, we will choose the standard probability

space (Ω,F ,P) whereΩ = {ω ∈ C(R,R) : ω(0) = 0}, F is the Borelσ−algebra induced by the compact
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open topology ofΩ, andP is the Wiener measure on (Ω,F ). There is a group{θt}t∈R of mappings acting on

(Ω,F ,P) defined by

θtω(·) = ω(· + t) − ω(t), for all ω ∈ Ω andt ∈ R. (2.1)

In terms of (2.1), one may define a new group{θ̃t}t∈R on the product spaceR ×Ω := Ω̃ given by

θ̃t(τ, ω) = (τ + t, θtω), for all (τ, ω) ∈ Ω̃, t ∈ R. (2.2)

Hereafter we write ˜ω = (τ, ω) with (τ, ω) ∈ Ω̃.

A cocycle of non-autonomous random dynamical systems is defined as

Definition 2.1. A mappingΦ : R+ × Ω̃ × X → X is called a continuous cocycle on X overR and

(Ω,F ,P, {θt}t∈R) if for all t , s∈ R+ andω̃ ∈ Ω̃, the following conditions are satisfied:

(i) Φ(·, (τ, ·), ·) : R+ ×Ω × X→ X is
(

B(R+) × F × B(X),B(X)
)

-measurable;

(ii) Φ(0, ω̃, ·) is the identity on X;

(iii) Φ(t + s, ω̃, ·) = Φ(t, θ̃sω̃, ·) ◦Φ(s, ω̃, ·);

(iv) Φ(t, ω̃, ·) : X→ X is continuous.

Definition 2.2. A family D=
{

D(ω̃) : ω̃ ∈ Ω̃
}

of nonempty bounded subsets of X is said to be tempered if

for any c> 0

lim
t→+∞

e−ct sup
{

‖ x ‖X: x ∈ D(θ̃−tω̃)
}

= 0.

From now on, we useD to denote the collection of all tempered families of nonempty bounded subsets

of X.

Definition 2.3. Let K =
{

K(ω̃) : ω̃ ∈ Ω̃
}

∈ D. Then K is called aD-pullback absorbing set for a cocycle

Φ on X, if for every B∈ D and all ω̃ ∈ Ω̃, there exists T= T(ω̃, B) > 0 such that

Φ
(

t, θ̃−tω̃, B(θ̃−tω̃)
)

⊂ K(ω̃) for all t ≥ T.

Definition 2.4. Let B= {B(ω̃) : ω̃ ∈ Ω̃} ∈ D. ThenΦ is said to beD−pullback asymptotically compact in

X if for all ω̃ ∈ Ω̃, the sequence

{

Φ(tn, θ̃−tnω̃, xn) : xn ∈ B(θ̃−tnω̃)
}∞

n=1
has a convergent subsequence in X when tn→ +∞.

Definition 2.5. A familyA = {A(ω̃) : ω̃ ∈ Ω̃} ∈ D is called a pullback random attractor forΦ in X if the

following conditions are fulfilled:

(i) For eachτ ∈ R,A(τ, ·) is measurable with respect to the P-completion ofF inΩ andA(ω̃) is compact for all

ω̃ ∈ Ω̃.

(ii) A is invariant, that is, for everỹω ∈ Ω̃,

Φ(t, ω̃,A (ω̃)) = A(θ̃tω̃) for all t ≥ 0.

(iii) A attracts every member ofD, that is, for every B= {B(ω̃) : ω̃ ∈ Ω̃} ∈ D, and for every,̃ω ∈ Ω̃,

lim
t→+∞

distX
(

Φ
(

t, θ̃−tω̃, B(θ̃−tω̃)
)

,A (ω̃)
)

= 0,
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where distX(·, ·) denotes the Hausdorff semi-distance under the norm of X, i.e., for two nonempty sets A, B ⊂

X,

distX(A, B) := sup
a∈A

distX(a, B) = sup
a∈A

inf
b∈B
‖ a− b ‖X .

Next we turn to introduce the definitions concerning u.s.c. for a family of sets.

Definition 2.6. ([9]) Let Z and I be metric spaces. A family of sets{Aǫ}ǫ∈I in Z is said to be upper semi-

continuous (u.s.c.) atǫ0 ∈ I if

lim
ǫ→ǫ0

distZ(Aǫ ,Aǫ0) = 0.

Let A = −∆ with domainD(A) = H1
0(O) ∩ H2(O). Denote by (·, ·) and‖ · ‖ the L2(O) inner product

and the norm, respectively. Consider the family of Hilbert spacesD(As/2), s ∈ R, whose inner products and

norms are given by

(·, ·)D(As/2) = (As/2·,As/2·) and ‖ · ‖D(As/2) = ‖A
s/2 · ‖.

Then one has the compact and dense injections,

D(As/2) ֒→ D(Ar/2), ∀ s> r,

and the continuous embedding,

D(As/2) ֒→ L2n/(n−2s)(O), ∀ s ∈ [0,
n
2

).

Recall the following interpolation results: letα ≥ β. For everyϑ, 0 ≤ ϑ ≤ 1, there is a constantC =

C(α, β, ϑ) s.t.

‖Aν/2u‖ ≤ C‖Aα/2u‖ϑ‖Aβ/2u‖1−ϑ, ∀ u ∈ D(Aα/2),

whereν = ϑα + (1− ϑ)β. For convenience, denote by

Hs = D(As/2) with norm ‖ · ‖Hs = ‖A
s/2 · ‖.

Then,H0 = L2(O),H1 = H1
0(O), andH2 = H1

0(O) ∩ H2(O).

In order to deal with the memory term of (1.1), we introduce the family of weighted spaces. In view

of (H1) and (H2), we consider the weighted Hilbert spacesL2
νi

(R+;Hr), i = 1, 2, endowed with the inner

products and norms, respectively,

(φ1, φ2)νi ,Hr =

∫ ∞

0
νi(s)(φ1(s), φ2(s))Hr ds, ‖φ‖2

νi ,Hr
=

∫ ∞

0
νi(s)‖φ(s)‖2

Hr
ds, i = 1, 2.

As in [27, 29], we introduce the Hilbert spaces,

Qr
ν1,ν2
= L2

ν1
(R+;Hr ) ∩ L2

ν2
(R+;Hr+1),

endowed with the inner products,

(η1, η2)Qr
ν1,ν2
=

∫ ∞

0
ν1(s)

(

Ar/2η1(s),Ar/2η2(s)
)

ds+
∫ ∞

0
ν2(s)

(

A(r+1)/2η1(s),A(r+1)/2η2(s)
)

ds,
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and the norms

‖η‖2Qr
ν1,ν2
= (η, η)Qr

ν1,ν2
=

∫ ∞

0
ν1(s)‖Ar/2η(s)‖2ds+

∫ ∞

0
ν2(s)‖A(r+1)/2η(s)‖2ds.

Finally, we define the product spaces,

Mr = Hr × Q
r
ν1,ν2

,

where

Hr = D(A
r
2 ), Qr

ν1,ν2
= L2

ν1
(R+;Hr ) ∩ L2

ν2
(R+;Hr+1),

that endowed with the norms,

‖z‖2
Mr
= ‖(u, η)‖2

Mr
= ‖u‖2

Hr
+ ‖η‖2

Qr
ν1,ν2

, z= (u, η) ∈ Mr .

The following propositions can be found in [9, 16, 18, 19, 41].

Proposition 2.7. LetΦ be a continuous RDS on X overR and(Ω,F ,P, {θt}t∈R) according to Definition 2.1.

If Φ has a compact measurable (w.r.tF )D−pullback attracting set K inD, thenΦ has a uniqueD−pullback

attractorA in D given by

A(ω̃) =
⋂

r≥0

⋃

t≥r

Φ
(

t, θ̃−tω̃,K(θ̃−tω̃)
)

for eachω̃ ∈ Ω̃.

For the upper semi-continuity of a family of parameterized pullback attractors, we borrow the following

results from [7, 13, 38, 40, 42].

Proposition 2.8. Let I be an interval ofR. Givenǫ ∈ I, let {Φǫ(t, ω̃)}ǫ∈I be a family of continuous RDSs on

X overR and(Ω,F ,P, {θt}t∈R). Suppose that

(i) there exists a map Rǫ0 : ω̃→ R such that B=
{

B(ω̃) = {x ∈ X : ‖x‖X ≤ Rǫ0(ω̃)} : ω̃ ∈ Ω̃
}

∈ D,

(ii) for eachǫ ∈ I, Φǫ has a pullback attractorAǫ and a pullback absorbing set Dǫ such that for all

ω̃ ∈ Ω̃, lim
ǫ→ǫ0

sup‖Dǫ(ω̃)‖X ≤ Rǫ0(ω̃),

(iii)
⋃

ǫ∈I
Aǫ(ω̃) is precompact in X for each̃ω ∈ Ω̃,

(iv) there existsǫ0 ∈ I such that lim
n→+∞

Φǫn(t, ω̃, xn) = Φǫ0(t, ω̃, x) for every t ∈ R+, ω̃ ∈ Ω̃, ǫn, ǫ0 with

ǫn→ ǫ0, and xn, x with xn→ x.

Then for each̃ω ∈ Ω̃, dH(Aǫ(ω̃),Aǫ0(ω̃))→ 0 asǫ → ǫ0.

To this end, we recall the following lemma

Lemma 2.9. (See [36]). Letµ ∈ C1(R+) ∩ L1(R+) be a non-negative function, such that ifµ(s0) = 0 for

some s0 ∈ R+, thenµ(s) = 0 for every s> s0. Let B0, B, B1 be three Banach spaces, where B0, B1 are

reflexive, such that

B0 ֒→ B ֒→ B1,

where the first injection is compact. LetC ⊂ L2
µ(R
+; B) satisfy

(i) C is bounded in L2µ(R
+; B0) ∩ H1

µ(R
+; B1),

(ii) supη∈C ‖η(s)‖
2
B ≤ h(s), ∀s ∈ R+, for some h(s) ∈ L1

µ(R
+).

ThenC is relatively compact in L2µ(R
+; B).
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3. Existence of solutions

Here we prove the existence of solutions by a semigroup method and the Lax-Milgram theorem. Before

stating the problem in a suitable framework, we enumerate the assumptions on the term in which the delay

is present. Hereafter, we suppose that the nonlinear heat supply f (u) satisfies

(f1) f ∈ C1(R), f (0) = 0;

(f2) f (s)s≥ α1|s|p+1 − α2, s ∈ R;

(f3) | f ′(s)| ≤ α3(1+ |s|p−1), s∈ R,

where 1< p ≤ 1+ 4
n, αi, i = 1, 2, 3, are positive numbers. In order to study the dynamical behavior of (1.1)

with critical nonlinearity, we also impose the assumption as in [14, 35],

(f4) lim
|s|→∞

| f ′(s)|

|s|
4
n
= 0,

which implies that for any givenν > 0, there is a positive constantCν such that

| f (s1) − f (s2)| ≤ |s1 − s2|(Cν + ν|s1|
4
n + ν|s2|

4
n ). (3.1)

Remark 3.1. (i) From ( f 3), it is not difficult to check that| f (s)| ≤ α4+α5|s|p holds for any s∈ R, where

α4, α5 are positive constants.

(ii) As it is pointed out in [35], the lack of bound from below for f ′ is the reason for1+ 4
n to be the critical

exponent for the nonlinearity f . And in case of(3.1), we call f is an almost critical nonlinearity.

Assume thatµ′1(∞) = µ2(∞) = µ1(∞) = 0. Letν1(s) = µ′′1 (s) andν2(s) = −µ′2(s) satisfy

(H1) νi ∈ C1(R+) ∩ L1(R+), νi(s) ≥ 0, ν′i (s) ≤ 0, i = 1, 2,∀s∈ R+,

(H2) ν′i (s) + δiνi(s) ≤ 0, i = 1, 2, ∀s∈ R+,

whereδi are positive constants,i = 1, 2.

Denoteµ1(0) = µ0. Then along the lines of the procedure suggested by Dafermosin his pioneering

work [21], we introduce the new variable

ηt(x, s) =
∫ s

0
ut(x, r)dr =

∫ t

t−s
u(x, r)dr, s≥ 0,

where

ut(x, s) = u(x, t − s), s≥ 0.

Then the original equation (1.1)-(1.2) can be transformed into the following equivalent system:

∂u
∂t
− µ0u− λ∆u+

∫ ∞

0
ν1(s)ηt(s)ds−

∫ ∞

0
ν2(s)∆ηt(s)ds+ f (u) = g(x, t) + ǫh(x)

dW
dt

,

∂tη
t(x, s) + ∂sη

t(x, s) = u, x ∈ O, s> 0, t ≥ τ,
(3.2)

with the initial and boundary values

u(x, τ) = uτ(x), ητ(x, s) = ητ(x, s), x ∈ O, u(x, t) = 0, ηt(x, s) = 0 x ∈ ∂O, s> 0, t ≥ τ. (3.3)

Note that Eq.(3.2) is stochastic equation, and we need to transfer (3.2) into a deterministic one only

with random parameter. To this end, writing

z∗(ω) = −
∫ 0

−∞

esω(s)ds, (3.4)
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it is easy to check thatz(t, ω) = z∗(θtω) is an Ornstein-Uhlenbeck stationary process which solvesthe Itô

equation

dz+ zdt= dW.

Therefore, if we denotez(ω)(x) = z∗(ω)h(x), then the real-valued stochastic processz(θtω)(x) = z∗(θtω)h(x)

is a solution to

dz+ zdt= h(x)dW.

Setv(t) = u(t) − ǫz(θtω). Problem (3.2)-(3.3) can be transformed into a pathwiase deterministic problem

∂v
∂t
− µ0v− λ∆v+

∫ ∞

0
ν1(s)ηt(s)ds−

∫ ∞

0
ν2(s)∆ηt(s)ds+ f (u) = g(x, t) + ǫ(µ0 + 1)z+ ǫλ∆z,

∂tη
t + ∂sη

t = v+ ǫz, x ∈ O, t ≥ τ,
(3.5)

with the initial and boundary values

v(x, τ) = u(x, τ) − ǫz(θτω) = vτ(x), ητ(x, s) = ητ(x, s), x ∈ O, s≥ 0,

v(x, t) = 0, ηt(x, s) = 0, x ∈ ∂O, s≥ 0, t ≥ τ.
(3.6)

In order to present our results, we write the system (3.5)-(3.6) as a Cauchy problem

dφ
dt
= Lφ + F(φ, θtω, t), (3.7)

defined in the phase space

M0 = L2(O) × Q0
ν1,ν2

with norms

‖φ‖2 = ‖(v, ηt)‖2 = ‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

= ‖v‖2 + ‖ηt‖2
L2
ν1

(R+;L2(O))
+ ‖ηt‖2

L2
ν2

(R+;H1
0(O))

.

Also takeφ = (v(t), ηt) ∈ M0. Then system (3.5) is equivalent to the Cauchy problem (3.7)with

Lφ = (µ0v+ λ∆v−
∫ ∞

0
ν1(s)ηt(s)ds+

∫ ∞

0
ν2(s)∆ηt(s)ds, v− ∂sη

t)

and

F(φ, θtω, t) = (− f (v+ ǫz) + g+ ǫ(µ0 + 1)z+ ǫλ∆z, ǫz) . (3.8)

It is proved in [36] that

∂tη
t = −∂sη

t + v+ ǫz, ηt(0) = 0,

can be considered as∂tη
t = Tηt + v+ ǫz, where

Tηt = −∂sη
t, ηt ∈ D(T),

is the generator of a translation semigroup with domain

D(T) =
{

ηt ∈ Q0
ν1,ν2
|∂sη

t ∈ Q0
ν1,ν2

, ηt(0) = 0
}

.
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Since the domain ofL is defined by

D(L) = {φ ∈ M0|Lφ ∈ M0} ,

we have

D(L) =

{

(v, ηt) ∈ M0|v ∈ H1
0(O), ηt ∈ D(T), µ0v+ λ∆v−

∫ ∞

0
ν1(s)ηt(s)ds+

∫ ∞

0
ν2(s)∆ηt(s)ds∈ L2(O)

}

.

For the coefficient λ in (1.1), we assume thatλλ1 − 2µ0 > 0, whereλ1 is the first eigenvalue ofA in

H1
0(O). From now on, we denote byc a generic positive number which may change its value from line to

line or even in the same line.

Theorem 3.2. (Well-posedness) Assume that hypotheses (f1)-(f2) are satisfied, g∈ L2
loc(R; L2(O)) and the

initial data (vτ, ητ) ∈ M0. Then, problem(3.7)possesses a unique mild solution with

v ∈ C([τ,∞); L2(O)) and ηt ∈ C([τ,∞); Q0
ν1,ν2

). (3.9)

If the initial data(vτ, ητ) ∈ D(L), then the solution is regular, namely,

v ∈ C([τ,∞); H1
0(O)) and ηt ∈ C([τ,∞); Q1

ν1,ν2
).

In addition, ifφ = (v, ηt), φ̄ = (v̄, η̄t) are two mild solutions of(3.7), then for any T> τ,

‖φ(t) − φ̄(t)‖2
M0
≤ ec0T‖φ(τ) − φ̄(τ)‖2

M0
, τ ≤ t ≤ T, (3.10)

where c0 is a positive constant depending on the initial data.

Proof. The proof is split into three steps.

Step 1: We show that the operatorL is the infinitesimal generator of aC0−semigroup of contraction

eLt inM0, that is,L is m-dissipative inM0. By the definition ofLφ,

(Lφ, φ)M0 =

(

µ0v+ λ∆v−
∫ ∞

0
ν1(s)ηt(s)ds+

∫ ∞

0
ν2(s)∆ηt(s)ds, v

)

L2(O)
+ (v− ∂sη

t, ηt)Q0
ν1,ν2

= µ0‖v‖
2 − λ‖∇v‖2 −

∫ ∞

0
ν1(s)

∫

O

∂sη
t · ηtdxds−

∫ ∞

0
ν2(s)

∫

O

∂s∇η
t · ∇ηtdxds

≤ µ0‖v‖
2 − λ‖∇v‖2 −

δ1

2
‖ηt‖L2

ν1
(R+;L2(O)) −

δ2

2
‖ηt‖L2

ν2
(R+;H1

0(O))

≤ (µ0 − λ1λ)‖v‖2 −
δ1

2
‖ηt‖L2

ν1
(R+;L2(O)) −

δ2

2
‖ηt‖L2

ν2
(R+;H1

0(O)) ≤ 0, for all φ ∈ D(L),

which shows thatL is dissipative inM0.

Now we show thatL is maximal, i.e., for eachF ∈ M0, there exists a solutionφ ∈ D(L) of

(I − L)φ = F.

Equivalently, for eachF = ( f1, f2) ∈ M0, there existsφ = (v, ηt) ∈ D(L) such that

v− µ0v− λ∆v+
∫ ∞

0
ν1(s)ηt(s)ds−

∫ ∞

0
ν2(s)∆ηt(s)ds= f1,

ηt − v+ ∂sη
t = f2.

(3.11)
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To solve the above systems, we begin with multiplying (3.11)2 by es and then integrate over (0, s),

ηt(s) = v(1− e−s) +
∫ s

0
eτ−s f2(τ)dτ. (3.12)

Substituting (3.12) into (3.11)1 and denotingk1 =
∫ ∞

0 ν1(s)(1− e−s)ds, k2 =
∫ ∞

0 ν2(s)(1− e−s)ds, we obtain

(1+ k1 − µ0)v− (λ + k2)∆v = −
∫ ∞

0
ν1(s)

∫ s

0
eτ−s f2(τ)dτds+

∫ ∞

0
ν2(s)

∫ s

0
eτ−s∆ f2(τ)dτds+ f1. (3.13)

In order to solve (3.13), we define the bilinear form

a(w1,w2) = (1+ k1 − µ0)
∫

O

w1w2dx+ (λ + k2)
∫

O

∇w1∇w2dx, w1,w2 ∈ H1
0(O).

It is easy to check thata(w1,w2) is continuous and coercive inH1
0(O). Also we have

H1
0(O) ֒→ L2(O) ֒→ H−1(O).

We are going to apply the Lax-Milgram theorem. It suffices to prove that the right-hand side of (3.13) is an

element ofH−1(O). Obviously,

f1 ∈ L2(O) ֒→ H−1(O).

Let f ∗ = −
∫ ∞

0 ν1(s)
∫ s

0 eτ−s f2(τ)dτds +
∫ ∞

0 ν2(s)
∫ s

0 eτ−s∆ f2(τ)dτds. We only need to verify thatf ∗ ∈

H−1(O). We use similar arguments used by Giorgi et al. [27]. Forw ∈ H1
0(O) with ‖∇w‖ ≤ 1, it is not

difficulty to check that

∣

∣

∣

∣

( f ∗,w)H−1,H1
0

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−

∫ ∞

0
ν1(s)

∫ s

0
eτ−s

∫

O

f2(τ)wdxdτds+
∫ ∞

0
ν2(s)

∫ s

0
eτ−s

∫

O

∇ f2(τ)∇wdxdτds
∣

∣

∣

∣

∣

< ∞,

which implies thatf ∗ ∈ H−1(O). Then, by the Lax-Milgram theorem, equation (3.13) has a weak solution

ṽ ∈ H1
0(O).

In view of (3.12), we obtain

η̃t(s) = ṽ(1− e−s) +
∫ s

0
f2(τ)eτ−sdτ

and need to show that ˜ηt ∈ Q0
µ1,µ2

. From (3.12) and the fact that ˜v ∈ H1
0(O), we find

‖∇η̃t‖2 ≤ ‖∇ṽ‖2 +
∫ s

0
eτ−s‖∇ f2(τ)‖2dτ, ‖η̃t‖2 ≤ ‖ṽ‖2 +

∫ s

0
eτ−s‖ f2(τ)‖2dτ.

Then
∫ ∞

0
ν1(s)‖η̃t(s)‖2ds+

∫ ∞

0
ν2(s)‖∇η̃t(s)‖2ds ≤ k1‖ṽ‖

2 + k2‖∇ṽ‖2

+

∫ ∞

0
ν2(τ)‖∇ f2(τ)‖2dτ < ∞,

and hence ˜ηt ∈ Q0
ν1,ν2

. It follows that

φ̃ = (ṽ, η̃t) ∈ M0
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is a weak solution of (3.11).

To complete the proof of the maximality ofL, we still need to show that̃φ ∈ D(L). Indeed, from

(3.11)2, we see that

∂sη̃
t = f2 + ṽ− η̃t ∈ Q0

ν1,ν2
.

Sinceη̃t(0) = 0, we conclude that ˜ηt ∈ D(T). By inspection (3.11)1, we find that

−µ0ṽ− λ∆ṽ+
∫ ∞

0
ν1(s)η̃t(s)ds−

∫ ∞

0
ν2(s)∆η̃t(s)ds= −ṽ+ f1 ∈ L2(O).

Therefore (˜v, η̃t) ∈ D(L).

Step 2: We are going to prove that the operatorF(φ, θtω, t) defined in (3.8) is locally Lipschitz with

respect toφ fromM0 intoM0 for ω ∈ Ω, and thatF(φ, θtω, t) is continuous in (φ, t) and measurable inω

w.r.t. F . Let B be a bounded set inM0 andφ, φ̄ ∈ B. Writing φ = (v, ηt), φ̄ = (v̄, η̄t), then

‖F(φ, θtω, t) − F(φ̄, θtω, t)‖
2
M0
=

∫

O

| f (ū) − f (u)|2dx. (3.14)

Since f ∈ C1(R), for anyN > 0, there existsL f (N) > 0 such that for all|s1| ≤ N, |s2| ≤ N, we have

| f (s1) − f (s2)| ≤ L f (N)|s1 − s2|,

which along with (3.14) yields

‖F(φ, θtω, t) − F(φ̄, θtω, t)‖
2
M0
=

∫

O

| f (ū) − f (u)|2dx≤ L2
f (B)‖v− v̄‖2 ≤ L2

f (B)‖v− v̄‖2
M0
.

From Step 1, Step 2 and the Lumer-Phillip theorem (see for instance [37, Theorem 6.1.4 and 6.1.5]), problem

(3.7) has a unique local mild solution

φ(t, τ, ω, φτ) = eLtφτ(ω) +
∫ t

τ

eL(t−r)F(φ(r, τ, ω, φτ), θrω, r)dr (3.15)

defined on [τ,T]. Next, in Step 3, we will prove that the local mild solution,in fact, is global solution, i.e.,

T = +∞.

Step 3: Setδ0 = min{δ1, δ2}. Taking the inner product of (3.7)1 with v in L2(O), and (3.7)2 with ηt in

Q0
ν1,ν2

, then adding the two results gives

d
dt

(‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

) + (λλ1 − 2µ0)‖v‖2 + δ0‖η
t‖2 + α1‖u‖

p+1
p+1 ≤ c+ c‖g‖2 + cǫ(‖z‖2 + ‖z‖p+1

p+1 + ‖∇z‖2).

Hence withδ = min{λλ1 − 2µ0,
δ0
2 } we have

d
dt

(‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

) + δ(‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

) ≤ c+ c‖g‖2 + cǫ(‖z‖2 + ‖z‖p+1
p+1 + ‖∇z‖2). (3.16)

By the Gronwall Lemma, we obtain, for anyt ∈ [τ,T],

‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

≤ e−δ(t−τ)(‖vτ‖
2 + ‖ητ‖

2
Q0
ν1,ν2

) + c
∫ t

τ

eδ(s−t)ds+ c
∫ t

τ

eδ(s−t)‖g(s)‖2ds

+ cǫ
∫ t

τ

eδ(s−t)(‖z(θsω)‖2 + ‖z(θsω)‖p+1
p+1 + ‖∇z(θsω)‖2)ds< ∞,
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where we use the fact thatz(θtω) is continuous int, for any fixedT > τ andt ∈ [τ,T]. Then,

‖φ(t, τ, ω, φτ(ω))‖2
M0
= ‖v‖2 + ‖ηt‖2

Q0
ν1,ν2

< ∞,

which means that the local mild solution we obtained above cannot blow up in finite time, i.e.,T = ∞.

Hence, problem (3.7) has a unique global mild solutionφ ∈ C([τ,∞);M0) for all t ≥ τ, so (3.9) holds.

Moreover, the continuity with respect to initial data, namely, (3.10), follows from the representation formula

and the locally Lipschitz property ofF. �

4. Existence of a pullback attractor inM0

We now establish the existence of a pullback attractor in phase spaceM0. From Theorem 3.2, we know

thatφ = (v, ηt) is a global solution to problem (3.7), define (Ω,F ,P, (θt)t∈R):

Φ : R+ × Ω̃ ×M0→M0, (t, ω̃, φτ)→ Φ(t, ω̃, φτ),

for the stochastic problem (3.7). Givent ∈ R+, (τ, ω) ∈ Ω̃ andφτ ∈ M0, set

Φ(t, (τ, ω), φτ) = φ(t + τ, τ, θ−τω, φτ(θ−τω)) =
(

v(t + τ, τ, θ−τω, vτ(θ−τω)), ηt(t + τ, τ, θ−τω, ητ(θ−τω))(s)
)

,

(4.1)

whereηt(t + τ, τ, θ−τω, ητ(θ−τω))(s) =
∫ s

0 u(t + τ − r, τ, θr−τω, uτ(θr−τω))dr.

Hence,ψ = (u, ηt) is a global solution to problem (1.1). Then the solutionψ = (u, ηt) ∈ C([τ,∞);M0)

defines a continuous random dynamical system overR and (Ω,F ,P, (θt)t∈R):

Ψ : R+ × Ω̃ ×M0→M0, (t, ω̃, ψτ)→ Ψ(t, ω̃, ψτ).

Givent ∈ R+, (τ, ω) ∈ Ω̃ andψτ ∈ M0, set

Ψ(t, (τ, ω), ψτ) = ψ(t + τ, τ, θ−τω, ψτ(θ−τω)) = φ(t + τ, τ, θ−τω, φτ(θ−τω)) + (ǫz(θtω), 0). (4.2)

Obviously,Φ andΨ defined by (4.1) and (4.2), respectively, satisfy all conditions (i)-(iii) in Definition 2.1.

On the other hand, we can see that

Ψ(t, (τ, ω), ψτ) = T(θtω)Φ(t, (τ, ω), φτ),

whereT(ω)(a, b)⊤ = (a+ ǫz(ω), 0)⊤ is an homeomorphism ofM0. Hence,Φ andΨ are equivalent. In what

follows, we establish uniform estimates for the solutions to problem (3.7) and prove the existence and upper

semi-continuity of a pullback random attractor for RDSΦ based on Proposition 2.7 and Proposition 2.8. To

this end, we specify a collectionDδ of families of subsets ofM0.

SupposeD = {D(ω̃) : ω̃ ∈ Ω̃} is a family of bounded nonempty subsets ofM0 satisfying, for every

ω̃ ∈ Ω̃,

lim
s→−∞

eδs‖D(θ̃sω̃)‖2
M0
= 0, (4.3)

where the positive numberδ = min{λλ1 − 2µ0}. Denote byDδ the collection of all tempered families of

tempered nonempty subsets ofM0 which fulfil condition (4.3), i.e.,

Dδ =
{

D = {D(ω̃) : ω̃ ∈ Ω̃} : D satisfies (4.3)
}

. (4.4)
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4.1. Existence of pullback absorbing set inM0

This subsection is devoted to obtaining a pullback absorbing set for the cocycleΦ inM0. Henceforth

we assume thatg ∈ Cb(R, L2(O)), whereCb(R, L2(O)) denotes the set of continuous bounded functions from

R into L2(O). We begin with the following lemma.

Lemma 4.1. Assume that (f1)-(f3) and(H1)− (H2) hold. Let B= {B(τ, ω) : (τ, ω) ∈ Ω̃} ∈ Dδ. Then

‖v(τ, τ − t, θ−τω, vτ−t)‖
2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖

2
Q0
ν1,ν2
≤ R(ω) (4.5)

for anyφτ−t = (vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)), where R(ω) = γ1 + γ1(ǫ2 + ǫp+1)r(ω).

Proof. By a similar procedure as to Step 3 in Section 3, we have

d
dt

(‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

) + δ(‖v‖2 + ‖ηt‖2
Q0
ν1,ν2

) + α1‖u‖
p+1
p+1

≤ ǫ2
(

1+
4λ1(µ0 + 1)2

λ
+

2k0

δ0

)

‖z‖2 +

(

ǫα4

2(p+ 1)

)p+1

(
α1

p
)−p‖z‖p+1

p+1

+ ǫ2(2λ +
2k0

δ0
)‖∇z‖2 +

4λ1

λ
‖g‖2 + 2α3|O|.

(4.6)

Multiplying (4.6) byeδt and then integrating over [τ − t, τ] with t ≥ 0, we obtain for everyω ∈ Ω,

‖v(τ, τ − t, ω, vτ−t)‖
2 + ‖ηt(τ, τ − t, ω, ητ−t)‖

2
Q0
ν1,ν2

≤ e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1,ν2

) + γ0

∫ τ

τ−t
eδ(s−τ)(1+ ‖g‖2)ds

+ γ0ǫ
2
∫ τ

τ−t
eδ(s−τ)

(

‖z(θsω)‖2 + ‖∇z(θsω)‖2
)

ds+ γ0ǫ
p+1

∫ τ

τ−t
eδ(s−τ)‖z(θsω)‖p+1

p+1ds,

(4.7)

whereγ0 = max
{

4λ1
λ
, 2α3|O|, 1+

4λ1(µ0+1)2

λ
+

2k0
δ0
,
(

α4
2(p+1)

)p+1
(α1

p )−p, 2λ + 2k0
δ0

}

.

Recall thatz(θtω) = hz∗(θtω). Then we have

‖z(θtω)‖2 + ‖z(θtω)‖p+1
p+1 + ‖∇z(θtω)‖2 ≤ r(θtω)

wherer(θtω) satisfies

r(θtω) ≤ e
δ
2 |t|r(ω), t ∈ R.

Replacingω by θ−τω in (4.7), we obtain

‖v(τ, τ − t, θ−τω, vτ−t)‖
2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖

2
Q0
ν1,ν2

≤ e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1,ν2

) + γ0

∫ τ

τ−t
eδ(s−τ)‖g‖2ds+ γ0

∫ τ

τ−t
eδ(s−τ)ds

+ γ0ǫ
2
∫ τ

τ−t
eδ(s−τ)

(

‖z(θs−τω)‖2 + ‖∇z(θs−τω)‖2
)

ds+ γ0ǫ
p+1

∫ τ

τ−t
eδ(s−τ)‖z(θs−τω)‖p+1

p+1ds

≤ e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1,ν2

) + γ0

∫ 0

−t
eδs(1+ ‖g‖2)ds+ γ0(ǫ2 + ǫp+1)

∫ 0

−t
e
δ
2 sr(ω)ds.

(4.8)

Since (vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)), there existsT(τ, ω, B) > 0 such that for allt > T(τ, ω, B),

e−δt(‖vτ−t‖
2 + ‖ητ−t‖

2
Q0
ν1,ν2

) ≤
γ0(1+ ‖g‖2)

δ
.
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Therefore, for allt > T(τ, ω, B),

‖v(τ, τ − t, θ−τω, vτ−t)‖
2 + ‖ηt(τ, τ − t, θ−τω, ητ−t)‖

2
Q0
ν1,ν2

≤ γ1 + γ1(ǫ2 + ǫp+1)r(ω) := R(ω),

whereγ1 = max{2γ0(1+‖g‖2)
δ

, γ0} and‖g‖2 = sup
r∈R
‖g(·, r)‖2 < ∞. The proof is finished. �

Remark 4.2. Denote v(r) = v(r, τ − t, θ−τω, vτ−t) andηt(r) = ηt(r, τ − t, θ−τω, ητ−t)(s), we can prove that

there exist a positive constantρ0 and a tempered variable r(ω) such that

‖v(r, τ − t, θ−τω, vτ−t)‖
2 + ‖η(r, τ − t, θ−τω, ητ−t)‖

2
Q0
ν1,ν2
≤ ρ0 + ρ0(ǫ2 + ǫp+1)e−

δ
2 (r−τ)r(ω).

Define

D(τ, ω) := Dω =
{

φ ∈ M0 : ‖φ(τ, τ − t, θ−τω, φτ−t(θ−τω))‖2M0
≤ R(ω)

}

. (4.9)

Let D be the family consisting of these sets given by (4.9), i.e.,

D =
{

D(τ, ω) : D(τ, ω) is defined by (4.9), (τ, ω) ∈ Ω̃
}

. (4.10)

It is clear thatD given by (4.10) belongs toDδ.

Next, we prove that the random dynamical systemΦ associated to problem (3.7) has a compact mea-

surable pullback attracting set.

4.2. Decomposition of solutions

In this subsection, we decompose the solution of (3.7) into asum of two parts, of which, one part decays

exponentially and the other one is bounded in a ”higher regular” space by using the method in [10, 30], and

obtain some a priori estimates for the solutions, which are the basis for constructing a compact measurable

attracting set for RDSΦ.

For any (τ, ω) ∈ Ω̃, set

D1(τ, ω) =
⋃

t≥T(τ,ω,D)

φ(τ, τ − t, θ−τω,D(τ − t, θ−tω)) ⊂ D(τ, ω), (4.11)

then by (4.9),

Φ(t, τ − t, θ−tω,D1(τ − t, θ−tω)) = φ(τ, τ − t, θ−τω,D1(τ − t, θ−tω)) ⊂ D1(τ, ω) ⊂ D(τ, ω), t ≥ 0. (4.12)

For any (τ, ω) ∈ Ω̃ andt ≥ 0, letφ(r) = φ(r, τ − t, θ−τω, φτ−t(θ−τω)) (r ≥ τ − t) be a mild solution of system

(3.7) with the initial valueφτ−t(θ−τω) = (vτ−t , ητ−t) ∈ D1(τ − t, θ−tω) ⊂ D(τ − t, θ−tω), then it follows from

(4.12) thatφ(r) ∈ D(r − τ, θr−τω) for all r ≥ τ − t. We decomposeφ(r) into φ(r) = φL(r) + φN(r), where

φL(r) = (vL(r), ηt
L(r)) andφN(r) = (vN(r), ηt

N(r)) satisfying, respectively,

∂tvL − µ0vL − λ∆vL +

∫ ∞

0
ν1(s)ηt

L(s)ds+
∫ ∞

0
ν2(s)∆ηt

L(s)ds+ f (vL) + KvL = 0,

∂tη
t
L + ∂sη

t
L = vL, x ∈ O, s> 0, r ≥ τ − t,

(4.13)

with the initial and boundary values

vL(x, t) = 0, ηt
L(x, s) = 0, x ∈ O, vL(x, τ) = vτ(x), ητL(x, s) = ητ(x, s), x ∈ ∂O, s> 0, r < τ − t. (4.14)
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and

∂tvN − µ0vN − λ∆vN +

∫ ∞

0
ν1(s)ηt

N(s)ds+
∫ ∞

0
ν2(s)∆ηt

N(s)ds+ f (u) − f (vL)

= KvL + g+ ǫ(µ0 + 1)z+ ǫλ∆z,

∂tη
t
N + ∂sη

t
N = vN + ǫz, x ∈ O, s> 0, r ≥ τ − t,

(4.15)

with then initial and boundary values

vL(x, t) = 0, ηt
L(x, s) = 0, x ∈ O, vL(x, τ) = 0, ητL(x, s) = 0, x ∈ ∂O, s> 0, r < τ − t. (4.16)

Obviously, system (4.13) is a deterministic (non-random) non-autonomous system independent ofω. Notice

that assumption (f 2) implies that there existsK0 > 0 such thatf (u)u ≥ −K0|u|2. SetK > K0. In order to

estimate the component ofφL, we start with the estimate ofvL.

Lemma 4.3. Suppose that assumptions of Lemma 4.1 hold. Then the solution of (4.13)satisfies

‖vL(τ, τ − t, vL,τ−t)‖
2 + ‖ηt

L(τ, τ − t, ηL,τ−t)‖
2
Q0
ν1,ν2

≤ e−δtR0(ω).

Proof. Multiplying (4.13)1 by vL and integrating overO in L2(O), multiplying (4.13)2 by ηt
L and integrating

overO in Q0
ν1,ν2

, then adding the results, we obtain

1
2

d
dt

(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1,ν2

) − µ0‖vL‖
2 + λ‖∇vL‖

2 +

∫ ∞

0
ν1(s)

∫

O

∂sη
t
L · η

t
Ldxds

+

∫ ∞

0
ν2(s)

∫

O

∂s∇η
t
L · ∇η

t
Ldxds+

∫

O

f (vL)vLdx= 0.
(4.17)

Some computations then yield

d
dt

(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1,ν2

) + δ(‖vL‖
2 + ‖ηt

L‖
2
Q0
ν1,ν2

) + (K − K0)‖vL‖
2 ≤ 0. (4.18)

By the Gronwall Lemma, we conclude that there exits a tempered variableR0(ω) > 0 such that

‖vL(τ, τ − t, vL,τ−t)‖
2 + ‖ηt

L(τ, τ − t, ηL,τ−t)‖
2
Q0
ν1,ν2
≤ e−δt(‖vτ−t‖

2 + ‖ητ−t‖
2
Q0
ν1,ν2

) ≤ e−δtR0(ω). (4.19)

This finishes the proof. �

Hereafter, denoteRi(ξ, τ, ω) = ρi+ρi(ǫ2+ǫp)li e−βi (ξ−τ)r(ω)ni , Ri(ω) := R(τ, τ, ω) = ρi+ρi(ǫ2+ǫp)li r(ω)ni

for ρi , l i , βi , ni > 0, i = 1, 2, 3, · · · , andξ ≥ τ − t.

Lemma 4.4. Assume that( f 1) − ( f 3) hold with 1 < p < 1 + 4/n, or ( f 1) − ( f 2) and ( f 4) hold with

p = 1+ 4/n, then the solution of(4.15)satisfies the inequality

‖vN(τ, τ − t, θ−τω, 0)‖2σ + ‖η
t
N(τ, τ − t, θ−τω, 0)‖2Qσ

ν1,ν2
≤ R4(ω),

where0 < σ < min{1, 2p−np+2
2 }.
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Proof. Taking the inner product of (4.15)1 with AσvN in L2(O), (4.15)2 with Aσηt
N in Q0

ν1,ν2
, we obtain

1
2

d
dt

(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1,ν2

) − µ0‖A
σ
2 vN‖

2 + λ‖A
1+σ

2 vN‖
2 +

δ0

2
‖ηt‖2Qσ

ν1,ν2
+

∫

O

( f (u) − f (vL))AσvNdx

≤

∫

O

g · AσvNdx+
∫

O

KvL · A
σvNdx+ ǫ(µ0 + 1)

∫

O

z · AσvNdx+ ǫλ
∫

O

∆z · AσvNdx

+

∫ ∞

0
ν1(s)

∫

O

A
σ
2 (vN + ǫz) · A

σ
2 ηt

Ndxds+
∫ ∞

0
ν2(s)

∫

O

A
1+σ

2 (vN + ǫz) · A
1+σ

2 ηt
Ndxds.

(4.20)

By the Young’s inequality, we have
∫

O

g · AσvNdx+
∫

O

KvL · A
σvNdx+ ǫ(µ0 + 1)

∫

O

z · AσvNdx+ ǫλ
∫

O

∆z · AσvNdx

≤
λλ1

4
‖AσvN‖

2 + c(‖g‖2 + ‖vL‖
2) + cǫ2(‖z‖2 + ‖∆z‖2).

(4.21)

Note that ifp < 1+ 4/n, then p−1
4 n− 1−σ

2 < 1+σ
2 , and by Lemma 4.1 we know that

∣

∣

∣

∣

∣

∫

O

( f (u) − f (vL))AσvNdx
∣

∣

∣

∣

∣

≤ c
∫

O

(1+ |u|p−1 + |vL|
p−1)|vN + ǫz||A

σvN|dx

≤ c
∫

O

(1+ |u|p−1 + |vL|
p−1)|vN||A

σvN|dx+ cǫ
∫

O

(1+ |u|p−1 + |vL|
p−1)|z||AσvN|dx

≤ c

(

1+ (
∫

O

|u|2dx)(p−1)/2 + (
∫

O

|vL|
2dx)(p−1)/2

) (∫

O

|vN|
2n/(2n−np+2(1−σ))dx

)(2n−np+2(1−σ))/2n

×

(∫

O

|AσvN|
2n/(n−2(1−σ))dx

)(n−2(1−σ))/2n

+ cǫ

(

1+ (
∫

O

|u|2dx)(p−1)/2 + (
∫

O

|vL|
2dx)(p−1)/2

)

×

(∫

O

|z|2n/(2n−np+2(1−σ))dx

)(2n−np+2(1−σ))/2n (∫

O

|AσvN|
2n/(n−2(1−σ))dx

)(n−2(1−σ))/2n

≤ c‖A(1+σ)/2vN‖ · ‖vN‖
L2n/[n−2( p−1

2 )n−(1−σ)]
(1+ ‖u‖p−1 + ‖vL‖

p−1)

+ cǫ‖A(1+σ)/2vN‖ · ‖z‖
L2n/[n−2( p−1

2 )n−(1−σ)]
(1+ ‖u‖p−1 + ‖vL‖

p−1)

≤ c‖A(1+σ)/2vN‖ · ‖A
p−1
4 n− 1−σ

2 vN‖(1+ ‖u‖
p−1 + ‖vL‖

p−1)

+ cǫ‖A(1+σ)/2vN‖ · ‖A
p−1
4 n− 1−σ

2 z‖(1+ ‖u‖p−1 + ‖vL‖
p−1)

≤ c‖A(1+σ)/2vN‖ · ‖vN‖
1−ϑ‖A(1+σ)/2vN‖

ϑ(1+ ‖u‖p−1 + ‖vL‖
p−1)

+ cǫ‖A(1+σ)/2vN‖ · ‖A
(1+σ)/2z‖(1+ ‖u‖p−1 + ‖vL‖

p−1)

≤
λ

4
‖A(1+σ)/2vN‖

2 + c(1+ ‖u‖p−1 + ‖vL‖
p−1)

2
1−ϑ ‖vN‖

2 + cǫ2(1+ ‖u‖p−1 + ‖vL‖
p−1)2‖A

1+σ
2 z‖2.

(4.22)
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On the other hand, ifp = 1+ 4/n, then
∣

∣

∣

∣

∣

∫

O

( f (u) − f (vL))AσvNdx
∣

∣

∣

∣

∣

≤

∫

O

(Cν + ν|u|
4
n + ν|vL|

4
n )|vN + ǫz| · |A

σvN|dx

≤

∫

O

(Cν + ν|u|
4
n + ν|vL|

4
n )|vN| · |A

σvN|dx+ ǫ
∫

O

(Cν + ν|u|
4
n + ν|vL|

4
n )|z| · |AσvN|dx

≤ Cν(
∫

O

|vN|
2n/(n+2(1−σ))dx)(n+2(1−σ))/2n(

∫

O

|AσvN|
2n/(n−2(1−σ))dx)(n−2(1−σ))/2n + ν

(

(
∫

O

|u|2dx)2/n + (
∫

O

|vL|
2dx)2/n

)

× (
∫

O

|vN|
2n/[n−2(1+σ)]dx)[n−2(1+σ)]/2n(

∫

O

|AσvN|
2n/[n−2(1−σ)]dx)[n−2(1−σ)]/2n

+Cνǫ(
∫

O

|z|2n/(n+2(1−σ))dx)(n+2(1−σ))/2n(
∫

O

|AσvN|
2n/(n−2(1−σ))dx)(n−2(1−σ))/2n + νǫ

(

(
∫

O

|u|2dx)2/n + (
∫

O

|vL|
2dx)2/n

)

× (
∫

O

|z|2n/[n−2(1+σ)]dx)[n−2(1+σ)]/2n(
∫

O

|AσvN|
2n/[n−2(1−σ)]dx)[n−2(1−σ)]/2n

≤ Cν‖vN‖L2n/(n+2(1−σ))‖AσvN‖L2n/(n−2(1−σ)) + νC(‖u‖4/n + ‖vL‖
4/n)‖vN‖L2n/n−2(1+σ)‖AσvN‖Ln−2(1−σ)

+Cνǫ‖z‖L2n/(n+2(1−σ))‖AσvN‖L2n/(n−2(1−σ)) + νǫC(‖u‖4/n + ‖vL‖
4/n)‖z‖L2n/n−2(1+σ)‖AσvN‖Ln−2(1−σ)

≤
λ

4
‖A

1+σ
2 vN‖

2 + cCν‖vN‖
2 + νCν(‖u‖

4
n + ‖vL‖

4
n )‖A

1+σ
2 vN‖

2

+ cC2
νǫ

2‖z‖2 + cν2ǫ2(‖u‖
4
n + ‖vL‖

4
n )2‖A

1+σ
2 z‖2.

(4.23)

If p = 1+ 4
n, then by Lemmas 4.1 and 4.3, we can chooseν small enough such that, for every (τ, ω) ∈ Ω̃,

νCν(‖u‖
4
n + ‖vL‖

4
n )‖A

1+σ
2 vN‖

2 ≤
λ

4
‖A

1+σ
2 vN‖

2, cν2ǫ2(‖u‖
4
n + ‖vL‖

4
n )2‖A

1+σ
2 z‖2 ≤ cǫ2‖A

1+σ
2 z‖2. (4.24)

From (4.20)-(4.24), we have

d
dt

(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1,ν2

) + δ(‖A
σ
2 vN‖

2 + ‖ηt
N‖

2
Qσ
ν1,ν2

)

≤ c(1+ ‖u‖p−1 + ‖vL‖
p−1)

2
1−θ ‖vN‖

2 + cǫ2(1+ ‖u‖p−1 + ‖vL‖
p−1)2‖A

1+σ
2 z‖2

+ cǫ2(‖z‖2 + ‖∆z‖2) + c(‖g‖2 + e−δ(r−τ+t)R0(ω))

≤ R1(r, τ, ω) + cǫ2(1+ R2(r, τ, ω))(‖z(θr−τω)‖2 + ‖A
1+σ

2 z(θr−τω)‖2 + ‖∆z(θr−τω)‖2)

+ c(1+ e−δ(r−τ+t)R0(ω)).

(4.25)

Applying the Gronwall lemma to (4.25)c, it follows that fort large enough,

‖A
σ
2 vN(τ, τ − t, θ−τω, 0)‖2 + ‖ηt

N(τ, τ − t, θ−τω, 0)‖2Qσ
ν1,ν2
≤ R3(ω).

This completes the proof. �

Lemma 4.5. Let the assumption of Lemma 4.4 hold. Then for any B= {B(τ, ω) : (τ, ω) ∈ Ω̃}(∈ Dδ) ⊂ Mσ

and for any(vτ−t, ητ−t) ∈ B(θ̃−t(τ, ω)),

‖v(τ, τ − t, θ−τω, vτ−t)‖
2
σ + ‖η

t(τ, τ − t, θ−τω, ητ−t)‖
2
Qσ
ν1,ν2
≤ R4(ω).
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Proof. Taking the inner product of (3.5)1 with Aσv in L2(O) and (3.5)2 with Aσηt in Q0
µ1,µ2

. Then we can

finish the proof similarly to the proof of Lemma 4.1. �

On the basis of the above lemmas, we have the following results.

Lemma 4.6. For 0 < σ < 1
2 andσ ≤ s≤ 1, we have

‖A
s
2 vN(τ, τ − t, θ−τω, 0)‖2 + ‖ηt

N(τ, τ − t, θ−τω, 0)‖2Qs
ν1,ν2
≤ R5(ω).

Proof. Multiplying (4.15)1 by AsvN, and (4.15)2 by Asηt
N, then sum the results to obtain

1
2

d
dt

(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1,ν2

) +
δ0

2
‖ηt

N‖
2
Qs
µ1,µ2
− µ0‖A

s
2 vN‖

2 + λ‖A
1+s
2 vN‖

2 +

∫

O

( f (u) − f (vL))AsvNdx

≤

∫

O

g · AsvNdx+
∫

O

KvL · A
svNdx+ ǫ

∫

O

((µ0 + 1)z+ λ∆z) · AsvNdx+ ǫ
∫ ∞

0
ν1(s)

∫

O

z · Asηt
Ndxds

+ ǫ

∫ ∞

0
ν2(s)

∫

O

A
1+s
2 z · A

1+s
2 ηt

Ndxds.

(4.26)

If n ≥ 4, by straightforward computations we have

2n > (n− 2σ)p+ 2(s+ σ − 1), (4.27)

and ifn = 3, we can chooseσ close to 1/2 such that (4.27) holds. Hence,
∣

∣

∣

∣

∣

∫

O

( f (u) − f (vL))AsvNdx
∣

∣

∣

∣

∣

≤ c
∫

O

(1+ |u|p−1 + |vL|
p−1)|vN + ǫz| · |A

svN|dx

≤ c
∫

O

(1+ |u|p−1 + |vL|
p−1)|vN| · |A

svN|dx+ cǫ
∫

O

(1+ |u|p−1 + |vL|
p−1)|z| · |AsvN|dx

≤ c

{

1+ (
∫

O

|u|
2n

n−2σ dx)
n−2σ

2n (p−1) + (
∫

O

|vL|
2n

n−2σdx)
n−2σ

2n (p−1)
}

(
∫

O

|vN|
2n
ñ dx)

ñ
2n

· (
∫

O

|AsvN|
2n

n−2(1−s) dx)
n−2(1−s)

2n + cǫ

{

1+ (
∫

O

|u|
2n

n−2σ dx)
n−2σ

2n (p−1) + (
∫

O

|vL|
2n

n−2σdx)
n−2σ

2n (p−1)
}

(
∫

O

|z|
2n
ñ dx)

ñ
2n · (

∫

O

|AsvN|
2n

n−2(1−s) dx)
n−2(1−s)

2n

≤ c
{

1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1
}

‖vN‖
L

2n
ñ
‖A

1+s
2 vN‖

+ cǫ
{

1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1
}

‖z‖
L

2n
ñ
‖A

1+s
2 vN‖,

(4.28)

whereñ = 2n− [(n− 2σ)p+ 2(s+ σ − 1)].

Let s′ = [−n+ (n− 2σ)p+ 2(s+σ− 1)]/2. Sincep ≤ 1+ 4
n, we can choosep > 0 such thats′ > 0. By

calculation, we get that 0< s′ < 1+ s. Thus, using interpolation inequality, we obtain

‖vN‖
L

2n
ñ
= ‖vN‖ 2n

n−2[−n+(n−2σ)p+2(s+σ−1)]/2
= ‖vN‖

L
2n

n−2s′
≤ c‖A

s′
2 vN‖ ≤ c‖vN‖

1−ϑ‖A
1+s
2 vN‖

ϑ, 0 < ϑ < 1,

which together with (4.28) implies that

|

∫

O

( f (u) − f (vL))AsvNdx| ≤
λ

4
‖A

1+s
2 vN‖

2 + c(1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖vN‖
2

+ cǫ2(1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖A
s′
2 z‖2.

(4.29)
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On the other hand, thanks to the Young inequality,
∫

O

g · AsvNdx+
∫

O

LvL · A
svNdx+ cǫ

∫

O

(z+ ∆z) · AsvNdx

≤
λ

4
‖A

1+s
2 vN‖

2 + c(‖g‖2 + ‖vL‖
2) + cǫ2(‖z‖2 + ‖A

1+s
2 z‖2).

(4.30)

and

ǫ

∫ ∞

0
ν1(s)

∫

O

zAsηt
Ndxds+ ǫ

∫ ∞

0
ν2(s)

∫

O

A
1+s
2 zA

1+s
2 ηt

Ndxds≤
δ0

4
‖ηt

N‖
2
Qs
ν1,ν2
+ cǫ2(‖A

s
2 z‖2 + ‖A

1+s
2 z‖2).

(4.31)

Therefore, it follows from (4.26) and (4.29)-(4.31) that

d
dt

(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1,ν2

) + δ(‖A
s
2 vN‖

2 + ‖ηt
N‖

2
Qs
ν1,ν2

)

≤ c(1+ ‖g‖2) + c(1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖vN‖
2

+ cǫ2(1+ ‖A
σ
2 u‖p−1 + ‖A

σ
2 vL‖

p−1)
2

1−ϑ ‖A
s
2 z‖2 + cǫ2(‖z‖2 + ‖A

1+σ
2 z‖2).

Applying Lemma 4.5 and the Gronwall lemma to the above inequality gives the desired result. �

4.3. Existence of the pullback random attractor

Now, we prove the compactness of the memory term. Note that for any (τ, ω) ∈ Ω̃, t ≥ 0,

ηt
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s) =



















∫ s

0 uN(τ − r, τ − t, θr−τω, uN,τ−t(θr−τω))dr, 0 < s≤ t,
∫ t

0
uN(τ − r, τ − t, θr−τω, uN,τ−t(θr−τω))dr, s> t.

(4.32)

Lemma 4.7. Under the assumption of Lemma 4.6. For every given(τ, ω) ∈ Ω̃, let

E(τ, ω) := E(τ, ω)(s) =
⋃

(vτ−t ,ητ−t)∈D1(τ−t,θ−tω)

⋃

t≥0

ηt
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s) ⊂ Q0

ν1,ν2
,

whereφ = (v, ηt) is the solution of(3.7). Then E(τ, ω) is relatively compact in Q0ν1,ν2
.

Proof. By Lemma 2.9, we need to verify two conditions:

(i) E(τ, ω) is bounded inL2
ν1

(R+;H1) ∩ H1
ν1

(R+;H0) andL2
ν2

(R+;H2) ∩ H1
ν2

(R+;H1);

(ii) supηt∈E(τ,ω)(‖η
t‖2
H0
+ ‖ηt‖2

H1
) ≤ h(s).

From Lemma 4.6, we know thatE(τ, ω) is bounded inL2
ν1

(R+;H1) ∩ L2
ν2

(R+;H2). By (4.32), we have

∂sη
t
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s) =



















uN(τ − s, τ − t, θs−τω, uN,τ−t(θs−τω)), 0 < s≤ t,

0, s> t.
(4.33)

By (H1), we know thatν1, ν2 ∈ C1(R+) ∩ L1(R+), which along with Lemma 4.6 we find thatE(τ, ω) is

bounded inH1
ν1

(R+;H0) ∩ H1
ν2

(R+;H1). Indeed, we have
∫ ∞

0
ν1(s)‖∂sη

t
N‖

2ds+
∫ ∞

0
ν2(s)‖∇∂sη

t
N‖

2ds

=

∫ t

0
ν1(s)‖uN(τ − s)‖2ds+

∫ t

0
ν2(s)‖∇uN(τ − s)‖2ds

=

∫ t

0
ν1(τ − s)‖uN(s)‖2ds+

∫ t

0
ν2(τ − s)‖∇uN(s)‖2ds< ∞,
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which implies (i) holds.

On the other hand, by (4.32) and using Lemma 4.6 again, we obtain that

sup
ηt∈E(τ,ω),s∈R+

(‖ηt(s)‖H0 + ‖η
t(s)‖H1)

= sup
t≥0

sup
(vτ−t ,ητ−t)∈D1(τ−t,θ−tω),s∈R+

(

‖ηt
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s)‖H0 + ‖η

t
N(τ, τ − t, θ−τω, ηN,τ−t(θ−τω))(s)‖H1

)

≤ s2(R(ω) + R5(ω)) := h(s).

By (H2), we know thatν1 andν2 decay exponentially, so it is easy to check thath(s) ∈ L1
ν1
∩ L1

ν2
. Then (ii)

holds. By Lemma 2.9, the proof is complete. �

We can now state our main result about the existence of pullback random attractor for the RDSΦ.

Theorem 4.8. Assume that either( f 1) − ( f 3) hold with1 < p < 1 + 4
n, or ( f 1), ( f 2) and ( f 4) hold with

p = 1 + 4
n. Let (H1) − (H2) hold and g∈ Cb(R; L2(O)). Then the RDSΦ associated with(3.7) possesses

a compact measurableD−pullback attracting setΛ(τ, ω) ⊂ M0 and possesses aDδ−pullback random

attractorA(τ, ω) ⊆ Λ(τ, ω) ∩ D(τ, ω) for any(τ, ω) ∈ Ω̃.

Proof. For any (τ, ω) ∈ Ω̃, in view of Lemma 4.6, letBs(τ, ω) be the closed ball ofHs of radiusR5(ω),

where 0< s≤ 1. Setting

Λ(τ, ω) = Bs(τ, ω) × E(τ, ω), (4.34)

thenΛ(τ, ω) ∈ Dδ(M0). Since the embeddingHs ֒→ L2(O) is compact,Bs(τ, ω) is compact inL2(O). We

have proved in Lemma 4.7 thatE(τ, ω) is compact inQ0
ν1,ν2

, soΛ(τ, ω) is compact inM0(:= L2(O)×Q0
ν1,ν2

).

Now we show the following attraction property ofΛ(τ, ω), namely, for everyB0 ∈ Dδ(M0),

lim
t→+∞

dH

(

Φ(t, τ − t, θ−tω, B0(τ − t, θ−tω)),Λ(τ, ω)
)

= 0. (4.35)

By Lemma 4.1, there existst∗ = t∗(τ, ω, B0) ≥ 0 such that

φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω)) ⊆ D(τ, ω), ∀t > t∗. (4.36)

Let t > t∗ andt0 = t − t∗ > T(τ, ω, B0). Using the cocycle property (iii) in Definition 2.1, we have

φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω))

= φ(τ, τ − t0 − t∗, θ−τω, B0(τ − t0 − t∗, θ−tω))

= φ(τ, τ − t0, θ−τω, φ(τ − t0, τ − t0 − t∗, θ−τω, B0(τ − t0 − t∗, θ−tω)))

⊆ φ(τ, τ − t0, θ−τω,D(τ − t0, θ−t0ω)) ⊆ D1(τ, ω).

(4.37)

Take anyφ(τ, τ − t, θ−τω, φτ−t(θ−τω)) ∈ φ(τ, τ − t, θ−τω, B0(τ − t, θ−tω)) for t > t∗ + T(τ, ω, B0), where

φτ−t(θ−τω) ∈ B0(τ − t, θ−tω). From (4.37) and Lemma 4.6, we have

φN(τ, τ−t, θ−τω, φτ−t(θ−τω)) = φ(τ, τ−t, θ−τω, φτ−t(θ−τω))−φL(τ, τ−t, θ−τω, φL,τ−t(θ−τω)) ∈ Λ(τ, ω). (4.38)

Thus, by Lemma 4.3, we obtain

inf
χ∈Λ(τ,ω)

‖φ(τ, τ − t, θ−τω, φτ−t(θ−τω)) − χ‖2
M0
≤ ‖φL(τ, τ − t, θ−τω, φL,τ−t(θ−τω))‖2

M0

≤ R0(ω)e−δt, ∀t > t∗ + T(τ, ω, B0).
(4.39)
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It follows that

dH

(

Φ(t, τ − t, θ−tω, B0(θ − t, θ−tω)),Λ(τ, ω)
)

≤ R0(ω)e−δt → 0 ast → +∞, (4.40)

which means (4.35) holds. By Proposition 2.7, RDSΦ associated with (3.7) possesses aDδ−pullback

random attractorA(τ, ω) ⊆ Λ(τ, ω) ∩ D(τ, ω). The proof is completed. �

5. Upper semi-continuity of pullback random attractors

In this section, we regard the coefficient ǫ ∈ R as a parameter in system (3.7). In view of Theorem 3.2

and 4.8, we can define a family of random dynamical system{Φǫ (t, (τ, ω))}ǫ∈R associated to (3.7), and know

that {Φǫ (t, (τ, ω))}ǫ∈R possess a corresponding family of pullback random attractors {Aǫ(τ, ω)}ǫ∈R. Here let

us consider the upper semi-continuity of pullback random attractors{Aǫ(τ, ω)}ǫ∈R asǫ → ǫ0 by Proposition

2.8.

Based on Proposition 2.8 and the results in Section 4, we havethe following upper semi-continuity of

pullback random attractors{Aǫ(τ, ω)}ǫ∈R for {Φǫ(t, (τ, ω))}ǫ∈R.

Theorem 5.1. Suppose that the conditions in Theorem 4.8 hold. Then for any(τ, ω) ∈ Ω̃,

lim
ǫ→ǫ0

dH
(

Aǫ(τ, ω),Aǫ0(τ, ω)
)

= sup
φ∈Aǫ(τ,ω)

inf
φ̃∈Aǫ0(τ,ω)

‖φ − φ̃‖M0 = 0. (5.1)

Proof. Let us check that conditions (i)-(iv) of Proposition 2.8 arefulfilled.

(i) It is trivial to verify that for anyǫ0 ∈ R, there existsF = {F(τ, ω) = {φǫ0 ∈ M0 : ‖φǫ0‖2
M0
≤ Rǫ0(τ, ω)} :

(τ, ω) ∈ Ω̃} ∈ Dδ with Rǫ0(τ, ω) = 2γ1 + γ1(ǫ2
0 + ǫ

p+1
0 )r(ω).

(ii) By Lemma 4.1 and Theorem 4.8, we know that for any (τ, ω) ∈ Ω̃ and ǫ ∈ R, the pullback random

attractorAǫ(τ, ω) forΦǫ (t, (τ, ω)) is included in the absorbing ballD(ǫ, ω) = {φǫ ∈ M0 : ‖φǫ‖2
M0
≤ Rǫ(τ, ω)},

i.e.,Aǫ(τ, ω) ⊆ D(τ, ω) ⊂ M0, whereRǫ(τ, ω) = γ1 + γ1(ǫ2 + ǫp+1)r(ω). We can check that

lim sup
ǫ→ǫ0

Rǫ(τ, ω) ≤ Rǫ0(τ, ω). (5.2)

(iii) Let |ǫ| ≤ 1. For every (τ, ω) ∈ Ω̃, using Theorem 4.8 once again, we find thatAǫ(τ, ω) ⊆ Λǫ(τ, ω) ⊂

M0. Note thatR5(ω) andRǫ(τ, ω) are both increasing functions in|ǫ|. By the construction ofΛǫ(τ, ω) in

(4.34), we can choose the compact setΛǫ(τ, ω) satisfying

Λǫ(τ, ω) ⊂ Λ1(τ, ω), ∀ |ǫ| ≤ 1. (5.3)

Hence,
⋃

|ǫ |≤1

Aǫ(τ, ω) ⊆
⋃

|ǫ |≤1

Λǫ(τ, ω) ⊆ Λ1(τ, ω) ⊂ M0. (5.4)

Thus,
⋃

|ǫ |≤1A
ǫ(τ, ω) is precompact inM0.

(iv) Let |ǫ| ≤ 1. For everyt ≥ 0, (τ, ω) ∈ Ω̃, let φǫ(t, (τ, ω), φǫτ(ω)) andφǫ0(t, (τ, ω), φǫ0τ (ω)) be the

solutions of (3.7) withǫ andǫ0, initial dataφǫτ(ω) andφǫ0τ (ω), respectively. SetU = φǫ − φǫ0 = (w, ξ) =

(vǫ − vǫ0, ηt
ǫ − η

t
ǫ0

), then

U̇ = LU + F(U), Uτ = φ
ǫ
τ(ω) − φǫ0τ (ω), (5.5)
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where

LU =

(

µ0w+ λ∆w−
∫ ∞

0
ν1(s)ξt(s)ds+

∫ ∞

0
ν2(s)∆ξt(s)ds,w− ∂sξ

t
)

,

F(U) = Fǫ(φǫ , θtω, t) − Fǫ0(φǫ0, θtω, t)

=
(

(ǫ − ǫ0)(µ0 + 1)z(θtω) + (ǫ − ǫ0)λ∆z(θtω) + f (uǫ0) − f (uǫ ), (ǫ − ǫ0)z(θtω)
)

,

Uτ(ω) =
(

vǫτ − vǫ0τ , η
ǫ
τ − η

ǫ0
τ

)

.

Take the inner product of (5.5) withU inM0 to obtain

1
2

d
dt
‖U‖2

M0
= (LU,U)M0 + (F(U),U)M0. (5.6)

By (H2), we have

(LU,U)M0 ≤ (µ0 − λ1λ)‖w‖2 −
δ0

2
‖ξt‖2M0

≤ −δ‖U‖2M0
. (5.7)

(F(U),U)M0 = (ǫ − ǫ0)(µ0 + 1)
∫

O

zwdx− (ǫ − ǫ0)λ
∫

O

∇z∇wdx+ (ǫ − ǫ0)
∫ ∞

0
ν1(s)

∫

O

zξtdxds

+ (ǫ − ǫ0)
∫ ∞

0
ν2(s)

∫

O

∇z∇ξtdxds+
∫

O

( f (uǫ0) − f (uǫ ))wdx

≤ c(ǫ − ǫ0)2(‖z‖2 + ‖∇z‖2) + c(‖w‖2 + ‖∇w‖2) +
δ0

4
‖ξt‖2

Q0
ν1,ν2
+

∫

O

( f (uǫ0) − f (uǫ ))wdx

(5.8)

For the last term in (5.8), we have
∫

O

( f (uǫ0) − f (uǫ ))wdx≤ R6(r, τ, ω)(‖w‖2 + ‖∇w‖2), if p < 1+
4
n
, (5.9)

and
∫

O

( f (uǫ0) − f (uǫ ))wdx≤ R7(r, τ, ω)‖∇w‖2, if p = 1+
4
n
. (5.10)

It follows from (5.6)-(5.10) that

d
dt
‖U‖2

M0
≤ R8(r, τ, ω)‖U‖2

M0
+ c(ǫ − ǫ0)2(‖z(θtω)‖2 + ‖∇z(θtω)‖2), r ≥ τ − t. (5.11)

Apply the Gronwall lemma to (5.11) withω replaced byθ−τω to find

‖U(τ, τ − t, θ−τω,Uτ−t)‖
2
M0

= ‖vǫ (τ, τ − t, θ−τω, v
ǫ
τ−t) − vǫ0(τ, τ − t, θ−τω, v

ǫ0
τ−t)‖

2 + ‖ηt
ǫ(τ, τ − t, θ−τω, η

ǫ
τ−t) − η

t
ǫ0

(τ, τ − t, θ−τω, η
ǫ0
τ−t)‖

2
Q0
ν1,ν2

≤ ‖φǫ (τ, τ − t, θ−τω, φ
ǫ
τ−t) − φ

ǫ0(τ, τ − t, θ−τω, φ
ǫ0
τ−t)‖

2
M0

e
∫ τ

τ−t ρ8+ρ8(ǫ2+ǫp)l8e−β8(s−τ)r(ω)n8ds

+ c(ǫ − ǫ0)2
∫ τ

τ−t
e
∫ r
τ
ρ8+ρ8(ǫ2+ǫp)l8e−β8(s−τ)r(ω)n8ds(‖z(θr−τω)‖2 + ‖∇z(θr−τω)‖2)dr.

(5.12)

From (5.12), we see that for any (τ, ω) ∈ Ω̃, t ≥ 0, ǫn → ǫ0, andφǫnτ−t, φ
ǫ0
τ−t ∈ M0 with φǫnτ−t → φ

ǫ0
τ−t, it holds

that:

lim
n→∞

(

‖vǫn(τ, τ − t, θ−τω, v
ǫn
τ−t) − vǫ0(τ, τ − t, θ−τω, v

ǫ0
τ−t)‖

2

+ ‖ηt
ǫn

(τ, τ − t, θ−τω, η
ǫn
τ−t) − η

t
ǫ0

(τ, τ − t, θ−τω, η
ǫ0
τ−t)‖

2
Q0
ν1,ν2

)

= 0.
(5.13)

Up to now, all of the conditions (i)-(iv) of Proposition 2.8 are satisfied. The proof is finished. �
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Remark 5.2. We would like to mention that in [35], Li proved the existenceof uniform attractor for(1.1)

with ǫ = 0, but did not consider the pullback set up for the asymptotic behavior, which is our motivation for

our paper.
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