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Abstract

The existence and limiting behavior of the solutions of B&mtic parabolic problems with thermal memory
are investigate in the cases that the nonlinear term satstilecritical and critical growth conditions. The
existence, uniqueness and continuity of solutions is gtdxea semigroup method and the Lax-Milgram
theorem, then the dynamics of solutions is analyzed by aipgtimates. In particular, the existence of
pullback random attractors for the random dynamical sysiesociated to the problem is established and
the upper semi-continuity of the pullback random attractewerified.
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1. Introduction

A large class of physical phenomena in which delffg@s occur, such as viscoelasticity, population
dynamics or heat flow in real conductors, is modelled by egngtin materials with memory, where the
dynamics is influenced by the past history of the state visalT his is because that materials with memory
have the property that the mathematical-physical desonigf their state at a given point of time includes
such states in which the materials have been at earlierspoirtime.

Here we consider the stochastic parabolic equation in ma#tevith thermal memory with subcritical
and critical nonlinearities

t t
u_9 u1(t — s)u(x, s)ds— 1Au - f ot — 9)Au(x, s)ds+ f(u)
ot ot J_o —o0
aW 1.1)
=g(xt) + Eh(X)E’ XeO, t>r,
with the initial and boundary values
u(x7) = u(x), xe 0, uxt)=0, xedo, t>r, 1.2)
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whereO c R", n > 3, be a bounded domain with smooth boundary, O ande are constants. In addition,
u(x, t) is the unknown functionyy, u> : R* — R are the heat flux memory kernel§,is the nonlinear
heat supply satisfying some dissipativeness and growtHitons, g(x, t) is time-dependent forcing term,

h € H%(0) n W2P(0) (p will be specified later) andlV is real valued two-sided Wiener process on some
probability space which will be specified later.

Equations with memory have received increasing interestéent years. The authors of [5, 26, 28,
30, 31] studied the existence of pullback attractor, gladifdactors, uniform attractors and exponential
stability of heat equation (1.1) with, = 0. Damped wave equations with memory were investigated in
[15, 22, 23, 36, 44], while hyperbolic phase-field systemthwiemory were considered in [25, 32]. Li
[35] proved the existence of uniform attractors for parabptoblems with memory in the cases that the
nonlinearities term is subcritical and critical. Nevetdss, as far as we know, most of those models are
considered in deterministic case, hamely they did not tateaccount white noisefiects. But the authors
of [34, 39] have demonstrated that, under certain circumegts, the noise can benefit the system in some
way. This is an interesting phenomenon because noise isajlgneonsidered as a nuisance to systems. To
the best of our knowledge, no work has been reported on tiséeexie and uniqueness of mild solution and
limit behavior of solutions for equation (1.1) with critlc@onlinear term.

Motivated by the above considerations, we will analyze tiweadhics of solutions to (1.1) when the
nonlinear heat supply has a subcritical growth exponent and a critical growth egod. More precisely,
we will focus on (1.1) in three aspects: (i) Existence, uriggss and continuity of mild solutions will be
studied by a semigroup method (see [37]). (ii) The existeamm uniqueness of pullback random attractor
will be proved by a priori estimates and solution decompasitnethod. (iii) The upper semi-continuity
of pullback random attractor will also be checked. We mentiat Caraballo [3] considered the existence
and asymptotic behavior for a stochastic heat equation mithiplicative noise in materials with memory,
mean-square random attractors of stochastic delfigrdntial equations with random delay were studied
in [43]. Readers are referred to [4, 6, 10, 11, 12] for morerimfation about stochastic partialfidirential
equations with memory or delay.

The framework of this paper is as follows. In the next sectiwe will recall some basic concepts
about random dynamical system and basic theory of pullbacilam attractor. In Section 3, we prove the
existence of solution by semigroup method and the Lax-Milgtheorem. We obtain the pullback random
attractor in Section 4 and verify the upper semi-continoitpullback random attractor in Section 5.

2. Preliminaries

We recall some notation that will be used in this paper andesbasic concepts about random dy-
namical system as well as some theory of pullback randoracatirs, see [1, 8, 9, 20, 33, 41] for more
information. We begin with the concepts of parametric dyitairsystem, see [2, 17]. L& be a separable
Banach space. To define a cocycle for a non-autonomous stacleguation inX, we need to use two
parametric spaces, sdy; andQ, whereQ; is responsible for non-autonomous deterministic exteerats
andQ for stochastic terms. We may taky either as the collection of translations of determinisiticet
dependent terms [8, 24] or simply as the collection of ihiffaes [41]. In this paper, we choos¥; as the
collection of initial times and writ€1, = R. For random parameters, we will choose the standard pritigabi
space Q, 7, P) whereQ = {w € C(R,R) : w(0) = 0}, ¥ is the Borelo—algebra induced by the compact



open topology of2, andP is the Wiener measure of(¥). There is a groud;}icr Of mappings acting on
(Q, F, P) defined by
Ow(’) = w(- +1) — w(t), forall w e Qandt e R. (2.1)

In terms of (2.1), one may define a new grdég:cr on the product spade x Q := Q given by
i(r,w) = (r + t,6w), forall (r,w) € Q, teR. (2.2)

Hereafter we writeo™= (, w) with (r, w) € Q.
A cocycle of non-autonomous random dynamical systems iaetbfas

Definition 2.1. A mapping® : R* x Q x X — X is called a continuous cocycle on X overand
(Q,F, P, {Oher) ifforallt,se R* andw € Q, the following conditions are satisfied:
(i) ©C,(1,),) :R* xQx X - Xis(B(R") x F x B(X), B(X))-measurable;
(i) ®(0,a,-) isthe identity on X;
(i) Ot+8a,)=0(0s0,) 0 D(S,");
(iv) @(t,o,-) : X — X is continuous.
Definition 2.2. A family D = {D(J)) P WE fz} of nonempty bounded subsets of X is said to be tempered if

forany c> 0
Jim e sup{ || x|lx: x € D(@-@)} = .

From now on, we us® to denote the collection of all tempered families of nongniqmunded subsets
of X.

Definition 2.3. LetK = {K(&)) € fz} € D. Then K is called a)-pullback absorbing set for a cocycle
@ on X, if forevery Be Dand all® € fz, there exists T= T (@, B) > 0 such that

®(t, 6.4, B(f1@)) c K(@) forallt>T.

Definition 2.4. LetB={B(®) : & € Q} € O. Thend is said to beD—pullback asymptotically compact in
X if for all & € Q, the sequence

{d)(tn,é_tn&), Xn) : Xn € B(é_tncb)}::l has a convergent subsequence in X whem t+co.

Definition 2.5. A family A = (A(®) : & € Q) € Dis called a pullback random attractor fab in X if the
following conditions are fulfilled:

(i) For eachr € R, A(x, -) is measurable with respect to the P-completiogroh Q and A(®) is compact for all
& e Q.
(i) A is invariant, that is, for every € Q,
O(t, &, A (D)) = AG) for all t > 0.

(i) A attracts every member @, that is, for every B= {B(&) : & € Q} € D, and for every® € Q,

lim distx( (t, 8-, B@-1&)) , A (@) ) = O,

t—+o0



where disk(:, -) denotes the Hausdgiisemi-distance under the norm of X, i.e., for two nonempt/Ad c
X,
distx (A, B) := supdistx(a, B) = supinf ||a—b|x .
acA acA beB

Next we turn to introduce the definitions concerning u.soc affamily of sets.

Definition 2.6. ([9]) Let Z and | be metric spaces. A family of séf§}. in Z is said to be upper semi-
continuous (u.s.c.) ap € | if

lim distz(Ae, Ag,) = 0.

€E—€p

Let A = —A with domainD(A) = H}(0) N H?(0). Denote by {-) and|| - || the L?(O) inner product
and the norm, respectively. Consider the family of HilbgasesD(AY?), s € R, whose inner products and
norms are given by

(. Ypeasz) = (AY?, A¥2) and || - Ipaszy = 1A% -].
Then one has the compact and dense injections,
D(A%?) < D(A7?), Vs>,
and the continuous embedding,
D(AY2) — L2V(-29(0) v se [0, g).

Recall the following interpolation results: let > 8. For everyd, 0 < ¢ < 1, there is a constar@ =
C(a,B,9) s.t.

||AV/2u|| < C”AQ/ZUHﬁHAﬁ/ZUHl_ﬂ’ Vue D(A"/Z),
wherev = da + (1 - 9)B. For convenience, denote by
7‘(5 = D(AS/Z) with norm [| - ||7‘{s — ”AS/Z .

Then,Ho = L%(0), H1 = H}(0), andH, = H(O) N H(O).

In order to deal with the memory term of (1.1), we introduce tamily of weighted spaces. In view
of (H1) and (H2), we consider the weighted Hilbert spabﬁé&*;?{r), i = 1,2, endowed with the inner
products and norms, respectively,

(b1, B2)v.r, = fo vi(9)(@1(9), p2()w.ds 11817 4 = fo vi(9llp(9)liz, ds i=1,2
Asin [27, 29], we introduce the Hilbert spaces,
r = L\2/1(R+17-{r) N L\Z,Z(R+;7-{r+l),

V1,V2

endowed with the inner products,

(.n2)q. . = fo va(9) (A72n1(s). A2no(s)) ds+ fo va(s) (AT D2y (s), AT D 2no(9)) ds

V1.V



and the norms

gy, ,, = 0, = f vi(9IAZn(9)Pds + f va(SIATD2(9)|12ds
? 0 0

Finally, we define the product spaces,
Mr = 7-{r X Qr

v1,V2?
where
H; = D(AZ), @, =L2 (R H)NLE R Hisa),

V1,V2

that endowed with the norms,

1254, = 1w DI, = Ui, + il . 2= (u.n) € M.
The following propositions can be found in [9, 16, 18, 19,.41]

Proposition 2.7. Let® be a continuous RDS on X ovRrand(Q, F, P, {6}icr) according to Definition 2.1.
If ® has a compact measurable (WF) D—pullback attracting set K itD, then® has a uniqueD—pullback
attractor A in O given by

AD) = ﬂ U ® (t, 0.4, K(61@)) for eachd € Q.

r>0 t>r

For the upper semi-continuity of a family of parameterizetigack attractors, we borrow the following
results from [7, 13, 38, 40, 42].

Proposition 2.8. Let | be an interval oR. Givene € I, let {D¢(t, ®)} be a family of continuous RDSs on
X overR and(Q, F, P, {6:}tcr). Suppose that
(i) there exists a mapR: & — R such that B= {B(@) = {x€ X : [IXlx < Rq(@)} : & € O} € D,
(ii) for eache € I, @€ has a pullback attractorA€ and a pullback absorbing set.3uch that for all
€ Q, lim suplDe(@)llx < Rey(),
(i) | A<(®) is precompact in X for eactd € Q,
eel
(iv) there existsey € | such that lim ©(t,®, X,) = ®9(t, @, X) for every te R*, @ € fz, €, €g With
N—+oo
€ — €, and X, X with %, — X.

Then for eachi € Q, dy(A(D), A9(D)) — 0ase — e.
To this end, we recall the following lemma

Lemma 2.9. (See [36]). Letu € CY(R*) n LY(R*) be a non-negative function, such thaj{fs) = 0 for
some g € R, thenu(s) = O for every s> 5. Let B, B, B, be three Banach spaces, wherg B, are
reflexive, such that

BO — B— Bl,
where the first injection is compact. L@tc Lﬁ(R*; B) satisfy

(i) Cisbounded in B(R*;Bo) N Hi(R*; By),
(i) SU|C;7€C||77(S)||2 < h(s), Yse R*, for some s) € Lﬁ(R*).

Thenc is relatively compact in ﬂR*; B).



3. Existence of solutions

Here we prove the existence of solutions by a semigroup rdethd the Lax-Milgram theorem. Before
stating the problem in a suitable framework, we enumeraeafisumptions on the term in which the delay
is present. Hereafter, we suppose that the nonlinear hpplyst u) satisfies

(f1) f e CY(R), f(0)=0;
(f2) f(9)s> a1|9P*t —ap, seR;
(f3) |f/(9)] < a3(l+]9P 1), seR,

where l< p<1+ ‘ﬁ‘, aj, i = 1,2, 3, are positive numbers. In order to study the dynamical\iehaf (1.1)
with critical nonlinearity, we also impose the assumptisrirg[14, 35],

f4) lim & _ o
(4) l§—co |81

which implies that for any given > 0, there is a positive consta@ such that

1f(s1) — F(2)] < 81— SU(Cy + Vst + vispl™). (3.1)

Remark 3.1. (i) From (f3), itis not djficult to check thatf (s)| < a4+ as|9P holds for any < R, where
a4, as are positive constants.
(il) Asitis pointed outin [35], the lack of bound from beloar ff’ is the reason foEL+‘ﬁ1 to be the critical
exponent for the nonlinearity f. And in case(8f1), we call f is an almost critical nonlinearity.

Assume thaf} (o) = pa(e0) = p1(e0) = 0. Letvy(s) = uf(s) andvy(s) = —u5(s) satisfy
(H1) vi € CYR") N LYRY), vi(9) 2 0, v{(5) <0, i =1,2,¥se R,
(H2) v{(s) +6ivi(s) <0, i =1,2,Vse R",

wheres; are positive constants= 1, 2.
Denoteu1(0) = po. Then along the lines of the procedure suggested by Dafeimlois pioneering
work [21], we introduce the new variable
(%, 9) = fsut(x, rydr = ft u(x,r)dr, s>0,
0 t-s
where
u'(x,9) =u(x,t—s), s>0.

Then the original equation (1.1)-(1.2) can be transfornmeal the following equivalent system:

u_ Hou — AAU + fom vi(9)n'(s)ds— fom va(9) ARt (s)ds+ f(u) = g(x t) + eh(x)cijltv,

ot (3.2)
Ot (X 9) + st (X, 9) =u, Xxe€0, s>0,t>T,
with the initial and boundary values
ux 1) = U (X), 7°(% 9) = 7:(%. 9), xe O, u(xt)=0, n'(x,9) =0 x€d0, s>0, t>r. (3.3)

Note that Eq.(3.2) is stochastic equation, and we need msfa (3.2) into a deterministic one only
with random parameter. To this end, writing

Z'(w) = —[0 ew(s)ds (3.4)

(o8]
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it is easy to check thai(t, w) = Z'(6;w) is an Ornstein-Uhlenbeck stationary process which sdlvedtd
equation
dz + zdt=dW

Therefore, if we denotgw)(X) = z*(w)h(X), then the real-valued stochastic procgggw)(X) = Z*(6:w)h(X)
is a solution to
dz+ zdt= h(x)dW

Setv(t) = u(t) — ez(6;w). Problem (3.2)-(3.3) can be transformed into a pathwiaterthinistic problem

al — uoV — AAV + f vi(9)n'(s)ds— f va(9)Ant(9)ds+ f(u) = g(x t) + e(uo + 1)z + eAAz,
0 0

ot (3.5)
ot + 0  =Vv+ez xeO, t>,
with the initial and boundary values
V(X, 7) = U(X, T) — €2(f-w) = Vi (X), 77(X, S) = (X, 9), X€O, s>0, (3.6)
v(x,t) =0, 7'(x,9 =0, xedO, s>0, t>r. '
In order to present our results, we write the system (3.9}@s a Cauchy problem
Y Lo+ P00, 37

defined in the phase space
Mo = L%20) x Q°

V1,V2

with norms
2 _ B2 — A2 12 _ iR t)12 t2
1% = 110w, = IV + Ui = I+ 101, e 2opy + I esprziony
Also takeg = (V(t), n') € Mo. Then system (3.5) is equivalent to the Cauchy problem (8ifF)
Lo = Guov+ 8v= [ vu(9ri(9ds+ [ va(9n(9ds v-aar)
0 0

and
F(¢,0iw,t) = (—f(V+ €2) + g+ e(uo + 1)z + €1AZ €2) . (3.8)

It is proved in [36] that
dm' = —091' + v+ ez, '(0) =0,
can be considered @s7' = Tn! + v + ez, where
Tn' = -ds7', 7' € D(T),
is the generator of a translation semigroup with domain

D(T) = {n' e @, 107" € @, ,,.7'(0) = 0}.



Since the domain df is defined by
D(L) = {¢ € MolLp € Mo},
we have
D(L) = {(v, ') € Molv € H3(0), ' € D(T), oV + AAV — fo " vi(9)n'(s)ds+ j; " vo(9)Ant(s)dse LZ(O)} .

For the coéicient 4 in (1.1), we assume thatl; — 2up > 0, whereA; is the first eigenvalue oA in
Hcl)(()). From now on, we denote hya generic positive number which may change its value from tin
line or even in the same line.

Theorem 3.2. (Well-posedness) Assume that hypotheses (f1)-(f2) asdisdt ge L2 (R; L2(0)) and the

loc
initial data (v, ;) € Mo. Then, problen{3.7) possesses a unique mild solution with

v € C([r, ); L2(0)) and ' € C([r, ); Q% ). (3.9)

V1,V2

If the initial data(v., ;) € D(L), then the solution is regular, namely,

v e C([r, 00); HY(0)) and 7' € C([r,0); QL ).

V1,V2

In addition, if¢ = (v, %), ¢ = (v, ) are two mild solutions 0f3.7), then for any T> ,
l6(t) — (I3, < €°TlIg(r) — (DG, T<t<T, (3.10)
where ¢ is a positive constant depending on the initial data.

Proof. The proof is split into three steps.
Step I We show that the operatdris the infinitesimal generator of @—semigroup of contraction
e-tin Mo, that is,L is m-dissipative inMo. By the definition ofL,

(Lo, D)Mo = 1oV + AAV — vi(S)n'(s)ds+ v2(S)An'(9)ds v + (V=097 1)
0 0 L2(0) 2

= polVII® = AlIVM? - f va(9) f dsn' - n'dxds— f va(9) f dsvn' - V'dxds
0 o 0 o
0 0
2 2 01, ¢ 2, 1
< pollVII* = AIVvI|© - EHU |||_§1(R+;|_2(0)) - EHU ”ng(R*;Hé(O))
0 0
2 1.t 2t
< (o — 1 )IMI” - E“’] ||L31(R+;L2(0)) - E”’] ”LEZ(R*;H(%(O)) <0, forall¢ e D(L),

which shows that is dissipative inMp.
Now we show that is maximal, i.e., for eack € My, there exists a solutiopn € D(L) of

(I-L)¢=F.

Equivalently, for eacliF = (f1, f2) € Mo, there exist® = (v, ') € D(L) such that

V— pioV - AAV + fo T a(9ni(9ds- fo T a(9Ar(9ds = . o1

- v+ gyt = fo.



To solve the above systems, we begin with multiplying (3:1)e® and then integrate over (),
S
() =v(l-e9%+ f €5 fy(7)dr. (3.12)
0

Substituting (3.12) into (3.11)and denotindq = [~ va(s)(1 - e S)ds kz = [ v2(s)(1 - e")ds we obtain

(L+ky —po)v— (1 + kp)Av = — fow vi(9) fos e >fy(r)drds+ fow va(9) fos €A fy(r)drds+ f1. (3.13)
In order to solve (3.13), we define the bilinear form
a(wy, Wo) = (1 + kg — o) j(;wlwzdx+ (A + ko) L VwiVwodx wq, Wy € Hcl,(()).
It is easy to check that(wy, wy) is continuous and coercive Iﬂé(()). Also we have
H3(0) = L¥0) = H™1(0).

We are going to apply the Lax-Milgram theorem. Itistes to prove that the right-hand side of (3.13) is an
element ofH~1(0). Obviously,

f1 € L?(0) — H™Y(0).

Let f* = — [*vi(9) 5 € Sfa(e)deds + [~ va(s) [; € SAfo(r)drds We only need to verify that* e
H=1(0). We use similar arguments used by Giorgi et al. [27]. Woe H}(O) with |[Vw|| < 1, it is not
difficulty to check that

00 S 00 S
=’— f v1(9) f g-s f fo(r)wdxards + f va(9) f g-s f sz(T)VWdXdrd% < o,
0 0 o 0 0 o

which implies thatf* € H=1(0). Then, by the Lax-Milgram theorem, equation (3.13) has aknslution

|(f*,W)H_1,Hé

¥ e H}(0).
In view of (3.12), we obtain
S
(s =1 -e5) + f fo(r)e3dr
0

and need to show that & Qg From (3.12) and the fact thate”Hé(O), we find

1H2"

S

Vi I> < IV + fo Se"Sanz(r)nzdr, 7117 < (1917 + fo &9 fa(7)|Pd.
Then
fo 9l (IRds + fo T ASIVAIPds < kil + kel VO
v fo IV @I < o,
and hence"e Q°_ . It follows that

J’ = (\7’ ﬁt) € MO



is a weak solution of (3.11).
To complete the proof of the maximality &f we still need to show that € D(L). Indeed, from
(3.11), we see that

0

v1,v2©

o= Hh+V-7eQ
Sincert(0) = 0, we conclude thaj!e D(T). By inspection (3.1%), we find that
oV — AT + f yi(9t(9)ds— f va(AT(ds = — + f; € L2(O).
0 0

Therefore ¢ i') € D(L).

Step 2 We are going to prove that the operaféfp, 6;w, t) defined in (3.8) is locally Lipschitz with
respect tap from My into My for w € Q, and thatF (¢, 6iw, t) is continuous in¢,t) and measurable iw
W.r.t. F. Let B be a bounded set iMg and¢, ¢ € B. Writing ¢ = (v, '), ¢ = (V, 71'), then

IF (¢, 6w, 1) = F(¢, 6w, B3, = fo (@) - f(u)Pdx (3.14)
Sincef e C1(R), for anyN > 0, there exists.¢(N) > 0 such that for allsy| < N, |s;| < N, we have
1f(s1) = f(s2)l < Li(N)sy — s,
which along with (3.14) yields
IF (8. 60, 1) — F (@, 60, I3, = fo (@) - f(u)Pdx< LE(B)lIv—- VI < L(B)lIV— V3,

From Step 1, Step 2 and the Lumer-Phillip theorem (see ftauice [37, Theorem 6.1.4 and 6.1.5]), problem
(3.7) has a unique local mild solution

t
ot T, w, ;) = - (w) + f e EIE((r, 7, w, ¢7), Brw, r)dr (3.15)

T

defined on{, T]. Next, in Step 3, we will prove that the local mild solutidn,fact, is global solution, i.e.,
T = +oo.

Step 3 Setdo = min{dy, 6»). Taking the inner product of (3.7with vin L?(0), and (3.7} with 7! in
Q° . then adding the two results gives

v1,v2?

d 1 1
GrIMIZ + 107G )+ (Ada = 2u0)IMI + Soll'lI* + erallUlfy < ¢+ dllgll® + ce(iz® + 12157 + V%),
V1.v2

Hence withs = min{Ad; — 2uo, %2} we have

d
G M2+ )+ 8(MP +1Il% ) < e+ cllgl® + ce(2? + 125y + IV2P). (3.16)
V1.V2 V1,V2
By the Gronwall Lemma, we obtain, for aby [, T],
t t
M+ 111l < €D (vel + lineligy )+ f & ds+c f &g *ds
v1v2 Y12 T T

t
+ Ce f &I (ZOsw)IP + [120s)lIP77 + IVZOsw)[P)ds < oo,
.

10



where we use the fact thalp;w) is continuous irt, for any fixedT > r andt € [r, T]. Then,

lp(t, 7. 0, (@i, = IMP + [I7'ligp < .
V1.V

which means that the local mild solution we obtained abovenoablow up in finite time, i.e.T = oo.
Hence, problem (3.7) has a unigue global mild solugor C([r, «0); Mp) for all t > 7, so (3.9) holds.
Moreover, the continuity with respect to initial data, ndyné€3.10), follows from the representation formula
and the locally Lipschitz property df. m|

4. Existence of a pullback attractor in Mg

We now establish the existence of a pullback attractor is@lspacé\y. From Theorem 3.2, we know
thate = (v, ') is a global solution to problem (3.7), defir@, (7, P, (6)tcr):

D :R* xQx Mg — Mo, (LD, ¢.) — O, &, ¢r),
for the stochastic problem (3.7). Giver R*, (r, w) € Q andg, € Mo, set

O(t, (1. ), ¢r) = Bt + 7. 070, 0 (0-r)) = (V(t + 7.7, 0-r0, Ve (0-r0)), 7 (t + 7. 7. 020, 72 (0 0))(9))
4.1)
wheren!(t + 7,7, 0_rw, (0 w))(9) = [ Ut + 7 = 1, T, 6w, Ur (6 —rw))dI.
Hencey = (u,n) is a global solution to problem (1.1). Then the solutipe: (u,n') € C([, 0); Mo)
defines a continuous random dynamical system Bvand Q, 7, P, (6)cr):

¥:RY X QX Mg — Mo, (td,0:) = Pt &, ).

Givent € R*, (r,w) € Q andy, € Mo, set

Y, (r,w), ¥r) = Yt + 7,7, 0_r0, Y (0-0)) = (t + 7,7, 0_1w, :(0-;w)) + (e2(6;w), O). (4.2)

Obviously,® and¥ defined by (4.1) and (4.2), respectively, satisfy all candg (i)-(iii) in Definition 2.1.
On the other hand, we can see that

\P(t’ (T’ a))v l//T) = T(etw)q)(tv (Tv (U), ¢T)7

whereT(w)(a, b)" = (a+ ez(w),0)" is an homeomorphism o¥1y. Hence® and¥ are equivalent. In what
follows, we establish uniform estimates for the solutiamprioblem (3.7) and prove the existence and upper
semi-continuity of a pullback random attractor for RDP®ased on Proposition 2.7 and Proposition 2.8. To
this end, we specify a collectiabs of families of subsets aM,.
SupposeD = {D(®) : & € Q} is a family of bounded nonempty subsets/df, satisfying, for every
W E fz,
Jim eD@s)I,, = O. (4.3)

where the positive number = min{i11 — 2ug}. Denote byD; the collection of all tempered families of
tempered nonempty subsets/ofy which fulfil condition (4.3), i.e.,

D; ={D ={D(@) : & e Q) : D satisfies (4.9) (4.4)

11



4.1. Existence of pullback absorbing sethfy

This subsection is devoted to obtaining a pullback absgrbeét for the cocycl® in Mp. Henceforth
we assume thag e Cyp(R, L2(0)), whereCp(R, L%(0)) denotes the set of continuous bounded functions from
R into L2(0). We begin with the following lemma.

Lemma 4.1. Assume that (f1)-(f3) an@H1) — (H2) hold. Let B= {B(r, w) : (1, w) € Q} € Ds. Then
VT, T = 607, Ve- )l + 77,7 = 16w, meligy < R(w) (4.5)
for any ¢t = (Vr—t, 7r-1) € B(O1(7, w)), where Rw) = y1 + y1(€? + eP)r(w).

Proof. By a similar procedure as to Step 3 in Section 3, we have

d
GiMP -+l )+ 6UMZ + liligg )+ exallullply
42 (,u + 1) € Pl 1
2 1\HO 2 4 G1y\—pjjP+L
<1 2L B0 p s (S (S iy @)

2
+e¥(21+ —6k°)||\7zu2 + M2 4 20400
0 A
Multiplying (4.6) by € and then integrating over [ t, 7] with t > 0, we obtain for everw € Q,

M. 7 =t VeI + 11 (5 7 = £, el

V1.V

< & Vel + el )+ 70 f &I (1 +llgl?)ds 4.7)

+Y0€ f & (|1 20sw)II? + IVZ(0sw)|I%) ds+ yoe f &C||Z0sw) (07 ds

p+1

1
whereyo = max| £f: 2001, 1+ 042 + 80, (7" (5 .20+ o).

Recall thatz(6;w) = hZ' (6iw). Then we have
IZE)I? + GBS + IVZGW)IP < 1(6re)

wherer (6;w) satisfies
sl
r(fw) < e2r(w), teR.

Replacingw by 6_.w in (4.7), we obtain

V7, T = 600, VeI + 7' (7,7 = £ 6, me-ligy
V1,V

T T
<€ (Iveal* + ”nT‘t”tzz" )+ yof EI|glPds+yo | € ds
G 7t 7t

T T (4.8)
+70€” f & (11205 w)I + IVZBs - w)I7) ds+ yoeP* f &C|z(0s -w)IIFT1ds
Tt 7t

0 0
_ [
< € (INeatl? + el ) + 70 f (1 + ligl*)ds+ yo(e® + ™) f e2%r(w)ds
V12 -t -t
Since {r—t. nr_t) € B(O_«(z, w)), there existd (r, w, B) > 0 such that for alt > T(r, w, B),

yo(1 +[lglI?)

—ot 2 2
e Vr_t||” + - <
(et + ey ) < 75—
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Therefore, for alt > T(r, w, B),

2

||V(Ta T tv H—T(-U’ VT—t)||2 + ||rlt(T7 T— t’ Q—T(-Ua r]‘l’—t)HQO
V1.V

<y1+71(€ + € Nr(w) = Rw),
wherey; = mamw,yo} and||g|2 = suRpllg(-, |2 < . The proof is finished. O
re

Remark 4.2. Denote \r) = V(r, 7 — t,0_,w, V-—¢) andn'(r) = n'(r, 7 — t, 6_-w, n:_)(S), we can prove that
there exist a positive constapg and a tempered variablg®) such that

_J(r—
”V(rv T t’ 9—7'(1)9 VT—t)HZ + “n(ra T—= ts 9_7-(1), nT—t)HéO S pO + p0(62 + 6p+l)e 2(r T)r((‘u)
V1.V

Define
D(r.w) := Dy, = {# € Mo : [[¢(r. 7 ~ .6, 10— ))If3, < R@)}. (4.9)

Let D be the family consisting of these sets given by (4.9), i.e.,
D = {D(r,w) : D(r,w) is defined by (4.9)(r.w) € Q}. (4.10)

It is clear thatD given by (4.10) belongs t®;.
Next, we prove that the random dynamical sys@®rassociated to problem (3.7) has a compact mea-
surable pullback attracting set.

4.2. Decomposition of solutions

In this subsection, we decompose the solution of (3.7) istanaof two parts, of which, one part decays
exponentially and the other one is bounded in a "higher mfjspace by using the method in [10, 30], and
obtain some a priori estimates for the solutions, which laeediasis for constructing a compact measurable
attracting set for RD®.

For any f, w) € Q, set

Di(r.w)= | ] ¢(7-1600,D(-1t60.w)) c D(r,w), (4.11)
t>T(r,w,D)

then by (4.9),
DO(t, 7 —t,0_tw,D1(r - t,0_w)) = ¢(r, 7 — 1,0_rw, D1(r — t,0_tw)) c D1(r,w) c D(r,w), t=>0. (4.12)

For any f, w) € Q andt > 0, leté(r) = ¢(r, T — t, 0_,w, dr_t(6_,w)) (r > T — t) be a mild solution of system
(3.7) with the initial valuep,_{(6_;w) = (Vr—t, nr—t) € D1(r — t,0_1w) C D(r — t, 6_tw), then it follows from
(4.12) thatp(r) € D(r — 7,6;_w) for all r > 7 —t. We decompose(r) into ¢(r) = ¢.(r) + ¢n(r), where
¢L(r) = (vL(r), 7 (r)) andgn(r) = (vn(r), m\(r)) satisfying, respectively,

OV — povL — AAVL + f vl(s)ntl_(s)ds+ f vz(s)An}_(s)ds+ f(v) + Kvp =0,
0 0 (4.13)

‘9t77}_+‘9577}_=V|_, Xxe0, s>0,r>1-t,

with the initial and boundary values

V(%) =0, 71 (%9 =0, Xxe O, VL(X7) = Ve(X), 7{ (% 9) = 7:(%, 9), Xx€ 30, s> 0, r <7—t. (4.14)
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and

OtVN — HoVN — AAVN + f Vl(S)i]}\l(S)dS+ f V2(S)A7]E\I(S)ds+ f(u) — f(w)
0 0

= KvL + g+ e(uo + 1)z + edAZ, (4.15)
ol + Ogly = VN + €z X€O0, s>0,r>7-1,
with then initial and boundary values
Vxt) =0, 71 (x9=0 xe0, v (x1) =0, il (%9 =0, xed0,s>0, r <7—-t. (4.16)

Obviously, system (4.13) is a deterministic (non-randoor)-autonomous system independenbofNotice
that assumptionf@) implies that there existi§y > 0 such thatf (U)u > —Ko|u[?. SetK > Ko. In order to
estimate the component ¢f , we start with the estimate of .

Lemma 4.3. Suppose that assumptions of Lemma 4.1 hold. Then the sobit{d.13)satisfies
ML (77 = t VLI + L (n T~ L)y < € *Ro(w).
V1.V2

Proof. Multiplying (4.13); by v; and integrating ove® in L2(0), multiplying (4.13) by ntL and integrating
overOin Q¥ | then adding the results, we obtain

vi,v2?

1d o
——(IIVL||2+IIn‘LHécV)lvz)—po||vL||2+A||VvL||2+f0 vl(s)foasntl_-n}_dxds

2
a (4.17)
+ f va(9) f dsVijt - Vit dxds+ f f(v)vedx = 0.
0 0 o
Some computations then yield
d
—(IVLIP + 1L 12 )+ SUVLIP + Il lZ ) + (K = Ko)lIvili? < O, (4.18)
dt Qvl,vz Qvl,vz
By the Gronwall Lemma, we conclude that there exits a tempeagableRy(w) > 0 such that
MU = bVl + DL T = gy < € (el +linetligy ) < € Ro(w).  (4.19)
V1,V V1,V
This finishes the proof. m|

Hereafter, denotB; (&, 7, w) = pi+pi(e2+€P)ie B (w)V Ri(w) := R(t, 7, w) = pi+pi(€2+€P)ir (w)"
for pi, i, Bi,ni > 0,i =1,2,3,---,andé > 7 — t.

Lemma 4.4. Assume thaffl) — (f3) hold withl < p < 1+ 4/n, or (f1) — (f2) and (f4) hold with
p = 1+ 4/n, then the solution of4.15) satisfies the inequality

IMN(7. 7 = £, 0z, O)IZ + Il (7. 7 — 1.6, O)y. < Ra(w),

where0 < o < min{1, Zp_—?'”z}.

14



Proof. Taking the inner product of (4.1Bbyvith A”vy in L(0), (4.15) with A7nt, in Q°, |, we obtain

vi,v2!

1d a 2 t 12 fox 2 Lo 2 60 2 o
S AR I + I, ) = ol AZ I+ AT w2 + D, + fo (F(U) - F(W)A VDX

sfg-A"dex+va|_-A"dex+ e(yo+1)fz-Af’dex+ e/lfAz-A"dex (4.20)
0] o) o) o)
+ f v1(9) f AZ(vy + €2) - AZpldxds+ f v2(9) f A (W + €2) - AP gl dxds

0 o) 0 0]

By the Young’s inequality, we have

fg - A%vndX + f Kvp - A%vndX + e(uo + 1)f z- A%vndX+ e/lf Az- A%vndXx
o 0 o o
N (4.21)
< IATWIP + (gl + IVLIP) + ce*(2 + 1Az,
Note that ifp < 1 + 4/n, thenp%ln — L2 < 12 and by Lemma 4.1 we know that
| (1= foanarwax

< cf(1+ uP~ + (v [P v + ez A vn|dx
o

<c f @+ uPt + (v P VNIIA VA X+ ce f (L + uPt+ v P ZIA v [dx
[0) o

)(Zn—n p+2(1-0))/2n

sc(1+( f luZdx) (P2 4 f |vL|2dx)(p‘1)/2)( f vy 2V @n-np2(-0)) g
o) o) 0]
(n-2(1-0))/2n
X (f |A"vN|2”/(”‘2(1“’))dx) + CE(1+ (f lu2dx)P-1/2 4 (f |vL|2dx)(p‘1)/2)
0] 0] 0]

(2n-np+2(1-0))/2n
% (f |Z|2n/(2n—np+2(l—o-))dx) (
o

< ¢|Ad+ 2y - Ivnl

(n-2(1-0))/2n
) (4.22)

f ATy |2V 0-20-0) g
)

p-1 p-1
2n/[n_2(L£l)n_(1_(,-)](1 + ||U” + ||VL|| )

+ e AT 2wyl |2l (L IulP~ o+ v P

20/n-2(2H)n-(1-0))
< A 2y AT (L + P+ P
+ Cel AT 2y A (L + P+ P
< A2y || vn 2 AR 2y [P+ QP+ v Ph
+ Cel A 2y || - AT 211+ lullP + v IPY)

A (1re)/20, 2 -1 -1y 2, 2 2 -1 —1N2)) A E 2
< ZIIA( 22 + (L + UllP + VP T 2 + ce?(L + ullP + v P2 IA™Z 72
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On the other hand, ip = 1+ 4/n, then
| (10 - fouparwey
< j;(cy VUl + vV AV + €2 - [ACuNldX
< fo (Cy + VUl + vV D)l - [AVnld X+ € fo (Cy + VUt + vV 7)IZ - IATwld X

< Cv(j(; |VN|2n/(n+2(1—a'))dX)(n+2(l—0'))/2n(j(; |A0'VN|2n/(n—2(1—0'))dX)(n—Z(l—O'))/Zn + V((j(;wlde)Z/n + (j(; |VL|2dX)2/n)

% (L |VN|2n/[n—2(l+tr)]dx)[n—2(l+0)]/2n(L |A(TVN|2n/[n—2(1—(r)]dX)[n_z(l_U)]/zn

+Cv6(j(; |Z|2n/(n+2(1—0'))dX)(n+2(1—a'))/2n(j(; |A0'VN|2n/(n—2(1—0'))dX)(n—Z(l—O'))/Zn + ve ((L|u|2dx)2/n + (j(; |VL|2dX)2/n)

% (f(; |212n/[n—2(l+(r)]dx)[n—2(1+a)]/2n(L |AO'VN|2n/[n—2(l—O')]dX)[n—z(l_O—)]/zn

4/n

4
< CylIvNI zvo2a-on [|AT YN 2vin-2a-09 + YE(UI™™ + (V|| /n)HVN||L2n/n72(l+0')”AO—VN”Ln72(170')

+ Cyelll zvmaa-on ANl zv-20-09 + veCIUIY™ + IVLIYMIIZI 20200 AT V]I Ln-200-0)
< %nA“T"an2 + cClIVNIZ + vC, (Ul + VUM IAE w2
+ cC2EIZR + o2 (Il + v lI7)2IAE 2P,
(4.23)
fp=1+ ‘ﬁ‘, then by Lemmas 4.1 and 4.3, we can chopseall enough such that, for every ¢) € Q,

l+o l+o 1+c
2

4 N A Lo 4 4 Lo ;
vC,(Iull™ + [IVLIIMIIAZ vl < 7IA7 WP, o2l + IVLIR)2IAZ 4% < ce|AZ 2. (4.24)

From (4.20)-(4.24), we have

d (o o
—(IAZWN|? + IR 112, ) + SUIAZ VNI + [k |12
G AZWNIP + I\l ) + SUAZ NI + iy, )
-1 -1\ 12 2 2 -1 132/ A B2 12
< C(L+ [ullP™ + IVLIP) =2 lIvnll + ce(1 + NIullP= + v IPH) A2 2]

+ ce2(121° + 11AZ1) + c(llgli? + e IRy(w)) (4.25)

1+o
< Ry(r, 7, @) + CE%(1 + Ro(r, 7, )) (12— w)I? + 1A 2 20— )| + [IAZ(6r - w)]?)
+ (1 + €T IRy(w)).
Applying the Gronwall lemma to (4.25)c, it follows that folarge enough,
IAZUN(T, 7 = 1,6, O)|* + I (. T = 1. 0_c, O)l3 < Ra(w).
14 B%)

This completes the proof. m|

Lemma 4.5. Let the assumption of Lemma 4.4 hold. Then for any B(r, w) : (1, w) € fz}(e Ds) € M.
and for any(V,_t, 7:—t) € B(0_(t, w)),

M. 7 = £ e, Ve llg + 11 (7. 7 = £ e, el < Ra(w):
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Proof. Taking the inner product of (3.5with A’vin L%(0) and (3.5) with A77" in Q°, ... Then we can
finish the proof similarly to the proof of Lemma 4.1. ]

On the basis of the above lemmas, we have the following esult
Lemma4.6. For0< o < 3 ando < s< 1, we have
IAZWN (7, 7 = 1, 67, O)I” + [y (7. T — .0, O)lI3s < Re(w).
V1.2
Proof. Multiplying (4.15) by ASvy, and (4.15) by Asn}\l, then sum the results to obtain

1d s 2 t 2 50 t 2 H 2 Lis 2 S,
> TOAPIE Ik )+ Rk, ~ ol ABIE + A wIE + [ (1) = Fu)Awox

sfg-Astdx+fKvL-Astdx+ef((yo+1)z+/lAz)-Astdx+ef vl(s)fz-Asnf\,dxds
) ) 0 0 )

+ef vz(s)fAl%sz-Al%sntNdxds
0 (@]

(4.26)
If n> 4, by straightforward computations we have
2n>(n-20)p+2(s+ o -1), (4.27)
and ifn = 3, we can choose close to ¥2 such that (4.27) holds. Hence,
[ 1= oAy
< cj(;(1+ UP~L + v P hvn + €7 - |ASvy[dx
<c fo (L4 uP 4+ v P hlval - [AS[d X+ ce fo (L4 uP + v P2 - AV d X
_2n 204 _2n 20, 2n il
< c{1+ ([ ey F 6D ([ g Fo 1)} ([ iFaxs “8)

n-2(1-
2n

.(f |A%N|%dx)—s)+c6{1+(f |u|n%dx)”‘z—ﬁ"(9—l)+(f |vL|n2—”zndx)”‘z—ﬁ"(p—1>}
o o o

([ Fand ([ inwirdtaay =5
) o

a a 1+s
< o{L+ [AZUIP + AZVLIPH livnl, 2 A il
o p_l o p_l 1+s
+ Ce L+ [AZUIP + IAZVLIPH 12, a0 IAZ Wl

whereri’=2n—-[(n-20)p + 2(s+ o — 1)].
Lets =[-n+(n-20)p+2(s+0-1)]/2. Sincep< 1+ ‘ﬁ‘, we can choose > 0 such thas’ > 0. By
calculation, we get that @ s < 1+ s. Thus, using interpolation inequality, we obtain

g -9 akes 0
||VNI|LGu = [Ivnll = |IVN||Ln_z_gs, < cIAZWN|l < divnlFPIIAZ WP, 0 < 9 < 1,

n—2[—n+(n—2(r2)r;)+2(s+<r—1)]/2

which together with (4.28) implies that
A 1+s o _ o 1\ 2

|f(f(u) — F(VL))ASWNOX < ZIAZ w2 + o(L + IAZUlPE + [|AZ v [P~y =5 w2

o) 4 (4.29)

o o 2 4
+ce?(L+ |AZU|IPL + |AZv P9 ||AZ 72,

17



On the other hand, thanks to the Young inequality,

fg-Astdx+va|_-A5dex+ Cef(z+Az)-Astdx
o o o

/l 1+s 1+s
< I W2+ c(llgl? + IVLIP) + ce2(I121? + 1A Z)?).

and

(4.30)

0 0 +S +s 0 S +S
€ f vi(9) f ZAS dxds+ e f va(9) f AT ZAT ) dxds< ZollntNHés + cE2(IATZ2 + AT ZP).
0 o 0 ) 1r2

Therefore, it follows from (4.26) and (4.29)-(4.31) that

d s 5 t 2 soo2 t 2
— 2
G (AP + linNliGs )+ SUIAZWI® + liniGs, )
< o1+ [1gl%) + oL + AZUIP~ + AT vy P4 T7 vyl
o _ a 1\ 2 s lio
+ (L + IAZUIP + A2V P T |AZZ + ce?(I12° + 1A 2P%).
Applying Lemma 4.5 and the Gronwall lemma to the above inktyugives the desired result.
4.3. Existence of the pullback random attractor
Now, we prove the compactness of the memory term. Note thainfp (-, ) € Q, t > 0,
t Jo un( = 1,7 =t 6w, Un et (Br—rw))dr, O<s<t,
UN(Tv T— t7 H—Tw’ UN,T—t(e—T(JJ))(S) = t
fo un(T - 1,7 — 1, 6w, UN 1 (6r—rw))dr, s>t

Lemma 4.7. Under the assumption of Lemma 4.6. For every gifen) € Q, let

E(r, w) := E(r, w)(9) = U U (@ T = 40w, Nt (O—rw))(9) € Q7.
(VT,tJ]T,[)GDl(T—t,@,[a)) t>0

whereg = (v, 1!) is the solution of(3.7). Then Hr, w) is relatively compact in Q,vz-
Proof. By Lemma 2.9, we need to verify two conditions:
(i) E(r,w)is bounded ir2 (R*; H1) N HL (RY; Ho) andLZ (RY; Ho) N HL (RY; H);
(i) supyegqea) Uiz, + In'l7,) < h(9).

(4.31)

(4.32)

From Lemma 4.6, we know th&i(r, w) is bounded irL2 (R*; H1) N L2 (R*; H2). By (4.32), we have

t UN (T -ST-— t? HS—Ta)9 uN,T—t(QS—Ta)))v O<s < tv
OsN(T, T = 1, 0w, Nt (O—rw))(S) =
0, s>t

(4.33)

By (H1), we know thatv1, v» € C1(R*) n LY(R*), which along with Lemma 4.6 we find th&(r, w) is

bounded irH&l(Rﬂ?{o) N Hylz(R+; H1). Indeed, we have
[ T Sloglds + [ T A9IVasIds
= fo t vi(9)llun(r - )lPds+ fo t v2(9)lIVun(r — 9)l°ds
- fo el = Ylun(9I2ds + fo ol - YIun (S < e
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which implies (i) holds.
On the other hand, by (4.32) and using Lemma 4.6 again, wénaibiat
sup (7 (Slao + 7' (1)

n'eE(r,w),seR*

= sup sup (Il (7 = £ 0, et (O-c))(Slpty + I (T T = £, 020, Tine1 (0 )) (S, )
>0 (Vr—t,7r-1)€D1(7—1,0_tw),scR*

< 2(R(w) + Rs(w)) := h(s).

By (H2), we know that; andv, decay exponentially, so it is easy to check th@) < L N LL. Then (ii)
holds. By Lemma 2.9, the proof is complete. m|

We can now state our main result about the existence of mllEndom attractor for the RDS.

Theorem 4.8. Assume that eithgif1) — (f3) hold withl < p < 1+ ‘ﬁ‘, or (f1), (f2) and(f4) hold with
p=1+ ‘ﬁ‘. Let (H1) — (H2) hold and ge Cy(R; L?(0)). Then the RD® associated witt{3.7) possesses
a compact measurabl®—pullback attracting setA(r, w) c Mgy and possesses B;s—pullback random
attractor A(r, w) € A(r, w) N D(z, w) for any (r, w) € Q.

Proof. For any f,w) € Q, in view of Lemma 4.6, leBs(t, w) be the closed ball of{s of radiusRs(w),
where O< s < 1. Setting

A1, w) = By(r, w) X E(1, ), (4.34)
thenA(r, w) € Ds(Mo). Since the embeddingfs — L%(0) is compactB(r, w) is compact inL2(0). We
have proved in Lemma 4.7 thB(r, w) is compact iQ®. ,_, soA(r, w) is compact inMo(:= L2(0) x Q% ).

vi,v2? V1,V2

Now we show the following attraction property &f{r, w), namely, for evenBg € Ds(Mo),

lim dy(@(t. 7 - t. 01w, Bo(r - t,6_1w)), A(r, w)) = 0. (4.35)

t—+o0

By Lemma 4.1, there exists = t.(r, w, Bp) > 0 such that
o(r, T —1,0_rw, Bo(r — t,0_tw)) C D(1, w), Vit >t.. (4.36)
Lett > t. andtyp =t — t. > T(r, w, Bp). Using the cocycle property (iii) in Definition 2.1, we have

o(r,7—1,0_;w, Bo(t — 1, 0_tw))

=¢(r, 7 — g — L, 0_rw, Bo(t — tg — 1., 0_tw))

=¢(r, 7 — 1o, 0w, ¢(t — to, T — tg — L, O_rw, Bo(r — to — ., 0_1w)))
C ¢(r,7 — to, O_rw, D(r — to, O_t,w)) € D1(1, w).

(4.37)

Take anyé(r, 7 — t,0_w, ¢ +(0_;w)) € o(r,7 — t,0_,w, Bo(r — t,0_1w)) for t > t, + T(r, w, Bp), where
¢r_t(0_rw) € Bo(r — t,0_tw). From (4.37) and Lemma 4.6, we have

ON(T, -1, 0_rw, Prt(0-rw)) = (7, 71, 0_r , Pt (01 w)) - (1, 71, 0_rw, P r-1(0-w)) € A(T, w). (4.38)
Thus, by Lemma 4.3, we obtain

inf [l¢(r, 7 — t, 60_r, pr_t(0—rw)) = X3, < IOL(T, T = £, 6_r 0, S (60— )3,
xeA(Tw) ° ° (4.39)

< Ro(w)e™, Vt>t, + T(r,w, By).
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It follows that
dn(®(t, T — t, 01w, Bo(6 — t, 0_1w)), A(T, ) < Ro(w)e™ — 0 ast — +co, (4.40)

which means (4.35) holds. By Proposition 2.7, RDDSassociated with (3.7) possesse®a-pullback
random attractorA(r, w) € A(r, w) N D(r, w). The proof is completed. m|

5. Upper semi-continuity of pullback random attractors

In this section, we regard the d@ieiente € R as a parameter in system (3.7). In view of Theorem 3.2
and 4.8, we can define a family of random dynamical syqtefi, (7, w))}er associated to (3.7), and know
that{®(t, (1, w))}eer POSSESS a corresponding family of pullback random attra¢td®(r, w)}er. Here let
us consider the upper semi-continuity of pullback randamaetors{A(r, w)}.r aSe — € by Proposition
2.8.

Based on Proposition 2.8 and the results in Section 4, we thavillowing upper semi-continuity of
pullback random attractofsAc(r, w)}eer for {O4(t, (7, ))}ecr-

Theorem 5.1. Suppose that the conditions in Theorem 4.8 hold. Then fofamy) € Q,

lim dy (A°(1, ), A(r,w)) = sup _ inf  |lg—lly, = O. (5.1)
€€ PEA(1,w) PEAD(T.w)

Proof. Let us check that conditions (i)-(iv) of Proposition 2.8 &uHilled.

(i) It is trivial to verify that for anyey € R, there exist$ = {F(r,w) = {¢® € My : ||¢>‘°||f\40 < Ry(r,w)} -

(r, w) € Q) € D5 With Ry (7, ) = 2y1 + y1(2 + €5 ™r(w).

(i) By Lemma 4.1 and Theorem 4.8, we know that for amyw) € Q ande € R, the pullback random

attractorAS(r, w) for ®€(t, (r, w)) is included in the absorbing bdll(e, w) = {¢¢ € Mo : |63 b S Re(t, w)},

i.e., A(r, w) € D(r,w) € Mo, whereR(r, ) = y1 + y1(€? + € 1)r(w). We can check that

lim sup Re(r, w) < Ry, (1, w). (5.2)
E—€p
(iii) Let |e| < 1. For every £, ) € Q, using Theorem 4.8 once again, we find ti(r, w) € A%(r, w) C
Mo. Note thatRs(w) andR.(r, w) are both increasing functions jg. By the construction of\¢(r, w) in
(4.34), we can choose the compact Aétr, w) satisfying

Af(r,w) C AY(r,w), Ve <1 (5.3)
Hence,
U A(r,w) C U Af(r,w) C Al(T, w) C M. (5.4)
lel<1 lel<1

Thus,Uq<1 A¢(7, w) is precompact inVo.

(iv) Let || < 1. For everyt > 0, (r,w) € Q, let ¢(t, (r, w), $¢(w)) and ge(t, (1, w), p°(w)) be the
solutions of (3.7) withe and €, initial data¢t(w) and¢L(w), respectively. Set) = ¢€ — ¢ = (W, &) =
(v —veo,npt — ntfo), then

U=LU+FU), U =¢7(0) - ¢7(w), (5.5)
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where
LU = (,uow+ AAW — foo v1(9)E(s)ds+ foo va(9)AE (s)ds w — asgt),
0 0

F(U) = F(¢°, b, t) — F2(¢, b, 1)
= ((€ ~ €)(uo + Zw) + (€ — €0)AAZ(brw) + T(U®) — F(U), (€ — €0)Zbrw)) ,
Ur(w) = (Ve = V2, s = 1) .

Take the inner product of (5.5) witl in Mg to obtain

1d
S iUl = (LU U)aie + (F(U), Urg, (5.6)
By (H2), we have
0
(LU, U)pto < (o = A1 )W — 5°||§‘||i40 < —6llU1,- (5.7)

(F(U), U) 1, = (€ — €0)(uo + l)j(;zwdx— (e - GO)AJ;VZVWdX+ (e — &) j:o v1(s) fozgtdxds
+ (e — &) f(; B vo(9) fo VZVetdxds+ fo (f(u®) — f(u))wdx (5.8)
< ofe — e0)*(I12I” + 1V21) + cwil® + [IFw?) + %Eﬂ@em + fo (F(u) - f(u))wdx
For the last term in (5.8), we have
fo (f(u) — f(ue))wdx < Re(r, 7, w)(IWi% + [[VW]?), if p<1+ %, (5.9)
and
fo (f(u®) — f(US))wdx < Ry(r, 7, w)IVWI%, if p=1+ g. (5.10)
It follows from (5.6)-(5.10) that
9IUIZ, < Re(r. 7 )IUIR,, + ofe — o) (IO + IVZO)IP), T > 7t (5.11)
dt’ Mo Mo
Apply the Gronwall lemma to (5.11) witly replaced by_,w to find

U7 - 1,600, Uro)li3,,
= V(T = 10w, Ve ) = VO(T T = L6, V2 )IP + IIe(r, 7 = 1 6r, 5 g) = 1y (7.7 = 00, 112l

v1.V2

i 24 P)lgeBg(s—1) n
< “¢E(Ta T— t’ 9_7-(1), ¢$—t) - ¢60(Ta T— t’ 9_7-(1), ¢‘io—t)||3\/[oe[f—tp8+p8(s te )8e e I‘(a)) 8ds

T d —Bg(s-7) n
+ C(e — €)? f el petps(e?+eP)Be 8 Ir(w) "1 - )P + VZ(Br—rw)]P)dr.
7t
(5.12)
From (5.12), we see that for any, () € Q,t > 0, &, — €, andg,, ¢, € Mo with ¢, — ¢, it holds
that:

lim (Vo (r, 7 =t 6-rw, Vi) = V(.7 = 1, 0r0, V2
e (5.13)
+ ||T]t5n(T, T— tv 9_7(1), nf—n_t) - rltso(T’ T— t? 9_7-(1), nf—o_t)lleO ) = 0
V1.v2

Up to now, all of the conditions (i)-(iv) of Proposition 2.8esatisfied. The proof is finished. m|

21



Remark 5.2. We would like to mention that in [35], Li proved the existen¢einiform attractor for(1.1)
with e = 0, but did not consider the pullback set up for the asymptatitadvior, which is our motivation for
our paper.
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