
Matching Business Process Workflows

across Abstraction Levels

Moisés Castelo Branco1, Javier Troya2, Krzysztof Czarnecki1, Jochen Küster3,
and Hagen Völzer3

1 Generative Software Development Laboratory, University of Waterloo, Canada
{mcbranco,kczarnec}@gsd.uwaterloo.ca

http://gsd.uwaterloo.ca
2 Dpto. de Lenguajes y Ciencias de la Computación, Universidad de Málaga, Spain

javiertc@lcc.uma.es
3 IBM Research Zurich, Switzerland

{JKU,HVO}@zurich.ibm.com

Abstract. In Business Process Modeling, several models are defined
for the same system, supporting the transition from business require-
ments to IT implementations. Each of these models targets a different
abstraction level and stakeholder perspective. In order to maintain con-
sistency among these models, which has become a major challenge not
only in this field, the correspondence between them has to be identified.
A correspondence between process models establishes which activities
in one model correspond to which activities in another model. This pa-
per presents an algorithm for determining such correspondences. The
algorithm is based on an empirical study of process models at a large
company in the banking sector, which revealed frequent correspondence
patterns between models spanning multiple abstraction levels. The algo-
rithm has two phases, first establishing correspondences based on similar-
ity of model element attributes such as types and names and then refining
the result based on the structure of the models. Compared to previous
work, our algorithm can recover complex correspondences relating whole
process fragments rather than just individual activities. We evaluate the
algorithm on 26 pairs of business-technical and technical-IT level mod-
els from four real-world projects, achieving overall precision of 93% and
recall of 70%. Given the substantial recall and the high precision, the al-
gorithm helps automating significant part of the correspondence recovery
for such models.

Keywords: BPMN Matching, Consistency Management, Change
Extraction.

1 Introduction

A growing number of enterprises use Model-Driven Engineering (MDE) based on
Business Process Modeling (BPM) to automate their business processes. BPM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

typically requires collaboration of many stakeholders, including Business Ana-
lysts, Systems Analysts, IT Architects and Developers. The distribution of re-
sponsibilities among these roles usually results in the creation of several models
of the same business process, each residing at a different abstraction level. These
models range from business-oriented ones, which are technology-independent
and easily understandable by business people, to IT-oriented ones, constructed
by taking into consideration technical facilities of existing systems. Specialized
modeling languages have been developed to represent such models. One such lan-
guage, standardized by the OMG, is Business Process Modeling and Notation
(BPMN) [11].

A key challenge in BPM is maintaining the consistency among these different
models. Maintaining consistency is important in order to ensure that business-
level process models are implemented correctly by executable models, and that
the business-level models reflect the implemented processes correctly, for ex-
ample, for auditing purposes. Checking and maintaining consistency between a
business-level model and its IT-level counterpart requires knowing the correspon-
dences between the activities in the first model and the activities in the other
one. Unfortunately, such correspondences are often missing in practice since the
models are created using different tools or languages. For example, business-level
models are often created using some variant of BPMN, either in a dedicated
BPMN tool or in a diagramming tool such as Visio, and the IT-level models
are often created in executable workflow language BPEL, targeting a specific
process execution engine. With the introduction of BPMN 2.0, both business-
and IT-level models can be expressed using the same language, improving tool
interoperability across levels of abstraction. Nevertheless, organizations having
existing business- and IT-level models still face the challenge of establishing the
correspondence among these models. For example, IT personnel at the Bank of
Northeast of Brazil (BNB), our industry partner, has faced this challenge as part
of a regulatory compliance project. In the absence of adequate tool support, this
task is very tedious and time consuming.

This paper presents a heuristic matching algorithm for determining such cor-
respondences. The algorithm is based on an empirical study of process models at
BNB [1]. The study revealed frequent correspondence patterns between models
spanning multiple abstraction levels, including adding or modifying the informa-
tion on individual activities and changing the models structure, for example, by
behavioral refactoring and adding IT-specific tasks. Consequently, our algorithm
has two phases, first establishing correspondences based on similarity of model
element attributes such as types and names and then refining the result based on
the structure of the models. Our algorithm can recover complex correspondences
relating whole process fragments of one model to such fragments in the other
model—a capability needed in practice [1]. Previous work on process models
has focused on either one-to-one correspondences between activities (e.g., [3]) or
one-to-many correspondences relating activities and process fragments ([17]).

We evaluate the algorithm on 26 pairs of business-technical and technical-IT
level models from four real-world projects, achieving overall precision of 93%

and recall of 70%. Given the substantial recall and the high precision, the al-
gorithm helps automating significant part of the correspondence recovery for
models spanning multiple abstraction levels.

The remainder of the paper is structured as follows: Section 2 provides back-
ground on BPM and important concepts used throughout the paper. Section 3
describes the heuristic algorithm using a running example. Section 4 presents the
results of the empirical evaluation including threats to the validity of the work.
Section 5 discusses related work on process model matching. Finally, Sect. 6
summarizes and concludes the paper.

2 Background

2.1 BPMN, SESE, and PST

This paper assumes that the models to be matched are expressed in BPMN
2.0 [11]. BPMN 2.0 allows businesses to represent their internal business pro-
cedures in a graphical notation and communicate them in a standard way for
both documentation and execution. Models expressed in other languages, such
as BPMN 1.0 and BPEL, can be translated into BPMN 2.0 without adversely
impacting the information used by our algorithm (cf. Sect. 4.1). BPMN inherits
and combines elements from a number of previously proposed notations, includ-
ing the Activity Diagrams component of the Unified Modeling Notation (UML).

Figure 1 shows two BPMN process models. We added shorter names in paren-
theses (e.g., (AC)) to later facilitate concisely representing correspondences be-
tween the models. The notation displays activities by rounded rectangles, events
by circles, gateways by diamonds, and sequence flows by arrows. Each model
has a start, usually modeled by a start event (e.g., Customer inserts Card into
ATM), a flow of activities governed by decisions (e.g., X1), and an end point.
A larger, realistic example is given elsewhere [1].

Any workflow graph (a BPMN process model in our case) can be uniquely
decomposed into single-entry single-exit (SESE) regions [15]. Let G = (N,E)
be a workflow graph, where N is the set of nodes and E the set of edges. A
SESE region R = (N ′, E′) is a nonempty subgraph of G, i.e., N ′ ⊆ N and E′ =
E∩(N ′×N ′) such that there exist edges e, e′ ∈ E with E∩((N\N ′)×N ′) = {e}
and E∩ (N ′× (N\N ′)) = {e′}; e and e′ are called the entry and the exit edge of
R, respectively. According to the formal definition, a SESE region is any region
in the workflow graph that has a single entry at the beginning and a single exit
at the end. In this way, an activity itself is a SESE region, and so is the whole
workflow graph.

The Process Structure Tree (PST) for a BPMN process model is a tree rep-
resenting the decomposition of the model into SESE regions [15], similar to the
much older notion of a program structure tree [9]. Figure 2 shows the PSTs corre-
sponding to the BPMN process models. There is a unique PST for each BPMN
model. The root represents the whole process model since a process model is
a SESE itself. Leaves represent model elements, i.e., activities, gateways and

events. Inner nodes represent SESE regions. In particular, the parent of a region
R is the smallest region R′ that contains R.

Start

Approve Card
(AC)

 X1

Get Balance
(GB)

Consolidate
Receipt

(CR)

Debit Account
(DA)

 X2

Emit Receipt
(ER)

End

 X3 X4

(a) Business Specification

Customer Inserts
Card into ATM

(Trigger)

Approve & Get
Transaction

(AGT)

 X1

Get Balance
(GB)

Get Statement
(GS)

Debit
Checkings

(DC)

 X2

Consolidate
Receipt

(CR)
End

Debit Savings
(DS)

 X5 X6

 X3 X4

(b) Technical Specification

Fig. 1. BPMN Models

2.2 Differences between Business and IT Process Models

Our target scenario involves matching business-level models specified by business
analysts and the corresponding IT-level models implemented by IT specialists. IT
specialists usually refine the original specification to meet technical requirements
of the underlying IT infrastructure, such as invoking existing and new services,
adding exception treatment, and changing the control flow to satisfy application
protocols and optimize the execution. In previous work [1], we have studied over
70 models from BNB and interviewed their creators and maintainers, compiling
a catalog of 11 recurrent patterns used to refine business-level models into IT-
level models. These patterns include (i) adding or modifying properties of model

elements, such as changing the name or type of an activity or adding service
call details, and (ii) changing the flow structure. The latter category includes
behavioral refinement and refactoring and adding additional behavior, such as
technical exception flow. An example from category (i) is the renaming and
retyping of the empty start event Start (Fig. 1.a) into the message-driven event
Customer inserts card into ATM (Fig. 1.b). An example from category (ii) is the
refinement of the task Debit Account (Fig. 1.a) into the block consisting of the
gateways X5 and X6 and two other tasks Debit Checkings and Debit Savings
(Fig. 1.b). Examples of other patterns are given in the study [1].

3 Matching Algorithm

We assume that the models to be matched represent the same process, but
at different levels of abstraction, as described in Section 2.2. We also assume
that, although the models are intended to be consistent, inconsistencies can
occur during their evolution. Thus, the models may include inconsistencies, such
as order of activities switched during refinement or business-relevant activities
added to the IT-level model but not reflected in the business-level model (see
[1] for other examples).

The algorithm identifies a correspondence between two models residing at
different abstraction levels. The algorithm operates on the PST representations
of the models. As stated in Sect. 2, leaves in a PST represent model elements ;
inner nodes represent SESE regions, or regions, for short. The algorithm com-
putes a (model) correspondence, which is a set of correspondence links among
PST nodes; each link connects a single node in the PST of the first model with a
single node of the PST of the other model. Thus, our algorithm is able to identify
correspondence links of different cardinality with respect to model elements: 1:1
(link among two model elements or two regions with only one model element
each), 1:n (link between a region with one model element in the first PST and
a region with more than one model elements in the second PST), and m:n (link
between regions with more than one model element each).

Our algorithm has two phases: attribute matching and structure matching.
The first phase deals with the search of correspondence links based on the at-
tributes of model elements such as names and types; the second phase tries
to find correspondence links based purely on the structures of the PSTs and
the links established in the first phase. Note that the first phase also considers
the structure of the PSTs since it matches both model elements and regions.
The next subsection presents the similarity measures for model elements and
regions. The following two subsections explain the two matching phases using
the running example from Fig. 1. The pseudo-code of the algorithm is available
at http://gsd.uwaterloo.ca/matchingbpm.

3.1 Matching Criteria for Model Elements and Regions

Our algorithm uses two attribute matching criteria for PSTs: one for matching
individual model elements and another for matching regions. We adapted them

http://gsd.uwaterloo.ca/matchingbpm

from previous work on matching source code represented as abstract syntax trees
(ASTs) [6]. The original criteria use bigram string similarity to match the val-
ues of AST leaves and inner nodes. Fluri et al. [6] achieved better results for
source code matching using Dice Coefficient with bigrams as string similarity
compared to other measures such as the Levenshtein Distance [10]. In particu-
lar, the bigram-based similarity tolerates word re-orderings, which also occur in
process refinement (e.g., ApproveCard vs. CardApproval).

We have adapted the original matching criteria by Fluri et al. to the process
matching context, by using the information available in PSTs and refining the
criteria based on experiments with sample models. In particular, we require
exact matches for model elements and use bigram similarity only for inner nodes
(regions). The reason is that process model elements have often relatively short
names, and the names can be very similar, although representing completely
different functions (e.g., ApproveCredit, ApproveContract, CreditAccount). The
resulting criteria are as follows:

Matching criterion for model elements

matche(n,m) � (type(n) = type(m)) ∧ (name(n) = name(m))

Matching criterion for regions

matchr(r, s) � (
common(r, s)

max(r, s)
≥ l) ∧ (sim2g(value(r), value(s)) ≥ f)

where

type returns the type of the model element as a numeric code, such as 0
for start event, 1 for task, 2 for exclusive gateway, etc.

name returns the name of the model element, for example: Get Bal-
ance, Debit Savings, etc.

sim2g calculates the bigram-based similarity of two strings [6]; it returns a
numeric value between 0 and 1, where 1 means that the strings are equal.

value returns the string formed by the concatenation of the names and
types of all model elements of a region. Thus, similarity of names is em-
phasized, since types are short numeric codes and names are typically
complete words.

common returns the number of pairs of model elements of the two re-
gions that match exactly (i.e. matche is true).

max returns the maximum number of distinct pairs that could be matched
(i.e., the number of all model elements in the smaller region).

f and l are thresholds controling the algorithm. We obtained the best
results in our evaluation with 0.6 and 0.4, respectively.

3.2 Attribute Matching

Let us explain the first phase by applying it to the PSTs in Fig. 2 obtained from
the models in Fig. 1.

Fig. 2. PSTs representation of the business process models

First, the algorithm assumes that the roots of both PSTs correspond to each
other. Then, the algorithm performs a depth-first traversal in one of the PSTs
in order to establish correspondence links with the second PST. Starting with
region R1 in PSTa, it tries to find a corresponding region in PSTb. According
to the matching criterion for regions (cf. Sect. 3.1), a necessary condition for a

match is to satisfy the formula common(R1,X)
max(R1,X) ≥ l with any region X in PSTb.

Since R1 has only one child (a model element), satisfying the formula requires
finding a region in PSTb containing a model element with exactly the same name
and type (matching criterion for model elements) as the activity Approve Card.
Since there is none, the algorithm proceeds to region R2.

For R2, the algorithm finds R2′ in PSTb to satisfy the above formula (56 ≥
0.4). The algorithm also checks that sim2g(value(R2), value(R2′)) ≥ f is satis-
fied. Assuming abbreviations, value(R2) returns X12X32GB1CR1X42DA1X22 ;
value(R2′) returns X12X32GB1GS1X42X52DC1DS1X62X22. Both strings have
a similarity of around 0.65 (assuming full names). The algorithm then keeps on

searching more matches for R2 in PSTb. The formula common(R2,R3′)
max(R2,R3′) ≥ l is also

satisfied, returning 3
4 ; however, the value obtained from the string comparison,

0.51, is smaller that f , so R3 is discarded as a match (see left figure in Fig. 3,
where the top link is selected and the bottom one is discarded). No other region
in PSTb satisfies the matching criterion with R2; however, if there were several
matching regions in PSTb, the correspondence link would be established with
the region with the highest string similarity to R2. If there are more than one
region with the same highest string similarity to R2 (unlikely though, because
copies are uncommon in process modeling), one of them is chosen arbitrarily.

The algorithm keeps traversing PSTa and establishes a correspondence link
between R3 and R3′, since the string similarity value is 0.79 (right figure in

Fig. 3). R5′ in PSTb corresponds to R5, since the string similarity is 1. The
same applies to R6 and R9′. There are no correspondence links for R4 and R7.
Finally, the algorithm establishes correspondence links among model elements.
In our example, correspondence links from X1, X2, X3, X4, GB,CR and End
in PSTa to the model elements with the same name in PSTb are created.

Figure 4 shows the complete set of correspondence links based on attribute
matching, also indicating their model element cardinality. To avoid clutter, the
links among model elements with the same name are not shown.

Fig. 3. Attribute matching phase step by step for R2 and R3

Fig. 4. Correspondence Links for the Attribute Matching Phase

3.3 Structure Matching

The second phase of the algorithm aims to match nodes that have not been
matched in the first phase due to their different content. It does so by considering
the location of the unmatched nodes in the PSTs and the correspondence links
established so far. For example, consider regions R4 and R4′ in Fig. 4. Although
they are dissimilar, it is likely, given the correspondence links so far, that they
should be linked. The task of this procedure is to find such pairs of nodes and
link them. The rule for finding node pairs to link is as follows. Let na and nb
be a pair of unmatched nodes. If the parents of na and nb are linked, and if

at least one sibling (the left or right one) of na and nb are linked, na and nb
should be linked, too. If none of the siblings are linked (possibly because they
do not exist), we will also link the nodes if both na and nb are the last or first
node in the child list. According to these rules, the aforementioned regions R4
and R4′ should be matched, as their parents (R2 and R2′) and their left and
right siblings (R3 with R3′ and X2 with X2) match. The same happens with
R1 and R1′ since R0 matches with R0′ and R2 with R2′. This newly created
correspondence link allows us to link the Start and Trigger events, too. All
correspondence links established by both phases of the algorithm are shown in
Fig. 5. As previously, correspondence links between model elements with the
same name are not shown.

Complexity. Assume n = max(|PSTa|, |PSTb|), where |PST | is the number of
regions. The cost of comparing the attributes of two regions is denoted by c and
the cost of checking their structure similarity is s. The matching of all regions
is in O(n2(c + s)), that is, O(n2), since the algorithm compares each possible
region pair.

Fig. 5. Correspondence Links from Both Phases

4 Evaluation

We are interested in knowing the precision and recall of the presented algorithm
when establishing correspondences among pairs of real-world process models
across different levels of abstraction. Precision tells us whether the recovered
correspondence links are correct and recall tells how large of a portion of the links
the algorithm can recover. The following subsections present the methodology
we have followed and the results.

4.1 Methodology

Objective. We want to evaluate the precision and recall of our algorithm. We
define these measures for model correspondences (sets of correspondence links)
between the PSTs. We refer to a model correspondence established by the do-
main experts as a reference correspondence (RC) and to a model correspondence
established by our algorithm as a computed correspondence (CC). Given these

sets, precision (P) and recall (R) are defined, respectively, as P = |RC
⋂

CC|
|CC| and

R = |RC
⋂

CC|
|RC| .

Subject Data. We used business process models taken from the Bank of North-
east of Brazil (BNB), a major financial institution in Brazil that is controlled
by the federal government and oriented towards regional development. BNB has
been using Business Process Modeling since 2007 in a development process based
on the Rational Unified Process. The development process entails iterative and
multi-staged model refinement, resulting in three types of process models (from
higher to lower level of abstraction): business specifications, technical specifica-
tions, and executable processes. We had access to several projects developed as
a result of this process and used them for evaluating the algorithm.

Table 1. BPM Projects

Number of Models

Project Domain Business Technical Implementation

P1 Customer Registration 2 2 2
P2 Credit Backoffice 6 6 6
P3 Credit Risk Assessment 2 2 2
P4 Procurement 3 3 3

We obtained four real BPM projects, containing 39 models in total. Table 1
shows, for each project, the number of models defined in each stage. Our target
is to determine the correspondences between each corresponding pair of busi-
ness and technical specifications and between the latter and executable imple-
mentations. Table 2 gives the total number of model elements for each level of
abstraction.

Reference Correspondences. As reference correspondences, we use the cor-
respondence links established manually by the domain experts (the bank’s em-
ployees) who created and maintain the models. The reference correspondences
in one of the projects was already established for auditing and regulatory com-
pliance purposes, and reused here. The correspondences for the other projects
were established as part of this research.

Table 2. Model Sizes

Total Numbers
Tasks Gateways Events

P1
Business Spec. 59 38 25
Technical Spec. 78 46 36
Implementation 123 56 43

P2
Business Spec. 47 46 18
Technical Spec. 95 48 23
Implementation 107 52 31

P3
Business Spec. 17 8 6
Technical Spec. 19 10 8
Implementation 22 6 9

P4
Business Spec. 13 10 11
Technical Spec. 18 12 15
Implementation 25 14 17

Algorithm Implementation. We have implemented the algorithm in Java as
an Eclipse feature, on top of the SOA Tools Platform BPMN Modeler [13]. Since
the original models from BNB were created using IBM’s WebSphere Process
Modeler, we needed to recreate them to run our tool.

4.2 Results

Table 3 shows the results of our evaluation. We matched pairs of models at dif-
ferent levels of abstraction from each project. Concretely, we compared business
and technical models, and the latter and IT implementation models. Column
“Pair Type” indicates the type of models compared in each row. Column “Cor-
resp - RC” gives the total number of correspondence links identified by the
domain experts. Column “Corresp Type” shows the numbers obtained in each
phase of the algorithm.“Total” represents the net result of the two phases. No-
tice that the correspondence links do not overlap between the phases. Column
“Correct” specifies the number and the cardinality of correspondence links that
our algorithm was able to identify, in each phase, from those in the reference
correspondence, including their cardinalities. Columns “FP” and “FN” give the
number of false positives and negatives, respectively. False positives are those
correspondence links that our algorithm finds but do not belong to the set of
reference correspondence links. False negatives are those correspondence links
included in the reference correspondence that our algorithm is unable to de-
tect. In each phase, “FP” and “FN” are computed with respect to the complete
reference. Finally, “Prec” gives precision, followed by column “Recall”.

If we consider the correspondence links all together—as if they had been ex-
tracted from only one pair of models—we have 622 reference links found manu-
ally by the domain experts. Out of these 622, our algorithm was able to correctly
identify 438, with 32 false positives and 184 false negatives, yielding overall recall
of 70% and precision of 93% Among the reference links, 117 had cardinality type

Table 3. Correspondences among Models across Different Abstraction Levels. B: Busi-
ness; T: Technical; IT: Information Technology; Corresp - RC: Reference Correspon-
dence; FP: False Positives; FN: False Negatives; Prec: Precision.

Project Pair Type Corresp - RC Corresp Type Correct (1:1 ; 1:n; m:n) FP FN Prec Recall

1
Attribute 16 (15;0;1) 0 14 100% 53%

B–T 30 Structure 4 (1;2;1) 2 26 67% 13%
Total 20 (16;2;2) 2 10 91% 67%

1
Attribute 28 (26;0;2) 0 14 100% 67%

T–IT 42 Structure 3 (2;1;0) 2 39 60% 7%
Total 31 (28;1;2) 2 11 94% 74%

2
Attribute 95 (90;0;5) 0 43 100% 69%

B–T 138 Structure 8 (6;2;0) 4 130 67% 6%
Total 103 (96;2;5) 4 35 96% 75%

2
Attribute 136 (127;0;9) 0 104 100% 57%

T–IT 240 Structure 18 (10;5;3) 12 222 60% 8%
Total 154 (137;5;12) 12 86 93% 64%

3
Attribute 22 (21;0;1) 0 10 100% 69%

B–T 32 Structure 4 (4;0;0) 2 28 67% 13%
Total 26 (25;0;1) 2 6 93% 81%

3
Attribute 32 (32;0;0) 0 12 100% 72%

T–IT 44 Structure 2 (2;0;0) 5 42 29% 5%
Total 34 (34;0;0) 5 10 87% 77%

4
Attribute 24 (23;0;1) 0 18 100% 57%

B–T 42 Structure 6 (3;3;0) 3 36 67% 14%
Total 30 (26;3;1) 3 12 91% 71%

4
Attribute 36 (36;0;0) 0 18 100% 67%

T–IT 54 Structure 4 (2;1;1) 2 50 67% 7%
Total 40 (38;1;1) 2 14 95% 74%

1:n and 89 had the cardinality type m:n. From these, the algorithm identified
correctly 14 (12%) and 24 (27%), respectively.

The overall precision ranges between 87%-96%. None of the false positives
is obtained in the attribute matching phase. This is very positive since a large
portion of the reference correspondence links is recovered in this phase. The
number of false positives in the structure matching phase is quite large compared
to the number of reference correspondence links of purely structural nature.
This would be a serious problem in a situation where models have many such
purely structural correspondences. We identified two causes for having so many
false positives. The principal cause is the presence of non-hierarchical refinement
patterns [1]. For example, in one B-T pair of the Project 2, there is an activity
in the business specification that corresponds to 3 activities in the technical
specification. Each of the 3 activities belongs to a different region in the technical
specification. The algorithm cannot identify such kind of correspondence; the
second phase matched the region containing the business activity to an incorrect
region in the technical specification. Another cause is matching nodes that are
the last or first node in the child list. Although this is reasonable in many cases,
it also leads to incorrect matches. For example, this rule produced a false positive
in one T-IT pair of the Project 3. Unfortunately, without extra information (e.g.,
IDs or annotations) it is likely not possible to decide whether or not to match
the regions in many of such cases.

The relatively high number of false negatives —20%-40%—is caused mainly
also by the presence of non-hierarchical refinements, which occurred in all the
projects. We believe that these numbers can be reduced by applying a pat-
tern matching technique for describing and finding instances of well-known or
organization-specific non-hierarchical refinements patterns, which we leave for
future work.

4.3 Threats to Validity

This section summarizes the potential threats that may impact the internal and
external validity [4] of the empirical results.

Threats to External Validity. A potential threat to external validity is that
the models used in the evaluation may not be representative of those occur-
ring in other realistic settings. While the models used here come from real-
world projects, the algorithm should be tested additionally on models from other
organizations and domains.

Threats to Internal Validity. The main threat is the re-modeling of the
BNB’s business process models to be processed by our tool. BNB applies IBM
tools that use an extension of BPMN. Some features of the BNB models that
are not covered in BPMN had to be omitted during the translation. This threat
was minimized by checking with the domain experts that the BMPN models
obtained after the simplification were largely equivalent to the original models.

5 Related Work

Matching of models is a standard topic in MDD. For example, UMLDiff is a
prominent approach for matching UML models [19]. However, effective matching
requires heuristics that are usually notation and application specific. Our work
focuses on finding such heuristics for matching business process models across
levels of abstraction. Discovery of effective heuristics usually requires studying
the differences among such models. In this context, Dijkman [2] presents a classi-
fication of frequently occurring differences between similar business processes in
general. Our previous study [1] provided an in-depth analysis of such differences
between models targeting different levels of abstraction.

As in our approach, the work by Dijkman et al. [3] aims to realize business
process models alignment based on lexical matching (similar to our attribute
matching) and structural matching. They report recall of 60% and precision of
89% for their approach. However, their algorithm only captures 1:1 correspon-
dences between model elements. Our algorithm also identifies correspondences
between SESE regions, which is necessary for matching models at different levels
of abstraction.

Weidlich et al. present ICOP in [17], a framework based on matchers to iden-
tify correspondences between process models. They represent the models using

Refined Process Structure Trees (RPSTs) [14,12] rather than PSTs. In RPSTs,
regions can have more than one entry and more than one exit. The approach by
Weidlich et al. deals both with 1:1 and 1:n matches. Our approach additionally
relates regions to regions, which are examples of m:n matches. They report recall
of 60% and precision of 80%.

Ehrig et al. [5] propose a set of similarity measures for process models, for
example, in order to discover existing related process models in repositories.
However, the approach does not establish fine grained correspondence links like
in our approach. The authors do not discuss recall and precision of the approach.

Several related works deal with comparing process models (e.g., [7,8]), check-
ing their consistency (e.g., [16]), and their synchronization (e.g., [18]). All these
works assume that model correspondences have been previously established.

Table 4 summarizes our contribution in the light of the related works.

Table 4. Related BPM Matching Approaches. + : Feature Provided; – : Feature not
Provided; NA : Not Available.

Approach

Feature Weidlich et al. [17] Dijkman et al. [3] Ehrig et al. [5] Our Approach

Match Activity Attributes + + + +
Match Model Structure + + – +
Match Activity-Activity (1:1) + + + +
Match Activity-SESE (1:n) + – – +
Match SESE-SESE (m:n) – – – +
Do not Require Model Element IDs + + + +
Support Activity Inserts and Deletes + + + +
Support Activity Moves + + – +
Support Activity Renaming + + – +
Support Activity Copies + + – –
Overall Precision 80% 89% NA 93%
Overall Recall 60% 60% NA 70%

6 Conclusions

We have presented an algorithm to automatically detect correspondences be-
tween BMPN process models across levels of abstraction. The algorithm oper-
ates over the PSTs of the input models in two phases. The first phase matches
the PST nodes using region and model element matching criteria adapted from
previous work on matching ASTs. The second phase establishes additional cor-
respondences based on the position of the nodes in the PSTs.

We evaluated our algorithm on 26 pairs of business-technical and technical-IT
level models from four real BPM projects, achieving overall precision of 93% and
recall of 70%. Given the substantial recall and the high precision, the algorithm
helps automating significant part of the correspondence recovery for such models.

The evaluation revealed that the algorithm is not able to detect certain kinds
of complex correspondences. We believe that this limitation could be addressed
in future work by extending the algorithm with an additional phase based on
general and project-specific refinement patterns.

Acknowledgment. This work was partially supported by an IBM PhD
CAS Fellow Scholarship and by Spanish Research Projects TIN2008-03107 and
TIN2011-23795. We would like to thank the Bank of the Northeast of Brazil
(Banco do Nordeste – BNB) for providing the case study as well as valuable
requirements and feedback on the design of the algorithm.

References

1. Castelo Branco, M., Xiong, Y., Czarnecki, K., Küster, J., Völzer, H.: An Empirical
Study on Consistency Management of Business and IT Process Models. Technical
Report GSDLAB-TR 2012-03-22, Generative Software Development Laboratory,
University of Waterloo, Waterloo (2012),
http://gsd.uwaterloo.ca/reportstudybpm

2. Dijkman, R.: A Classification of Differences between Similar Business Processes.
In: EDOC 2007, pp. 37–47. IEEE Computer Society, Washington, DC (2007)

3. Dijkman, R., Dumas, M., Garcia-Banuelos, L., Kaarik, R.: Aligning Business Pro-
cess Models. In: EDOC 2009, pp. 45–53. IEEE (September 2009)

4. Easterbrook, S.M., Singer, J., Storey, M., Damian, D.: Selecting Empirical Methods
for Software Engineering Research. In: Guide to Advanced Empirical Software
Engineering, pp. 285–311. Springer (2007)

5. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between seman-
tic business process models. In: APCCM 2007, pp. 71–80. Australian Computer
Society, Inc., Darlinghurst (2007)

6. Fluri, B., Wursch, M., Pinzger, M., Gall, H.: Change Distilling: Tree Differencing
for Fine-Grained Source Code Change Extraction. IEEE Transactions on Software
Engineering 33(11), 725–743 (2007)

7. Gerth, C., Luckey, M., Küster, J.M., Engels, G.: Detection of Semantically Equiv-
alent Fragments for Business Process Model Change Management. In: SCC 2010,
pp. 57–64. IEEE Computer Society, Washington, DC (2010)

8. Gerth, C., Luckey, M., Küster, J.M., Engels, G.: Detection of Semantically
Equivalent Fragments for Business Process Model Change Management. Tech.
Rep. IBM Research Report RZ 3767, IBM Research, Zurich, Switzerland (2010),
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/rz3767.pdf

9. Johnson, R., Pearson, D., Pingali, K.: The Program Structure Tree: Computing
Control Regions in Linear Time. In: SIGPLAN Conference on Programming Lan-
guage Design and Implementation (1994)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady 10(8), 707–710 (1966)

11. Object Management Group: Business Process Model and Notation (BPMN) Ver-
sion 2.0, http://www.omg.org/spec/BPMN/2.0/

12. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-
ization of the refined process structure tree. In: Proceedings of the 7th Interna-
tional Conference on Web Services and Formal Methods, WS-FM 2010, pp. 25–41.
Springer, Heidelberg (2011)

13. SOA Tools Platform: Eclipse BPMN Modeler,
http://eclipse.org/projects/project.php?id=soa.bpmnmodeler

14. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In:
Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
100–115. Springer, Heidelberg (2008)

http://gsd.uwaterloo.ca/reportstudybpm
http://www.cs.uni-paderborn.de/uploads/tx_sibibtex/rz3767.pdf
http://www.omg.org/spec/BPMN/2.0/
http://eclipse.org/projects/project.php?id=soa.bpmnmodeler

15. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow
Analysis for Business Process Models Through SESE Decomposition. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 43–55.
Springer, Heidelberg (2007)

16. Weidlich, M., Dijkman, R., Weske, M.: Deciding Behaviour Compatibility of Com-
plex Correspondences between Process Models. In: Hull, R., Mendling, J., Tai, S.
(eds.) BPM 2010. LNCS, vol. 6336, pp. 78–94. Springer, Heidelberg (2010)

17. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP Framework: Identification
of Correspondences between Process Models. In: Pernici, B. (ed.) CAiSE 2010.
LNCS, vol. 6051, pp. 483–498. Springer, Heidelberg (2010)

18. Weidmann, M., Alvi, M., Koetter, F., Leymann, F., Renner, T., Schumm, D.:
Business Process Change Management based on Process Model Synchronization
of Multiple Abstraction Levels. In: Proceedings of SOCA 2011. IEEE Computer
Society (2011)

19. Xing, Z., Stroulia, E.: Umldiff: an algorithm for object-oriented design differenc-
ing. In: Proceedings of the 20th IEEE/ACM International Conference on Au-
tomated Software Engineering, ASE 2005, pp. 54–65. ACM, New York (2005),
http://doi.acm.org/10.1145/1101908.1101919

http://doi.acm.org/10.1145/1101908.1101919

	Matching Business Process Workflows across Abstraction Levels
	Introduction
	Background
	BPMN, SESE, and PST
	Differences between Business and IT Process Models

	Matching Algorithm
	Matching Criteria for Model Elements and Regions
	Attribute Matching
	Structure Matching

	Evaluation
	Methodology
	Results
	Threats to Validity

	Related Work
	Conclusions
	References

