
A Template–Based Approach to Describing
Metamorphic Relations

Sergio Segura, Amador Durán, Javier Troya and Antonio Ruiz Cortés

Department of Computer Languages and Systems

University of Seville, Seville, Spain

{sergiosegura,amador,jtroya,aruiz}@us.es

Abstract—Metamorphic testing enables the generation of test
cases in the absence of an oracle by exploiting relations among
different executions of the program under test, called metamor-
phic relations. In a recent survey, we observed a great variability
in the way metamorphic relations are described, typically in
an informal manner using natural language. We noticed that
the lack of a standard mechanism to describe metamorphic
relations often makes them hard to read and understand, which
hinders the widespread adoption of the technique. In this paper,
we propose a template–based approach for the description of
metamorphic relations. The proposed template aims to ease
communication among practitioners as well as to contribute to
research dissemination. Also, it provides a helpful guide for
those approaching metamorphic testing for the first time. For
the validation of the approach, we used the proposed template
to describe 17 previously published metamorphic relations from
different domains and groups of authors, without finding expres-
siveness problems. We hope that this work eases the diffusion and
adoption of metamorphic testing, contributing to the progress of
this thriving testing technique.

Keywords-Metamorphic testing, metamorphic relation, tem-
plates

I. INTRODUCTION

Metamorphic testing enables the generation of test cases

when the expected output of a program execution is complex

or unknown [1], [2]. To that purpose, rather than checking the

correctness of each individual program output, metamorphic

testing checks whether multiple executions of the program

under test fulfill certain conditions referred to as metamorphic
relations. A metamorphic relation is a necessary property of

the program under test that relates two or more input data

and their expected outputs, e.g. sin(x) = sin(−x). In the last

two decades, hundreds of metamorphic relations have been

reported in a variety of domains including web services and

applications [3], computer graphics [4], compilers [5], machine

learning [6] and cybersecurity [7].

In a recent survey, some of the authors reviewed 119 papers

on metamorphic testing published in the last two decades [8].

We observed that most metamorphic relations are informally

described using natural language, which may lead to misun-

derstandings and communication problems among researchers

and practitioners. We also found that key information about the

relations was often omitted or simply assumed to be known by

the reader. Additionally, we found a great variability in the way

metamorphic relations are described, which makes them hard

to read and understand. We think that this variability could

be explained by the degree of expertise on the technique. We

observed that experienced researchers tend to clearly identify

metamorphic relations including helpful data as identifiers,

preconditions or examples. Conversely, newcomers on the

technique usually describe the relations informally as a part

of the main research text, omitting key information like a

precise definition of the program’s inputs and outputs. Finally,

some authors have proposed to use formal notation to describe

metamorphic relations, but their approaches have not been

widely adopted probably due to the difficulty to be understood

by all stakeholders [9].

The problem of capturing and expressing information in a

way that it is understandable for users with different degree of

expertise has been addressed in fields such as requirements en-

gineering [10], experimentation [11] and software metrics [12],

[13]. A classical approach to address this problem is the use

of templates. A template is a combination of placeholders and

linguistic formulas used to describe something in a particular

domain, e.g. an experiment. Templates facilitate communica-

tion among practitioners, contribute to research dissemination,

and provide a helpful guide for beginners.

In this paper, we present a template–based approach for

describing metamorphic relations. The proposed template is

based on the structure of metamorphic relations observed in

the literature, and it is also inspired by related and widely

adopted templates in various fields of software engineer-

ing [10], [11], [12], [13]. The template is intentionally simple

and flexible to foster its adoption by the metamorphic test-

ing community. To this purpose, the template specifies what
data should be included in the description of a metamorphic

relation, but not how it should be specified: using natural

language, formal languages, or a combination of both. To

support the evolution of the template (e.g. when feedback from

other researchers is received), it has been fully specified in a

separated document subjected to version control and accessible

on the Web [14]. For the evaluation of our approach, we used

the template to describe 17 previously published metamorphic

relations from different domains and groups of authors. This

helped us to refine and validate the template, which showed

to be expressive enough to represent all the subject relations.

The remainder of this paper is structured as follows. In

Section II, we introduce and formalize the concepts of meta-

morphic relation and metamorphic testing. Section III presents

the proposed template. Several examples of metamorphic

333

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

relations described with the proposed template are presented in

Section IV. Section V describes the validation procedure. The

related work is discussed in Section VI. Finally, we summarize

our conclusions and the outlook to future work in Section VII.

II. METAMORPHIC TESTING

Metamorphic testing provides a mechanism to test a pro-

gram when the expected output of a test execution is unknown

or hard to compare with the actual output; this is known as

the oracle problem [15]. To this purpose, instead of checking

individual program outputs, metamorphic testing exploits the

relations among the inputs and outputs of multiple executions

of the program under test. Each of those relations is referred to

as a metamorphic relation. For instance, consider the program

avg(a, b), which returns the average value of two integers a
and b. The order of the parameters should not influence the

result, which can be expressed as the following metamorphic

relation: avg(a, b) = avg(b, a). A metamorphic relation con-

sists of the so–called source test cases, e.g. avg(a, b), and

one or more follow–up test cases derived from the source

test cases, e.g. avg(b, a). A metamorphic relation can be

instantiated into one or more metamorphic tests by using

specific input values, e.g., avg(2, 3) = avg(3, 2). If the outputs

of a source test case and its follow–up test case(s) violate the

metamorphic relation, the metamorphic test is said to have

failed, indicating that the program under test contains a bug.
Metamorphic testing was introduced as an approach to reuse

existing test cases by Chen et al. back in 1998 [1]. Since

then, the research community have realized the potential of

the technique to alleviate the oracle problem and to enable

the automated generation of test cases. In the last two decades,

a vast array of applications and innovative improvements to

the technique have been presented, as well as evidences of

real bugs being detected by metamorphic testing in tools

such as the GCC compiler [5], the machine learning system

RapidMiner [16] or the NASA Data Access Toolkit [17].
In what follows, we present the formal definitions of meta-

morphic relation and metamorphic testing, used as the basis

for the design of the proposed template.

A. Formal model for a metamorphic relation
In the seminal work by T. Y. Chen et al. [1], a meta-

morphic relation with respect to a function f was defined

as a logical implication between a relation Ri defined over

a sequence of inputs 〈 x1, . . . , xn 〉 where n ≥ 2, and a

relation Ro defined over the corresponding sequence of outputs

〈 f (x1), . . . , f (xn) 〉, i.e.

Ri

(
〈 xi 〉
i=1..n

)
⇒ Ro

(
〈 f (xi) 〉

i=1..n

)
Although this definition was expressive enough for simple

metamorphic relations such as:

x2 = x1 + 360◦ ⇒ sin(x1) = sin(x2)

it has been later updated in order to make it more generally

applicable [4], [18], [19]. In these new definitions, a metamor-

phic relation with respect to a function f is defined as a relation

over a sequence of inputs 〈 x1, . . . , xn 〉 where n ≥ 2 and their

corresponding sequence of outputs 〈 f (x1), . . . , f (xn) 〉, i.e.

R
(
〈 xi 〉
i=1..n

, 〈 f (xi) 〉
i=1..n

)

In this definition, the sequence of n inputs (xi) is the

concatenation (using �, the sequence concatenator operator)

of two subsequences: the subsequence of m source test cases

inputs (xk) and the subsequence of (m−n) follow–up test cases

inputs (xj), i.e.

〈 xi 〉
i=1..n

= 〈 xk 〉
k=1..m

� 〈 xj 〉
j=(m+1)..n

The follow–up inputs can be determined from the source

inputs and their corresponding outputs using follow–up gen-
erator functions (also called mappings in [19]), i.e.

〈 xj 〉
j=(m+1)..n

= G(〈 xk 〉
k=1..m

, 〈 f (xk) 〉
k=1..m

)

For example, in the previous example, the follow–up gen-

erator function (using only the source test cases but not their

outputs) is G(x) = x + 360o.

In practice, and in line with the formal definition given

by Chan et al. in [4] and [18], we have observed that

metamorphic relations are expressed as logical implications

using as an antecedent a relation defined over the source

inputs, their outputs and the follow–up inputs (including a

source–to–follow–up mapping), and as a consequent a relation

over all inputs and outputs, especially follow–up outputs not

included in the antecedent. Thus, a metamorphic relation can

be formally described as follows.1

Ri

(
〈 xk 〉
k=1..m

, 〈 xj 〉,
j=(m+1)..n

〈 f (xk) 〉
k=1..m

)
⇒ Ro

(
〈 xi 〉
i=1..n

, 〈 f (xi) 〉
i=1..n

)

B. Formal model for metamorphic testing

Following T. Y. Chen et al. [19], the metamorphic testing of

an implementation P of a function f with a metamorphic rela-

tion defined is the process by which the metamorphic relation

is checked but replacing the function by its implementation,

i.e.

Ri

(
〈 xk 〉
k=1..m

, 〈 xj 〉,
j=(m+1)..n

〈 f (xk) 〉
k=1..m

)
⇒ Ro

(
〈 xi 〉
i=1..n

, 〈 P(xi) 〉
i=1..n

)

This replacement is also applied in the generation of the

follow–up inputs if needed, i.e.

〈 xj 〉
j=(m+1)..n

= G(〈 xk 〉
k=1..m

, 〈 P(xk) 〉
k=1..m

)

If the relation is not satisfied in all the generated follow–up

test cases, i.e. pairs (xj,P(xj)), the metamorphic testing of P
reveals that is faulty.

1Although this expression can be simplified to Ri(xi, fk) ⇒ Ro(xi, fi), and
even to R(xi, fi) as shown in [19], we prefer to explicitly differentiate between
the source and the follow–up test cases, and to remark the logical implication.

444

III. TEMPLATE FOR METAMORPHIC RELATIONS

In this section, we present the proposed template to describe

metamorphic relations based on the formal definition presented

in the previous section. For its design, we took inspiration

from some related approaches such as the Goal–Question–
Metric (GQM) template used in the field of software mea-

surement [20], [12], [13], and in particular from the GQM–

based template proposed by Wholin et al. [11] in the context

of software experimentation (see the related work Section

for details). In syntactic terms, we have opted by a textual

format rather than a tabular structure because we find it more

natural and easy to include in research papers. To facilitate

its integration into formal documents, a LaTeX template is

provided as supplemental material2.

The template for describing metamorphic relations is shown

below, where the placeholders are depicted between < and

> and optional sections are enclosed between square brackets.

In the domain of <application domain>
[where <context definition>]
[assuming that <constraints>]
the following metamorphic relation(s) should hold
• <metamorphic relation name1>:

if <relation among inputs/outputs>
then <relation among inputs/outputs>

. . .

• <metamorphic relation namen>:

if <relation among inputs/outputs>
then <relation among inputs/outputs>

The template placeholders have the following meaning:

application domain
This is the application domain in which the

metamorphic relations apply. For example: general

domains such as search engines, code obfuscators or

machine learning; specific versions of software tools

such as Weka 2.1; software services like Google

search, etc.

context definition
The context definition includes all necessary

definitions of concepts, variables, notations, etc.

used in the definition of the metamorphic relations

and that are essential for their proper understanding.

The section containing this placeholder is considered

as optional because depending on the complexity

of the metamorphic relations and the degree of

formalization, could not be strictly necessary.

constraints
In this optional section, some constraints can be

specified indicating necessary conditions for the

2https://gestionproyectos.us.es/projects/mr-template/wiki

metamorphic relation to be applicable.

metamorphic relation name
This is the name of the metamorphic relation being

defined. Ideally, it could be a meaningful name,

but a simple label is also acceptable in order to

distinguish it from other metamorphic relations

defined in the same template.

relation on inputs & outputs
These are logical implications in which both the

antecedent (the if placeholder) and the consequent

(the then placeholder) are relations defined over the

function inputs and outputs.

IV. EXAMPLES

In this section, some examples of use of the proposed tem-

plate are provided, illustrating different definition approaches.

In all the examples, we have tried to follow as much as

possible the names and the definition style used by the original

authors.

A. Simple descriptions

In this section, we show how the template can be used to

describe metamorphic relations in a simple way. The relation

below (named MR1 as in the original paper) was presented

in the context of cybersecurity by Chen et al. [7]. Roughly

speaking, it states that the obfuscated version of equivalent

programs should also be functionally equivalent. Note that

the description has neither context definition nor constraints,

as these are optional sections.

In the domain of cybersecurity (code obfuscators)

the following metamorphic relation(s) should hold
• MR1:

if two different source programs, P1 and P2, are

functionally equivalent

then their obfuscated versions, O(P1) and O(P2))
should also be functionally equivalent and, there-

fore, the compiled obfuscated executable pro-

grams, C(O(P1)) and C(O(P2)), should have

equivalent behavior, i.e. the same outputs for the

same inputs.

The following metamorphic relation (MRorder) was proposed

by Lindvall et al. [21] to address acceptance testing of NASA’s

Data Access Toolkit (DAT). DAT is a large database of teleme-

try data collected from different NASA missions, including an

advanced query interface to search and mine available data.

Metamorphic testing was used by formulating the same query

in different equivalent ways, and asserting that the resulting

datasets were equal to each other.

555

In the domain of the NASA’s Data Access Toolkit (DAT)

where
• q1, q2, . . . , qn with n ≥ 2 are equivalent search queries

for the DAT system, i.e., they have the same parameters

and parameter values, and return the same result set

• R(qi) is the result set returned by query qi.

the following metamorphic relation(s) should hold
• MRorder:

if the order of the parameters in any of the queries

q1, q2, . . . , qn is changed

then R(q1) = R(q2) = . . . = R(qn), i.e. all queries

return the same result set.

B. Descriptions with constraints

Some metamorphic relations may include constraints

that limit their applicability to a subset of the input or

output space. For instance, Zhou et al. [3] proposed several

metamorphic relations to address metamorphic testing of

online search engines. To avoid inaccuracies caused by the

search engine optimizations (such as results being omitted to

improve response time), the applicability of the relations was

restricted to searches that returned between 1 and 20 results.

The description of one these relations (named MPReverseJD
as in the original paper), including the previous constraint, is

shown next.

In the domain of Google search

assuming that
• the number of results of the source search query is greater

than zero and less than or equal to 20 in order to avoid

inaccuracy caused by empty and large result sets

the following metamorphic relation(s) should hold
• MPReverseJD:

if the search terms of a given query are set in

reverse order

then the result of the new query must be similar to

the results of the former one applying Jaccard

similarity.

C. Descriptions with a common context definition

The following instance of the proposed template shows

several metamorphic relations sharing the same context

definition. We found that this is a common scenario in the

metamorphic testing literature. These relations were proposed

in the context of metamorphic testing of machine learning

classifiers by Xie et al. [6]. Note that, as in the original

paper, the names of the metamorphic relations include both

an identifier and a descriptive sentence.

In the domain of machine learning classifiers

where
• S is the training data set.

• ts is a source test case, i.e., a data sample 〈a0, a1 . . . am−1〉
• li is the class label obtained as the output of ts.
• an uninformative attribute is one that is equally associated

with each class label.

the following metamorphic relation(s) should hold
• MR-2.1 Addition of uninformative attributes:

if in the follow-up input, an uninformative attribute

is added to each sample in S and to ts
then the output of the follow-up test case should still

be li.
• MR-5.1 Removal of classes:

if in the follow-up input, we remove one entire

class of samples in S of which the label is not li
then the output of the follow-up test case should still

be li.

D. Formal descriptions

The proposed template can be used to describe metamorphic

relations using both natural and formal languages, or a

combination of both. To illustrate this, some of the relations

presented by Chen et al. [7] and Zhu et al. [3] are described

below using a formal style, including also natural language

in order to make the formal expressions easier to understand.

Note that two of the relations (MR1 and MPReverseJD) were

informally described in previous sections. This shows how

the template can be used to describe the same relations with

an informal or a formal style, and with a different level of

detail.

In the domain of cybersecurity (code obfuscators)

where
• p, p1 and p2 are computer programs.

• Ω is a program obfuscation function.

• Ω(p)@[ti] is the obsfuscation of p at a given time ti.
• ≡ is the program functional equivalence relation.

the following metamorphic relation(s) should hold
• MR1:

if p1 ≡ p2, i.e. p1 and p2 are functionally

equivalent

then Ω(p1) ≡ Ω(p2), i.e. the obsfucations of p1 and

p2 are also functionally equivalent.

• MR2:

if { ti }i=1..n are different times

then ∀ i : 1..n− 1 • Ω(p)@[ti] ≡ Ω(p)@[ti+1],
i.e. the obfuscation process does not depend on

the obfuscator environment (time of execution in

this case).

In the domain of Google search

where
• site: is a Google search operator that specifies domains,

e.g. site:nbc.com.

666

• q1 and q2 are queries represented as sequences of con-

junctive search criteria, i.e. qi = 〈 cj 〉j=1..n
• an exact word or phrase is a search criterion, e.g. “side

effect of antibiotics in babies”.

• site:d is also a search criterion.

• R(q) is the result set of web pages returned by a given

query q, i.e. R(q) = { pk }k=1..m

• #R(q) is the size of R(q).
• � is the sequence concatenation operator.

• rev is the reverse sequence function, i.e. q =
〈 cj 〉j=1..n ⇒ rev(q) = 〈 cj 〉j=n..1

assuming that
• 0 < #R(q1) ≤ 20

the following metamorphic relation(s) should hold
• MPSite:

if q2 = q1
� site:d where d is the domain of one

of the web pages in R(q1)
then R(q2) ⊆ R(q1), i.e. the results of q2 must be a

subset of the results of q1
• MPReverseJD:

if q2 = rev(q1), i.e. q2 is the reverse of q1
then R(q2) ≈ R(q1), i.e. the results of q2 are similar

to the results of q1 applying Jaccard similarity.

As a further example, the following is a formal description

of one of the metamorphic relations presented by Segura et
al. [22] in the context of feature model analysis tools.

In the domain of feature model analysis tools

where
• M is a feature model.

• Π(M) is a function returning the set of products of a

feature model M.

• # is the cardinality function on sets.

the following metamorphic relation(s) should hold
• MR1Mandatory:

if M′ is derived from M by adding a mandatory

feature fm as a child feature of fp
then #Π(M′) = #Π(M) ∧

∀ p ∈ Π(M) •
fp /∈ p ⇒ p ∈ Π(M′) ∧
fp ∈ p ⇒ (p ∪ {fm}) ∈ Π(M′)

V. VALIDATION

For the validation of our approach, we used the proposed

template to describe several metamorphic relations found in

the literature, trying to identify expressiveness problems. To

this purpose, we selected 10 metamorphic testing papers, from

35 different authors and 8 different application domains, from

which 17 metamorphic relations were selected to be described

using our approach. We may remark that these relations

were randomly selected with the only purpose of having a

representative pull of metamorphic relations, and not because

we identified any specific limitations in them. Table I depicts

the list of selected papers including publication year, short list

of authors, title, application domain, and reference. Five of the

papers were published in journals, and five in conferences or

workshops. Some of the selected metamorphic relations were

presented in the previous section to illustrate the use of the

template. Owing to space limitation, the full set of relations

are described in a technical report [14].

The validation process was iterative. First, the selected

papers were divided and distributed among three of the au-

thors. Each author randomly selected between one and three

metamorphic relations from each paper and described them

using the template. Then, several meetings were arranged to

discuss the raised issues such as the exact linguistic forms

used or how expressing multiple relations sharing the same

context (where section of the template, see Section III). Some

of these issues where addressed by introducing minor changes

in the template. The process was then repeated by updating

the described relations and debating about them, until no

expressiveness problem was found and a strong consensus was

reached among all the authors.

VI. RELATED WORK

In this section, we review some related templates in the

context of software engineering.

The Goal–Question–Metric (GQM) method proposes a tem-

plate to support software measurement [20], [12], [13]. The

approach is based on the idea that for an organization to

measure any aspect of software development it must first

specify the goals, including the object for which it is defined,

and the interested viewpoint, e.g. improve the timeliness of

change request processing from the project manager’s view-

point. Then, the organization must trace those goals to a

number of questions to characterize how the achievement of

a specific goal is going to be performed, e.g. what is the

current change request processing speed? Finally, a number

of metrics must be defined in order to answer each question

quantitatively, e.g. average change processing time.

Durán et al. [10] proposed several templates and linguistic

patterns to assist engineers when gathering and documenting

user requirements. Templates were given in a tabular format.

For each type of requirement (e.g. information requirements,

use cases, etc.) a number of fields were recommended such

as author, purpose, description, time interval or importance

degree. Additionally, some parameterized linguistic patterns

were also proposed and introduced as a part of the templates,

e.g. “The system shall store the information corresponding to

<relevant concept>”. Their approach is integrated into the

requirements management tool REM [27].

Wholin et al. [11] proposed using the GQM template to

describe experiments in software engineering. In particular,

the authors proposed using the goal template by Basili and

Rombach [20] as follows:

Analyze <object(s) of study>
for the purpose of <purpose>

777

Year Authors Title Domain Ref.

2002 T.Y. Chen et al. Metamorphic Testing of Programs on Partial Differential Equations: a Case Study Numerical programs [23]
2004 T.H. Tse et al. Testing Context-Sensitive Middleware-Based Software Applications Embedded systems [24]
2009 W.K. Chan et al Finding failures from passed test cases: improving the pattern classification approach

to the testing of mesh simplification programs
Computer graphics [4]

2010 K.Y. Sim et al. Detecting Faults in Technical Indicator Computations for Financial Market Analysis Financial software [25]
2010 X. Xie et al. Testing and validating machine learning classifiers by metamorphic testing Machine learning [6]
2011 F.-C. Kuo et al. Testing Embedded Software by Metamorphic Testing: a Wireless Metering System Case

Study
Embedded software [26]

2014 S. Segura et al. Automated metamorphic testing of variability analysis tools Software variability [22]
2015 Z.Q. Zhou et al. Metamorphic Testing for Software Quality Assessment: A Study of Search Engines Search database [3]
2016 T.Y. Chen et al. Metamorphic Testing for Cybersecurity Cybersecurity [7]
2016 M. Lindvall et al. Agile Metamorphic Model-based Testing Search database [21]

Table I
SELECTED PAPERS

with respect to their <quality focus>
from the point of view of the <perspective>
in the context of <context>.

The template presented in this paper is mainly inspired by

the GQM template proposed by Wholin et al. in the context

of experimentation. We chose a textual format because it

reads more naturally than tables and it is easier to integrate

in research papers. However, it would be straightforward to

translate it into a tabular format. In contrast to domain-specific

approaches as the one presented by Durán et al. [10] in the

domain of requirement engineering, the proposed template

aims to be as generic as possible, making it suitable to describe

metamorphic relations from multiple domains using different

notations and levels of abstraction.

VII. CONCLUSION AND FUTURE WORK

Metamorphic testing is becoming a well–established disci-

pline with new applications, techniques, and empirical studies

rapidly proliferating. However, the lack of standard mech-

anisms to describe metamorphic relations is becoming an

obstacle for the dissemination of research results, and even-

tually for its adoption by industry. Inspired by how related

fields have approached this problem, in this paper we have

proposed a template for the description of metamorphic re-

lations. The template is intentionally simple and flexible,

allowing researchers to describe metamorphic relations in

their own way, but adhering to a basic structure in order to

make relations easy to read and understand. The template is

fully specified in a separated document subjected to version

control in order to support its evolution. We trust that this

template eases the adoption and dissemination of metamorphic

testing, contributing to the progress of this promising testing

technique.

Several challenges remains for future work. A more rigorous

validation of the proposed template should involve empirical

studies with human subjects. For instance, evaluating whether

people with different expertise can understand the template and

use it to describe metamorphic relations consistently. Also,

the mapping from template-based metamorphic relations to

executable code or test cases is a challenging topic that will

require further research.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their

helpful comments and suggestions. This work has been par-

tially supported by the European Commission (FEDER) and

Spanish Government under CICYT project BELI (TIN2015–

70560–R), and the Andalusian Government project COPAS

(P12–TIC–1867).

REFERENCES

[1] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic testing: A
new approach for generating next test cases,” Technical Report HKUST-
CS98-01, Department of Computer Science, The Hong Kong University
of Science and Technology, Tech. Rep., 1998.

[2] T. Y. Chen, T. H. Tse, and Z. Q. Zhou, “Fault-based testing without
the need of oracles,” Information & Software Technology, vol. 45,
no. 1, pp. 1–9, 2003. [Online]. Available: http://dx.doi.org/10.1016/
S0950-5849(02)00129-5

[3] Z. Q. Zhou, S. Xiang, and T. Y. Chen, “Metamorphic testing for software
quality assessment: A study of search engines,” IEEE Transactions on
Software Engineering, vol. 42, no. 3, pp. 264–284, March 2016.

[4] W. K. Chan, J. C. F. Ho, and T. H. Tse, “Finding failures from passed
test cases: Improving the pattern classification approach to the testing
of mesh simplification programs,” Software Testing, Verification and
Reliability Journal, vol. 20, no. 2, pp. 89–120, Jun. 2010. [Online].
Available: http://dx.doi.org/10.1002/stvr.v20:2

[5] V. Le, M. Afshari, and Z. Su, “Compiler validation via equivalence
modulo inputs,” in Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI ’14.
New York, NY, USA: ACM, 2014, pp. 216–226. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594334

[6] X. Xie, J. W. K. Ho, C. Murphy, G. Kaiser, B. Xu, and
T. Y. Chen, “Testing and validating machine learning classifiers
by metamorphic testing,” The Journal of Systems and Software,
vol. 84, no. 4, pp. 544–558, Apr. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2010.11.920

[7] T. Y. Chen, F. C. Kuo, W. Ma, W. Susilo, D. Towey, J. Voas, and Z. Q.
Zhou, “Metamorphic testing for cybersecurity,” Computer, vol. 49, no. 6,
pp. 48–55, June 2016.

[8] S. Segura, G. Fraser, A. Sanchez, and A. Ruiz-Cortes, “A survey
on metamorphic testing,” IEEE Transactions on Software Engineering,
vol. 42, no. 9, pp. 805–824, Sept 2016.

[9] Z. Hui and S. Huang, “A formal model for metamorphic relation
decomposition,” in Fourth World Congress on Software Engineering
(WCSE), 2013, Dec 2013, pp. 64–68.

[10] A. Durán, B. Bernárdez, A. Ruiz-Cortés, and M. Toro, “A requirements
elicitation approach based in templates and patters,” in 2nd. Workshop on
Requirements Engineering (WER), Buenos Aires, Argentina, Sep 1999,
p. 17–29.

888

[11] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering. Springer-Verlag
Berlin Heidelberg, 2012.

[12] V. R. Basili, “Software modeling and measurement: The
goal/question/metric paradigm,” College Park, MD, USA, Tech.
Rep., 1992.

[13] R. van Solingen and E. Berghout, The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill, 1999. [Online]. Available: https://books.google.co.uk/
books?id=EczdPAAACAAJ

[14] S. Segura, A. Durán, J. Troya, and A. Ruiz-Cortés, “Metamorphic
relation template v1.0,” Applied Software Engineering Research
Group, Tech. Rep. ISA-17-TR-01, Jan 2017. [Online]. Available:
http://www.isa.us.es/sites/default/files/ISA-17-TR-01.pdf

[15] E. J. Weyuker, “On testing non-testable programs,” The Computer
Journal, vol. 25, no. 4, pp. 465–470, 1982.

[16] C. Murphy, K. Shen, and G. Kaiser, “Using JML runtime assertion
checking to automate metamorphic testing in applications without test
oracles,” in Second International Conference on Software Testing Veri-
fication and Validation, ICST 2009, 2009.

[17] M. Lindvall, D. Ganesan, R. Ardal, and R. Wiegand, “Metamorphic
model-based testing applied on nasa dat – an experience report,” in
Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on, vol. 2, May 2015, pp. 129–138.

[18] W. K. Chan and T. H. Tse, “Oracles are hardly attain’d, and hardly
understood: Confessions of software testing researchers,” in 13th Inter-
national Conference on Quality Software (QSIC), 2013, July 2013, pp.
245–252.

[19] T. Y. Chen, P. Poon, and X. Xie, “METRIC: METamorphic
Relation Identification based on the Category-choice framework,”
Journal of Systems and Software, 2015. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0164121215001624

[20] V. R. Basili and H. D. Rombach, “The tame project: Towards
improvement-oriented software environments,” IEEE Trans. Softw.
Eng., vol. 14, no. 6, pp. 758–773, Jun. 1988. [Online]. Available:
http://dx.doi.org/10.1109/32.6156

[21] M. Lindvall, D. Ganesan, S. Bjorgvinsson, K. Jonsson, H. S. Logason,
F. Dietrich, and R. E. Wiegand, “Agile metamorphic model-based
testing,” in Proceedings of the 1st International Workshop on
Metamorphic Testing. New York, NY, USA: ACM, 2016, pp. 26–32.
[Online]. Available: http://doi.acm.org/10.1145/2896971.2896979

[22] S. Segura, A. Durán, A. B. Sánchez, D. L. Berre, E. Lonca, and
A. Ruiz-Cortés, “Automated metamorphic testing of variability analysis
tools,” Software Testing, Verification and Reliability, vol. 25, no. 2, pp.
138–163, 2015. [Online]. Available: http://dx.doi.org/10.1002/stvr.1566

[23] T. Y. Chen, J. Feng, and T. H. Tse, “Metamorphic testing
of programs on partial differential equations: A case study,” in
Proceedings of the 26th International Computer Software and
Applications Conference on Prolonging Software Life: Development
and Redevelopment, ser. COMPSAC ’02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 327–333. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645984.675903

[24] T. H. Tse, S. S. Yau, W. K. Chan, H. Lu, and T. Y. Chen, “Testing
context-sensitive middleware-based software applications,” in Computer
Software and Applications Conference, 2004. COMPSAC 2004. Proceed-
ings of the 28th Annual International, Sept 2004, pp. 458–466 vol.1.

[25] K. Y. Sim, C. S. Low, and F.-C. Kuo, “Detecting faults in technical in-
dicator computations for financial market analysis,” in 2nd International
Conference on Information Science and Engineering (ICISE), 2010, Dec
2010, pp. 2749–2754.

[26] F.-C. Kuo, T. Y. Chen, and W. K. Tam, “Testing embedded software by
metamorphic testing: A wireless metering system case study,” in IEEE
36th Conference on Local Computer Networks (LCN), 2011, Oct 2011,
pp. 291–294.

[27] A. Durán, A. Ruiz-Cortés, R. Corchuelo, and M. Toro, “Supporting
requirements verification using XSLT,” in IEEE Joint International
Conference on Requirements Engineering. IEEE, 2002, pp. 165–172.

999

