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Abstract  14 

FEBEX clay is considered a reference material in engineered barriers for safe storage of nuclear 15 

waste and uranium is a minor component of high-level radioactive waste (HLRW) and a main 16 

component of the spent nuclear fuel (SNF). Here, the kinetics of reaction of uranium with FEBEX 17 

was investigated in addition to the uranium immobilisation ability and the structural analysis of 18 

the reaction products. Hydrothermal treatments were accomplished with UO2
2+ and tetravalent 19 

actinide simulator ZrO2+, also present in HLRW. The quantification of the reaction was performed 20 

through gamma spectrometry of uranium. Two mechanisms for UO2
2+ retention by FEBEX were 21 

detected: adsorption and formation of stable and insoluble new phases. The structural analyses 22 

performed using ZrO2+, confirmed the uranium adsorption and the presence of new phases, ZrO2 23 

and Zr(SiO4), that emphasise the existence of a chemical reaction with the bentonite. The analysis 24 

of the velocity of reaction uranium-clay minerals revealed temperature dependence. An 25 
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exponential fitting suggested that the removal of uranium from solution at temperatures over 200 26 

ºC could be completed in less than a year. For lower temperatures, several years are needed. 27 

Milliequivalents of UO2
2+ immobilised by the clay depended on temperature and time and were 28 

over cation exchange capacity (CEC) of FEBEX even at 100 ºC (reaching 600% of CEC). The 29 

reaction with steel, also temperature dependent, was finally analysed. At 200 ºC 40% -70% of 30 

uranium reacted with steel. But only 30%-15% reacted at 300ºC and 100ºC. The reactions provide 31 

a stable immobilisation mechanism for uranium even when its sorption and swelling capacities 32 

fail. Our experiments will be of particular interest for very deep borehole disposals were higher 33 

temperatures and pressures are expected. 34 

 35 

Key Words: Bentonite, smectite, disilicates, steel, uranium, radioactive waste. 36 
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 38 

1. Introduction 39 

In many countries, the development of Deep Geological Repositories (DGR), for the storage 40 

of high-level radioactive waste (HLRW) and spent nuclear fuel (SNF), is based on a multiple 41 

barriers system. Most of the safety of the repositories relies on the engineered barrier which is 42 

mainly constituted by clay minerals [1]. Clay minerals have low permeability, high sorption and 43 

swelling capacity, which makes them ideal materials for natural and engineered barriers for 44 

nuclear waste isolation [2, 3]. Under specific experimental conditions a clay minerals barrier is 45 

able to delay the diffusion and immobilise radionuclides through mechanisms such as adsorption 46 

[4]. At the present time, bentonite is accepted as the most suitable clay mineral for the engineered 47 

barrier in DGRs [5]. Furthermore, very deep borehole disposal (DBD), are now emerging as a 48 

realistic alternative to mined repositories for spent nuclear fuel, reprocessing waste and plutonium 49 

[6]. Many different variants of the basic DBD concept have been proposed and, essentially, these 50 
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fall into two main categories that can be referred to as ‘high temperature’ (> ~700˚C) and ‘low 51 

temperature (250 ºC) [7].  52 

Regarding the adsorption properties of the clay mineral [8], recent studies highlight the 53 

existence of an additional retention mechanism [9, 10]. The systematic study of the interaction of 54 

the rare earths cations (REE), such as La, Lu, Nd, Sm - as actinides chemical analogues, with 55 

natural and artificial clay minerals - revealed a reaction mechanism, based on the interaction 56 

between the lanthanide cations and the orthosilicate anions of the lamellar structure [11, 12]. At 57 

subcritical conditions (temperature and pressure), an insoluble and chemically stable phase, 58 

REE2Si2O7, is generated [13]. This might provide a stable immobilisation mechanism if the 59 

sorption and swelling capacities of the bentonite fail [14]. 60 

Initially, the studies focused on the structural analysis of REE2Si2O7 after the hydrothermal 61 

reaction between REE cations and clay minerals [9, 12, 14]. More recently, Alba et al., [11] 62 

quantified the Eu3+ immobilization by a standard saponite and Villa-Alfageme et al. [15] studied 63 

Eu3+ retention mechanisms by FEBEX and MX-80 bentonites, two of the recommended bentonites 64 

for the construction of barriers. Results proved that two mechanisms were involved in Eu3+ 65 

retention by the bentonites: adsorption in specific and unspecific sites and a chemical reaction 66 

consisting on the formation of europium disilicates.  67 

Uranium is the major component of HLRW and SNF from nuclear power plants, for this 68 

reason it is essential to analyse the role that silicates play in the retention of uranium. The previous 69 

hydrothermal treatment experiments analysed the retention of HLRW using actinides simulators. 70 

Uranium interaction properties should be evaluated, as well as its influence on the retention 71 

capacity of bentonites for the REE and other radionuclides from HLRW and SNF.  72 

Previous experiments were not undertaken using uranium, on the contrary REE were the major 73 

components. This work is focused on the analysis of uranium and zirconium retention by FEBEX 74 
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bentonite and the quantification of the immobilisation mechanisms through hydrothermal 75 

treatments with uranium and zirconium.   76 

The HLRW containers are one of the barriers that should be able to protect the repository 77 

systems. As such, container corrosion and the chemical interactions of corrosion products with the 78 

clay buffer are of great interest for the long-term performance of a repository [16, 17]. Several 79 

studies concerning the corrosion of candidate metals for the container, as well as the interaction of 80 

their corrosion products with bentonite, have been reported in the literature [18-20]. Regarding the 81 

steel-bentonite interactions, the transformation of bentonite into other minerals as a result of its 82 

interaction with the corrosion products of the metallic container has been observed [21, 22]. The 83 

effect of container corrosion on the stability of clay mineral depends mainly on factors such as pH, 84 

temperature, the crystal chemistry of the clay, the water/solid ratio and the iron/clay mass [23].  85 

In previous studies we observed that during hydrothermal treatments in a steel reactor, the 86 

cations Eu3+, Sm3+ and ZrO2+ reacted not only with clay minerals, but also with the steel [11, 24, 87 

25]. Furthermore, it was found that both reactions compete. Here, we expand our analysis to the 88 

retention of uranium by steel containers. Few studies to study the role of the backfill material in 89 

the kinetics and the corrosion mechanisms of steel containers have been conducted to date. An 90 

understanding of the sorption/retention of radionuclides on the materials used to construct the 91 

engineered barrier (clay and container waste) is necessary to adequately predict the long-term 92 

performance of radioactive waste disposal facilities. 93 

Concerning the hydrothermal conditions conducted in our experiments, it should be noted that 94 

they are not completely expected in the geological repositories currently under consideration: 95 

initial storage temperatures in DGR are expected to be greater than 200 ºC, with temperatures 96 

falling below 150 ºC several hundred years after emplacement [26]. But most important, pressure 97 

in DGR is expected to be below the maximum subcritical pressure conditions used in the 98 

hydrothermal treatments,  100 atm. Nevertheless, the studies described here have practical 99 
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interest firstly because the hydrothermal conditions of high pressure and temperature are used to  100 

measure in reasonable times the reactions, many studies have been carried out by simulating the 101 

deep geological disposal at temperatures up to 350 °C to increase the reaction rate [1, 14, 27]. 102 

Besides, experiments will be of particular interest for DBD repositories were higher temperatures 103 

and pressures are expected [6, 7, 28]. 104 

The aims of this work are, i) to quantify the retention of uranium and zirconium by FEBEX 105 

bentonite, i.e., reaction velocities, retention levels, dependence with temperature, etc, ii) to 106 

characterise the chemical reaction of uranium and zirconium with bentonites; and finally; iii) to 107 

estimate the role of steel in the retention of uranium, and its competition with the bentonites. 108 

 109 

2. Materials and methods 110 

2.1. Bentonite. 111 

The FEBEX bentonite was extracted from the Cortijo de Archidona deposit (Almería, Spain). 112 

The processing at the factory consisted of disaggregation and gently grinding, drying at 60 °C and 113 

sieving by 5mm [29, 30]. The montmorillonite content of the FEBEX bentonite was above 90% 114 

(92±3%) [31]. The main characteristics of FEBEX bentonite are the following: 115 

(Ca0.5Na0.08K0.11)(Si7.78Al0.22)(Al2.78FeIII
0.33FeII

0.02Mg0.81)O20(OH)4 is the structural formula, total 116 

charge/u.c. is 1.19 and the theoretical cation exchange capacity (CEC) value, deduced from the 117 

molecular formula, is 158.2 meq/g [32]. 118 

 119 

2.2. U and Zr solutions 120 

Two sets of reaction solutions were prepared. In order to make the structural characterisation 121 

of the sample after the hydrothermal reactions, a first set was prepared containing only the 122 

tetravalent actinide simulator ZrO2+ [33]. 1.382 g of ZrO(NO3)2·7H2O, were used to get 3.09 123 

mmol ZrO2+, that were dissolved in 40 ml distillate water. 124 
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A second set was prepared using 0.016 mmol 238U and completed with 1.103 g of 125 

ZrO(NO3)2.7H2O (Sigma-Aldrich). The stable analogous, ZrO2+, was added to the uranium to 126 

obtain higher concentrations of U-ZrO2+. 3.09 mmol (*) were dissolved in 40 ml distillate water. 127 

238U was obtained from solid 6-hydrated uranyl nitrate, UO2(NO3)2·6H2O (Panreac). Initial 128 

activity of the prepared solution was approximately 50 Bq. Since uranium is radioactive, it is 129 

possible to directly quantify the reaction measuring the uranium activity before and after the 130 

hydrothermal treatment. 131 

 132 

2.3. Hydrothermal treatments 133 

Three hundred milligrams of powdered sample (FEBEX bentonite) and 40 ml of the solution 134 

with Zr or Zr-U were transferred into an 71 ml stainless steel T316SS hydrothermal reactor [34]  135 

and heated under autogenous pressure. Reaction products were collected by filtration using 0.45 136 

m Milipore filters and air-dried at 60ºC.   137 

In the DGR bentonite surrounds the steel and not the opposite; however, these experiments 138 

cannot be designed accordingly, given that the conditions of temperature and pressure needed for 139 

an hydrothermal treatment are actually attained when the bentonite is placed inside a sealed steel 140 

reactor that is placed in a stove.  141 

Temperatures, vapour pressure and reaction times are summarized in Table 1.  142 

 143 

2.4. Structural characterization methods.  144 

The analysis of the hydration state of the interlayer space after the treatments and the detection 145 

of new crystalline phases were undertaken using X-ray diffraction (XRD) and a semiquantitative 146 

standard method (Δ2θ=3-70º; step=0.015º; t=0.1s; tube conditions: 40 kV y 30 mA; divergence 147 

                                                 
* ZrO2+ is added to these set of experiments, and uranyl is not exclusively used, to get a concentration of reagents of the order of mmols. This will 
maintain the concentrations of the cations similar to the ones of the first set, were only Zr was used.  Furthermore, this way uranium concentrations 
are kept below the legal limits of uranium for scientific purposes 
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slit: fixed 0.5º; sample with spin = 30 rpm; using nickel filter). A D8I powder diffractometer, 148 

located at Centro de Investigación, Tecnología e Innovación Universidad de Sevilla, CITIUS was 149 

used (θ:θ, Bruker, D8 Advance A25 model, Cu anticathode, incidence slits variable or fixed, soller 150 

slits, Ni filter in the diffracted beam, linear detector). 151 

29Si MAS-NMR spectra were recorded in a Bruker DRX 400 spectrometer with a 152 

multinuclear probe. Solid samples were packed in 4 mm zircon rotors and were spun under the 153 

magical angle to a frequency of 10 kHz. The spectra were registered at 79.49 MHz, 2.66 μs 154 

(π/2=7.98 μs) of pulse length and 3s of delay time. The values of chemical shift were expressed in 155 

ppm, using tetramethylsilinate as external reference. Spectra were simulated using the DMFIT 156 

software [35] assuming infinite spinning speed. A Gaussian-Lorentzian model was used for all the 157 

peaks, and fitted parameters were: amplitude, position, linewidth and Gaussian-Lorenztian ratios. 158 

 159 

2.5. Radioactive measurements 160 

A Canberra hyper-pure germanium gamma detector (HPGe), from Radioisotope Service at 161 

CITIUS, was used to measure natural 235U activity in the sample, from which 238U activity was 162 

calculated. Counting efficiency was experimentally determined using 235U spiked standards so 163 

natural uranyl was added to the two standards of the geometries used: a 0.45 m Millipore filter 164 

and a 100 ml cylindrical beaker. Efficiency was verified for both geometries through Montecarlo 165 

simulations using LABSOCS program [36]. 166 

A calibration fitting (Figure 1) using diluted uranium standards is applied to calculate 238U 167 

concentration in the sample from the 235U gamma measurement. Measured 235U cps were linearly 168 

related to 238U concentration in the sample. 169 

 170 

3. Results and discussion 171 

3.1. Structural characterization  172 
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The study of the evolution of the crystalline phases after the hydrothermal treatment with 173 

ZrO2+ was carried out by XRD (Figure 2). The difractogram of the initial FEBEX is in agreement 174 

with a montmorillonite with hydrated cations Na+ and Ca2+ in the interlayer space [37].  175 

The XRD after the hydrothermal treatment at 150 ºC for 14 days, Figure 2a, caused a weak 176 

reflection of the FEBEX bentonite and an increase of the background due to the lamellar structure 177 

breakdown and the formation of amorphous phases. After 28 days, those weak FEBEX reflections 178 

still remained but new zirconium crystalline phases were formed. Among ZrO2, a phase 179 

containing zirconium and silicate, ZrSiO4, was observed, which implies a chemical reaction 180 

between ZrO2+ and FEBEX framework. 181 

The FEBEX damage increased with temperature and reaction time, and after the treatment at 182 

300 ºC for 2 days no FEBEX reflections were observed (Figure 2c). This might be due to the 183 

chemical reaction of ZrO2+ with the FEBEX bentonite and to the low pH values reached in the 184 

treatments (pH=1.0-1.5). At T> 150 ºC. Secondary phases were generated from the destruction of 185 

the bentonite, i.e. kaolinite, bayerite and (Ca,Fe,Mg)SiO3 and from the steel reactor corrosion, 186 

Fe2O3. With the increase of temperature the number of phases containing Zr increased and the 187 

number of secondary phases decreased. 188 

The quantification of siliceous species in the hydrothermal treatment was performed through 189 

29Si MAS NMR, i.e. Figure 3 shows the spectra of the hydrothermal treatment at 300 ºC. For 190 

lower temperatures spectra are qualitatively similar and the only differences are in the 191 

quantification. 192 

The initial spectra of the sample showed a peak at -93.6 ppm due to Q3(0Al) environment 193 

associated to montmorillonite [38]. After the hydrothermal treatment at 300 ºC, this signal 194 

decreased abruptly and ever more significantly with the reaction time. New signals are detected at 195 

-91.2 ppm, due to kaolinite [39], at -81.0 ppm , due to ZrSiO4 [40], and at -108 ppm, due to 196 
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Q4(0Al) of tridimite [41]. The amount of Si associated to those environments depends on both 197 

temperature and reaction time and were in good agreement with the XRD results. 198 

The 29Si MAS NMR spectra were deconvoluted and the percentage of Si environment of 199 

FEBEX (original sample), Kaolinite (secondary phase from FEBEX breakdown) and ZrSiO4 200 

(phase originated by chemical reaction between ZrO2+ and FEBEX) were analysed as a function of 201 

temperature, Figure 4a, and time reaction, Figure 4b. 202 

Figure 4a displays the evolution of the phases with temperature at the maximum time reaction. 203 

An increase of temperature causes a decrease on the Si signal intensity associated to a decrease in 204 

FEBEX content (phyllosilicate 2:1) and an increase of the Si signal intensity of kaolinite 205 

(phyllosilicate 1:1). However, the intensity of the Si signal of ZrSiO4 remains almost constant, 206 

18%. Time effect is shown in Figure 4b and follows a similar trend. A progressive decrease of 207 

FEBEX and an increase of kaolinite were observed as reaction time increases. The ZrSiO4 phase 208 

remained also constant, ca. 18%, except for 5 days reaction time, where the phase decreased to ca. 209 

10%. The lowest pH in the final solution (pH=1.2) was obtained at 300 ºC after five days reaction 210 

time.  211 

The structural analysis has demonstrated that the hydrothermal treatment not only caused the 212 

adsorption of ZrO2+ by FEBEX, but also two other mechanisms, the crystallization of ZrO2 and 213 

the chemical interaction with the bentonite, were involved. At the lowest temperature, 150 ºC, the 214 

kinetic of reaction allowed to detect that before the formation of ZrSiO4, the lamellar structure was 215 

broken-down and a reconstructive mechanism was followed. 216 

 217 

3.2. Quantification of the reactivity of bentonite with UO2
2+ 218 

The structural analysis showed the existence of a chemical reaction with the clay mineral that 219 

includes the formation of new stable and insoluble phases of zirconium silicates. To quantify the 220 
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immobilisation, instead of using uniquely zirconium, as the trivalent stable element analogous to 221 

uranium, uranium was added to zirconium in the hydrothermal treatment (see section 2).  222 

Hydrothermal treatments at 300 ºC, 200 ºC and 100 ºC were performed as described in the 223 

methods section. The percentages of immobilised uranium measured after the treatments are 224 

shown in Table 2.  225 

El Mrabet et al.  [24, 25] observed that part of the initial zirconium was retained on the walls of 226 

steel reactors, as it reacts with bentonite, and both reaction mechanisms compete. For this reason, 227 

the percentage of retention by FEBEX bentonite had to be calculated considering that part of the 228 

uranium reacted with the steel. This percentage was calculated as uranium measured in the filter to 229 

total uranium; and total uranium was obtained as the uranium measured after the hydrothermal 230 

reaction in both filter and solution.  This way, this percentage corresponds exclusively to the 231 

uranium immobilised in the solid phase, not in the steel, either due to adsorption onto the 232 

bentonite, precipitation or due to the formation of a new phase (silicates or oxides).  233 

The general trend within uncertainties was an increase of the retention of uranium with 234 

temperature and time. This behavior was already reported for europium retention and several clay 235 

minerals (saponite, FEBEX and MX-80) [11, 15]. 236 

A second parameter to study was the amount of UO2
2+ - ZrO2+ retained by the bentonite; for 237 

that, the miliequivalents (meq) of UO2
2+ - ZrO2+ /100g bentonite were calculated and are shown in 238 

Figure 5. Meq were evaluated using the percentage of uranium retained by the bentonite and using 239 

a factor of conversion to correlate this percentage to the miliequivalents of uranium and zirconium 240 

per 100 g bentonite. Figure 5 shows the calculated milliequivalents versus reaction time, together 241 

with the amount of uranium necessary to satisfy the cation exchange capacity (CEC) of FEBEX 242 

bentonite (pointed line). 243 

Cation Exchange capacity (CEC) for FEBEX bentonite is 158.8 meq/100 g. For hydrothermal 244 

treatments of two days (t=2 days) and per 100 g of bentonite, only at 300 ºC the UO2
2+ - ZrO2+ 245 
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immobilised milliequivalents were over CEC, 700 ± 40. For reaction times longer than two days, 246 

the UO2
2+ - ZrO2+ immobilised milliequivalents were over CEC at 300ºC, 200 ºC and 100 ºC. The 247 

highest amount of milliequivalents retained by 100 g of  bentonite were found at 300ºC for 26 248 

days, 1200 ± 70, and at 200ºC for 28 days 1150 ± 70. Milliequivalents of retained uranium were 249 

over CEC even for short hydrothermal treatments; this result emphasises that processes of 250 

formation of new phases, additional to the adsorption, did occur. In the previous section the 251 

structural study revealed that the insoluble and stable phases detected were silicates and oxides.  252 

The retained zirconium/uranium was directly compared to the CEC in order to quantify the 253 

immobilization ability of FEBEX due to chemical reaction. At 300 ºC the retention was 440-770% 254 

over CEC, but it decreased progressively with temperature, 0-730% at 200 ºC and 130-600% at 255 

100 ºC. These percentages point out that the retention over CEC was significant for almost every 256 

analysed time and temperature. 257 

Uranium-zircon immobilization ability was compared to that of europium from previous 258 

studies [11, 15]. The immobilization ability of FEBEX was considerably higher for uranium than 259 

for europium, since in the case of FEBEX the bentonite was only able to retain europium over 260 

CEC at 300 ºC and below 300 ºC the amount of retained europium was of the same order of CEC. 261 

Here, regardless the reaction time, at 100 ºC and higher temperatures, the mechanism of 262 

retention of uranium due to chemical reaction dominates over the immobilisation of the uranium 263 

through adsorption. This in an important conclusion in the study of the HLRW and SNF, because 264 

uranium is one of its major components and the formation of stable phases implies that the storage 265 

capacity of HLRW HLRW and SNF by the FEBEX bentonite might be higher than expected. 266 

Furthermore, our conclusions have direct impact in the study of DBD because they were obtained 267 

from hydrothermal experiments at subcritical pressure conditions (10 MPa), which are closer to 268 

the expected conditions in the DBD (200 ºC- 700 ºC and 40 - 150 MPa) [7]. 269 

 270 
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3.3. Reaction rate of UO2
2+-FEBEX bentonite interaction 271 

Figure 6 presents the amount of uranium dissolved in the water after treatments at 300 ºC, 200 272 

ºC and 100 ºC versus several reaction times. After the reaction, uranium was measured in the 273 

filtered bentonite (reacted) and in the remnant solution (dissolved). Total uranium involved in the 274 

reaction was obtained from the uranium in bentonite and solution (i.e. it was not considered the 275 

uranium reacted with steel). The percentage of unreacted uranium was calculated as the ratio 276 

uranium in the solution after the hydrothermal treatment to total uranium, calculated as described 277 

in section 3.2. 278 

 Roughly, the percentage of unreacted uranium decreased with temperature. The results were 279 

fitted to a decreasing exponential function with time (first order reaction) with good regression 280 

coefficients (Table 3). The exponent of the fitting provided the value of the reaction rate 281 

coefficient, k, following 282 

                                                                        (1) 283 

Where I is the percentage of unreacted uranium after the hydrothermal treatment and I0 is the 284 

initial uranium in the solution (100%). The values obtained from exponential fitting are displayed 285 

in Table 3 The half-life of the duration of the reaction, T1/2, was deducted from k as 286 

 ⁄                                                                    (2) 287 

k value is the same order of magnitude for 300 ºC (k = 14·10-3 days-1) and 200 ºC (k = 27·10-3 288 

days-1) and their values are very close according to their uncertainties. To analyse the kinetic of 289 

reaction at 100 ºC longer reaction times are needed to obtain a good precision for the reaction 290 

constant. For a hydrothermal treatment of two months, the associated uncertainty for k and its 291 

regression coefficient were unsatisfactory (Table 3). Thus, at 100 ºC the reaction constant could 292 

only be obtained in order of magnitude (k  2·10-3 days-1). 293 
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The value of the reaction constant, k, seems to be temperature dependent. Results from Table 3 294 

provided evidences of a change in the reaction rate with temperature. Thus, for temperatures 295 

ranged between 300-200 ºC, corresponding half-live times had a mean value of ca. 1 month. 296 

However, the half-life is, in order of magnitude, longer than one year for 100 ºC. That means that 297 

at 200-300 ºC, the uranium could be completely removed from the solution in six months, when 5 298 

times the half-lives are completed; but six years would be needed for the total removal of uranium 299 

with FEBEX at 100 ºC. It is remarkable that both periods of time are not significant in comparison 300 

to the half-life of the uranium isotope (4.47 109 years). 301 

The kinetic study of the reaction of europium with saponite, FEBEX and MX-80 showed a 302 

similar behaviour [15]. For T ≥ 200 ºC the time needed to remove completely the europium was 303 

always lower than one year (k  10·10-3 days-1) for all the studied clay minerals. On the contrary, 304 

for T< 200 ºC, several years were required (k  10-3 days-1).  305 

k obtained for saponite, FEBEX and MX-80 in europium and uranium for any temperature is 306 

always between 10-2 and 10-3 days-1 [15].  307 

It is worth mentioning that the kinetic at 200 ºC is especially fast, as the reaction constant k 308 

was higher at 200 ºC (k  3·10-2 days-1) than at 300 ºC (k  10-2 days-1). Besides, at 28 days the 309 

same amount of uranium reacted at 200 ºC and at 300ºC.   310 

 311 

3.4.  Reaction of Uranium with the steel 312 

The immobilisation of uranium with steel was also analysed and the results are plotted on 313 

Figure 7. This figure shows the ratio of uranium immobilised by the steel reactor to the spiked 314 

uranium. The uranium immobilised by the steel was calculated subtracting the uranium measured 315 

in filter and solution to spiked uranium. The retention by the steel depends on temperature and, as 316 

for the bentonite, uranium retention by steel presents a singularity at 200 ºC. At 200 ºC, a strong 317 
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linear dependence (R2 =0.93) with the reaction time is observed and the amount of immobilised 318 

uranium by the steel increases from 40%, at the beginning of the treatment, up to 70%. However, 319 

at 300 ºC and 100 ºC the uranium retention by steel is lower and remains constant: 30% and 15% 320 

of uranium is sorbed at 300 ºC and 100 ºC, respectively. The results are compatible with previous 321 

ones for Eu3+, Sm3+ and ZrO2+ [11, 24, 25]. 322 

After a first hydrothermal treatment, an unwashed steel reactor was reused for a new 323 

hydrothermal treatment using 40 ml water and 0.3 g of FEBEX, at 300 ºC for seven days, with the 324 

purpose of evaluating the reversibility of the immobilisation of uranium by the steel. Final 325 

precipitate was filtered and no uranium traces were measured in filter and remnant solution. The 326 

uranium concentration in solid and liquid fraction after the desorption treatment was below the 327 

limit of detection and, therefore, the retention of uranium by steel does not seem to be reversible at 328 

subcritical conditions and neutral pH. 329 

It is worth reminding that the reaction uranium-steel steel depends on many other parameters, 330 

such us the uranium concentration, the total amount of uranium, solid-to-liquid (clay-water) 331 

ratio… All this suggests that further studies should be performed to further constraint the 332 

mechanisms of this reaction. 333 

 334 

4. Summary and conclusions 335 

The structural analysis has demonstrated that the hydrothermal treatment not only provoke the 336 

adsorption of ZrO2
+ (chemical analogous of uranium) by FEBEX, but also two other mechanisms, 337 

the crystallization of oxide and the chemical interaction with the bentonite, were involved. At 338 

150ºC it was detected that before the formation of ZrSiO4, the lamellar structure was broken-down 339 

and followed a reconstructive mechanism. 340 

The kinetics of reaction uranium-clay minerals is a first-order reaction and exhibit Arrhenius 341 

dependence with temperature. Removal of uranium from solution by the bentonite at temperatures 342 
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over 200 ºC would be completed in less than a year. When the temperature diminished below 200 343 

ºC, several years would be needed for a complete removal. This reaction velocity was similar for 344 

europium and uranium. 345 

The UO2
2+ immobilised by the clay were temperature and time dependent and it also depended 346 

on the reacted elements. Furthermore, the immobilised amount of UO2
2+ was systematically over 347 

the cation exchange capacity of FEBEX at all explored temperatures (and increases to up 600-348 

700% for high reaction times).   349 

The results confirmed the presence of a new chemical phase to immobilise uranium and 350 

showed that in the reaction uranium-FEBEX under subcritical conditions, two mechanisms were 351 

involved: i) adsorption in specific and unspecific sites, and, ii) a chemical reaction with the clay 352 

mineral that includes the formation of a new stable and insoluble phase of mainly uranium 353 

silicates.  354 

Steel took active part in the sorption of uranium through irreversible adsorption of uranium in 355 

unspecific sites of the steel reactor. At 200ºC 40%-90% of the uranium reacted with steel. 356 

However, at 300 ºC and 100 ºC only a maximum of 30% of the uranium reacted with steel. 357 

These results have direct implications in our knowledge of the reaction mechanism of HLRW 358 

and SNF with the engineered barrier. The potential retention ability for one of the major 359 

radionuclides from the HLRW and SNF is higher than assuming exclusively adsorption by the 360 

clay minerals. In addition, the stability of the stored waste might be higher than expected, since 361 

uranium is immobilised by a new chemical phase, and not only by the clay minerals. The 362 

existence of a reaction with steel has important implications for the storage of HLRW when steel 363 

containers were used. Finally, this is of direct interest for very deep borehole disposals, DBD, 364 

were high temperatures (200 ºC- 700 ºC) and high pressures are expected (40-150 MPa). 365 
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Table 1. Temperatures and times used in the 

hydrothermal treatments with FEBEX and UO2
2+ and 

ZrO2+. Stripes correspond to solutions where no 

radioactive tracer was added.  

T  

(ºC) 

P[a] 

(b) 

 Time (days) 

2 5 7 14 26 28 63 84 

100 1.01         

150 4.76         

200 15.54         

300 85.90         

[a] The maximum pressure corresponds to the water vapor 

pressure at this temperature 

 
Table 2. 238U reacted with FEBEX bentonite (%) 
collected in the filter after the hydrothermal treatment at 
300 ºC, 200ºC and 100ºC. In the calculation of the 
percentage it has been excluded the amount of uranium 
reacted with the steel reacted. Uncertainties correspond 
to 1 sigma and were calculated by error propagation of 
the 238U counts per second detected by gamma 
spectrometry. Except for the 7 and 14 days treatments at 
300º, that corresponds to the standard deviation of the 
results from two replicates. 
 

Treatment 
time 

 (days) 

238U measured in bentonite (%) 

300 ºC 200 ºC 100 ºC 

2 29 ± 2 0   

5 42 ± 3 

7 39 ± 6 14 ± 1 9 ± 1 

14 51 ± 3 33 ± 2 

26 50 ± 3 

28   49 ± 3 9 ± 1 

63   35  ± 2 

84     40 ± 3 
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 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 

 489 

 490 

 491 

 492 

 
Table 3. Kinetic parameter of adsorption-reaction of 

uranium with FEBEX 
 

T 
 (ºC) 

k·10-3  
(days-1) 

T1/2  
(days) 

R2 

300 14 ± 4 50 ± 10 0.693 

200 28 ± 3 25 ± 2 0.9782

100 2 ± 2 418 ± 415 0.2302
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Fig. 1. Uranium concentration versus 235U counts per second (cps) measured through gamma 493 

spectrometry. Calibration has been performed for a) liquid solution after hydrothermal treatment 494 

b) filter containing solid phase after treatment.  495 

Fig. 2. XRD of FEBEX bentonite after hydrothermal treatment at a) 150 ºC, b) 200 ºC, and, c) 300 496 

ºC at different time reactions. *= Zircon, ZrSiO4, (PDF 00-06-0226), + = Baddeyerite, ZrO2 (PDF 497 

00-3-515), ^= Hematite, Fe2O3 (PDF 00-33-664), a=Bayerite, Al2O3·H2O (PDF 00-08-096), 498 

k=Kaolinite (PDF 00-01-527), and, s=(Ca,Fe,Mg)SiO3 (PDF 00-03-623). 499 

Fig. 3. 29Si MAS NMR of raw FEBEX and after the hydrothermal treatment at 300 ºC at different 500 

times. 501 

Fig. 4. 29Si MAS NMR environment evolution as a function of reaction conditions: a) 502 

temperature, and, b) time. 503 

Fig. 5. Milliequivalents of UO2
2+ and ZrO2+ per 100g immobilized by FEBEX bentonite. Pointed 504 

line corresponds to CEC (Cationic Exchange Capacity) of FEBEX, 158.2 meq/100g. Uncertainties 505 

correspond to 1 sigma and were calculated by error propagation of the counts per second detected 506 

by gamma spectrometry. Uncertainties of the 7 and 14 days treatments at 300 ºC, correspond to 507 

the standard deviation of the results from two replicates. 508 

Fig. 6. 238U (%) collected in the solution after the hydrothermal treatment (unreacted uranium) at 509 

300 ºC, 200 ºC and 100 ºC. In the calculation of the percentage it has been excluded the amount of 510 

uranium reacted with the steel reacted. Results have been fitted to an exponential function. 511 

Fig. 7. 238U reacted with steel (%) after the hydrothermal treatment at 300 ºC, 200 ºC and 100 ºC. 512 

The percentages of steel reacted uranium have been obtained subtracting uranium measured in 513 

solution and filter after the treatment to the total spiked uranium. Uncertainties correspond to 1 514 

sigma and were calculated by error propagation of the counts per second detected by gamma 515 

spectrometry. Uncertainties of the 7 and 14 days treatments at 300 ºC, correspond to the standard 516 

deviation of the results from two treatments. 517 


