
On the Modular Specification of Non-Functional
Properties in DSVLs

Javier Troya, Antonio Vallecillo, and Francisco Durán

GISUM/Atenea Research Group. Universidad de Málaga (Spain)

{javiertc,av,duran}@lcc.uma.es

Abstract. In previous work we have presented an approach to monitor non-

functional properties of systems modeled in terms of domain specific visual lan-

guages using observers. In this work we present an approach to decouple the defi-

nition of observers behavior and systems behavior. Having a library with different

kinds of observers behavior, and having the behavioral definition of the system,

weaving links can be established among them in order to include observers in the

system behavioral specification.

Key words: DSVLs, weaving mechanisms, observers

1 Introduction

Domain specific visual languages (DSVLs) play a cornerstone role in Model-Driven

Engineering (MDE) for representing models and metamodels. The benefits of using

DSVLs is that they provide an intuitive notation, closer to the language of the domain

expert, and at the right level of abstraction. The Software Engineering community’s

efforts have been progressively evolving from the specification of the structural aspects

of a system to modeling its behavioral dynamics. Thus, several proposals already exist

for modeling the structure and behavior of a system. Some of these proposals also come

with supporting environments for animating or executing the specifications, based on

the transformations of the models into other models that can be executed [1, 2].

In previous work [3] we proposed our own approach to monitor non-functional

properties of DSVLs. The idea is to integrate new objects, named observers, in the

system specifications that capture such properties. Our proposal is based on the obser-

vation of the execution of the system actions and of the state of its constituent objects

in the case of DSVLs that specify behavior in terms of rules. The use of observer ob-

jects enables the analysis of some of the properties usually pursued by simulation, like

cycle-times, busy and idle cycles, mean-time between failures, throughput, delay, etc.

The OMG, in turn, defines different kinds of observers in the MARTE specification [4],

which are similar to ours. However, they cannot be used to describe requirements and

constraints on models, as we do. Furthermore, we can use our observers to dynami-

cally change the system behavior, in contrast with the more “static” nature of MARTE

observers.

In our approach, users define their own observers, according to the non-functional

properties they want to monitor. Then, these observers are to be included in the behav-

ioral rules of systems. The resulting rules are difficult to maintain, since the observers

A. Ruíz, L. Iribarne (Eds.): JISBD’2012, pp. 431-436, ISBN:978-84-15487-28-9. 
Jornadas SISTEDES’2012, Almería 17-19 sept. 2012, Universidad de Almería.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157758172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(a) Metamodel. (b) Behavioral Rule.

Fig. 1. Production Line System

and systems specifications are mixed. In this paper we propose an approach to decouple

the process of integrating observers in the systems specification. Having a library where

different kinds of observers generic behaviors are available, the idea is to weave these

behaviors with the systems behavioral rules. In this sense, our approach may seem sim-

ilar to the Software Metrics Meta-model (SMM) [5] defined by the OMG, a metamodel

for representing measurement information related to software, its operation and design.

However, our approach is more flexible since new metamodels and metrics to monitor

non-functional properties can be defined by the modeler. Furthermore, we give seman-

tics for defining the dynamic behavior of systems and their non-functional properties.

After this introduction, Section 2 briefly describes our current approach for monitor-

ing non-functional properties of systems. Then, in Section 3 we present our ideas for a

modular specification of observers. Finally, Section 4 concludes the paper and outlines

how we would like to continue this work.

2 Monitoring Non-Functional Properties of Systems using
Observers

In this section we briefly describe our current approach for the specification and moni-

toring of non-functional properties of systems in e-Motions [6].

The first step is to define our DSVL. DSVLs are defined in terms of three main el-

ements: abstract syntax, concrete syntax and semantics. The abstract syntax defines the

domain concepts that the language is able to represent, and is defined by a metamodel.

The concrete syntax defines the notation of the language, and in e-Motions it is defined

by assigning an icon to each concept in the metamodel. The semantics describe the

meaning of the models represented in the language, and in case of models of dynamic

systems (such as ours) the semantics of a model describe the effects of executing that

model. In our case, semantics are specified by a set of behavioral rules. Snapshots of a

part of a metamodel and a behavioral rule for a particular example of a production line

system are shown in Figure 1. Regarding the metamodel, Machines generate and as-

semble Parts and Containers either transport or keep these Parts. The rule models how

432 Javier Troya y Antonio Vallecillo



(a) Observers Metamodel. (b) Behavioral Rule with Ob-

servers.

Fig. 2. Observers for the Production Line System

a Hammer that is placed in a LimitedContainer is collected by a User. The complete

description of this case study is presented in [7].

Once the system behavior has been specified, it is time to add observers to the rules.

The first step is to identify which non-functional properties the user wants to moni-

tor: throughput, mean-time between failures, delays, response times, etc. Observers are

specified by means of a metamodel (an observers metamodel for the production line

system is shown in Figure 2(a)), which is then combined with the system metamodel to

be able to use the observers in the DSVL. In the observers metamodel it can be seen that

we define observers of two types: Individual and General. The former are those which

are attached to individual objects to monitor their state and/or behavior, while the latter

monitor individual observers, as well as the remaining objects in the system, to build

derived measures for the non-functional properties we want to monitor. The next step is

to include observers in the behavioral rules in order to monitor non-functional proper-

ties of our DSVL. The observer added in Figure 2(b) is meant to monitor the throughput

of the production line. Concretely, in this rule the observer updates its collected attribute

everytime a new Hammer is collected by the User. The specifications of systems with

observers are then translated into the corresponding formal specifications in Maude [8].

In fact, since the Maude rewriting logic specifications are executable, they can be used

as a prototype of the system, which allows us to simulate and analyze it. After the sim-

ulation, observers contain information about how the system behaved in terms of its

non-functional properties.

In our current approach, the addition of observers may require to change the ex-

isting behavioral models to a large extent, rendering in some cases a fairly complex,

difficult to understand and potentially hard to maintain system models. This is because

the addition of observers in the behavioral rules depends directly on the type of system

we are dealing with. In this way, different kinds of observers must be defined for each

system. Next section presents an approach to overcome these limitations.

On the Modular Specification of Non-Functional Properties in DSVLs. (Emergente) 433



3 A Modular Approach for the Specification of Observers

In this section we propose the use of aspect-oriented techniques, whereby a modular

specification of the behavior of observers is provided, and then woven with the system

behavioral rules. Although this approach limits the flexibility required for observers in

some situations, it can be used for the majority of properties. It also provides a modular

approach to the specification and monitoring of individual properties, for which ob-

servers can be independently defined and reused across system specifications. Thus, the

idea is to define a library with different observers behavior, which can then be reused

by concrete systems to incorporate observers within their behavior specifications. This

way, observers metamodel and rules are defined only once and used with different kinds

of systems.

Our approach is based on standard software measurement approaches, which define

base and derived measures [9]. The former allow measuring individual object attributes,

while the latter build on the values of base measures to define aggregated metrics. Sim-

ilarly, we have our individual and general observers. Although of different nature, both

kinds of observers can be specified using a similar approach. Their behavior, once spec-

ified, can be woven to the functional behavior of a system to produce the complete

system specifications. Thus, the behavior of observers follows a regular pattern, that

corresponds to their life-cycle: creation, monitoring and termination. Rules are defined

for each of these phases. Due to the space limitation, in this paper we describe the

generic behavior for general observers. The generic definition of the behavior of all the

observers shown in Figure 2(a) can be found at [10].

3.1 Generic Behavior of General Observers

The behavior of general observers is normally determined by four of rules. We show

them here in general, and then these rules are specialized when defining the behavior of

a concrete kind of observer (the behavior of all the observers of the production line sys-

tem example can be found in [10]). The first rule (GeneralBirth, shown in Figure 3(a))

specifies the creation of a general observer. Since they are created at start time, this

rule is normally woven to the initial rule of the system. Two rules specify how global

observers update their state variables, depending on whether they do it when an object

disappears from the system, or when the object participates in a rule. Thus, generic

rule RecordLeave (Fig. 3(b)) shows how a counter attribute is updated when an ob-

ject leaves the system. Similarly, rule RecordEvent (Fig. 3(c)) models the behavior of a

global observer that records that an object has participated in a rule. Some attributes of

some general observers need to be updated as time moves forward. Such a behavior is

modeled with ongoing rules, whose generic form is shown in Fig. 3(d).

3.2 Weaving the Rules

Once we have the rules that specify the observers behavior independently from any

concrete system specification, we need to weave them with the system rules. For that

we use a weaving model that uses the AtlanMod Model Weaver (AWM1) to define the

1 http://wiki.eclipse.org/AMW

434 Javier Troya y Antonio Vallecillo



(a) GeneralBirth Rule (b) RecordLeave Rule

(c) RecordEvent Rule (d) ContinuousUpdate Rule

Fig. 3. Generic rules for general observers.

correspondences between the generic objects in the observers rules and the concrete

objects that appear in the system behavioral rules. In this case, the object in the generic

rule and the one in the concrete rule that match will be woven, and the remaining ele-

ments in the generic rule will be copied to the concrete one. It is also possible to define

a correspondence between one observer rule and one system rule. In this case, all the

elements from the observer rule will be copied to the system rule. When defining the

weaving links between the observers and the system rules it is possible to add expres-

sions that overwrite how the values of the attributes are calculated in the observer rule.

In this way we allow some kind of rule parametrization. Finally, it is possible (and very

common) to establish correspondences between several observers rules and one system

rule, when we want to add more than one kind of observer to a rule. Only one final rule

is produced with the results of all weaves. To illustrate this approach, let us apply it

to the production line system example. Starting from the behavioral rules without ob-

servers and assuming that we have defined the rules for the observers, in Figure 4 we

present the matching for inserting the general ThroughPutOb observer in the Collect be-

havioral rule from Figure 1(b). The weaving link is defined between the Hammer object

in the Collect rule of the system and the generic object in the RecordLeaveTP rule. The

effect of this binding is to include the ThroughPutOb observer in both the LHS and RHS

of the Collect rule, creating the rule shown in Fig. 2(b). Note that the expression used

to calculate the value of the collected attribute in the RHS of the observer rule has been

overwritten by a new expression (this is indicated in the figure inside the box between

the two woven rules).

On the Modular Specification of Non-Functional Properties in DSVLs. (Emergente) 435



Fig. 4. Weaving the RecordLeaveTP and Collect rules.

4 Conclusions and Future Work

We have described our current approach to specify and monitor non-functional proper-

ties of DSVLs. We have also presented how we want to extend that approach in order

to include observers in the systems behavioral rules in a decoupled and modular way.

The idea is to have a library with the behavior of different kinds of observers, and then

apply weaves between these rules and the systems rules. Our plan for future work is to

continue the study of this approach in order to completely implement it.

References

1. Efroni, S., Harel, D., Cohen, I.R.: Reactive animation: Realistic modeling of complex dy-

namic systems. Computer 38(1) (2005) 38–47

2. Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-animation model and rule transfor-

mations. ENTCS 213(1) (2008) 55–74

3. Troya, J., Rivera, J.E., Vallecillo, A.: Simulating domain specific visual models by obser-

vation. In: Proc. of the Symposium on Theory of Modeling and Simulation (DEVS’10),

Orlando, FL (US) (2010)

4. OMG: A UML Profile for MARTE: Modeling and Analyzing Real-Time and Embedded

Systems. OMG. (2008)

5. OMG: Software Metrics Meta-Model (SMM). OMG. (2009)

6. Rivera, J.E., Durán, F., Vallecillo, A.: A graphical approach for modeling time-dependent

behavior of DSLs. In: Proc. of VL/HCC’09, Corvallis, Oregon (US) (2009)

7. Atenea: Non-functional monitoring in the PLS case study (2011) http://atenea.lcc.
uma.es/index.php/Main_Page/Resources/E-motions/PLSObExample.

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı́-Oliet, N., Meseguer, J., Talcott, C.: All

About Maude – A High-Performance Logical Framework. Number 4350. Springer, Heidel-

berg, Germany (2007)

9. Garcı́a, F., Bertoa, M.F., Calero, C., Vallecillo, A., Ruı́z, F., Piattini, M., Genero, M.: Towards

a consistent terminology for software measurement. Information and Software Technology

48(8) (2006) 631–644

10. Atenea: Modular Approach in the PLS case study (2012) http://atenea.lcc.uma.
es/index.php/Main_Page/Resources/E-motions/PLSObModExample.

436 Javier Troya y Antonio Vallecillo




