
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla
Generating non-conspiratorial executions

D. Ruiz a, R. Corchuelo a,∗, J.L. Arjona b

a Dep. de Lenguajes y Sistemas Informáticos, Universidad de Sevilla, ETSI Informática, Avda. Reina Mercedes, s/n, Sevilla 41012, Spain
b Dep. de Tecnologías de la Información, Universidad de Huelva, Pabellón Torreumbría, Ctra. Huelva-La Rábida, Huelva 21071, Spain

Abstract

Avoiding conspiratorial executions is useful for debugging, model checking or refinement, and helps implement several well-
known problems in faulty environments; furthermore, avoiding non-equivalence robust executions prevents conflicting
observations in a distributed setting from occurring. Our results prove that scheduling pairs of states and transitions in a strongly
fair manner suf-fices to prevent conspiratorial executions; we then establish a formal connection between conspiracies and
equivalence robustness; finally, we present a transformation scheme to implement our results and show how to build them into a
well-known distributed scheduler. Previous results were applicable to a subset of systems only, just attempted to characterise
potential conspiracies, or were tightly bound up with a particular interaction model.

Keywords: Distributed systems; Concurrency; Conspiracies; Equivalence robustness;
Fairness
1. Introduction

Conspiracies and equivalence robustness are well
known topics in the concurrency literature [4,5,11]: an
execution of a transition system is conspiratorial iff
there is a state that is visited finitely many times despite
it is reachable infinitely many times; it is equivalence ro-
bust if given a fairness assumption according to which
it is fair, then no execution that is equivalent to it up to
the order in which the transitions are executed may be
unfair.

✩ The work reported in this article was supported by the Spanish
Interministerial Commission on Science and Technology under grant
TIC2003-02737-C02.

* Corresponding author.
E-mail addresses: druiz@us.es (D. Ruiz), corchu@us.es

(R. Corchuelo), jose.arjona@diesia.uhu.es (J.L. Arjona).
Avoiding conspiratorial executions is obviously ap-
pealing for debugging or model checking purposes, but
there are also intricate connections with refinement ro-
bustness and fault tolerance. Refining a transition sys-
tem consists in decomposing some transitions so that
the system is represented at a lower level of abstrac-
tion [3,7], and it is well known that conspiracies may
prevent important liveness properties to be preserved
after refinement [2,11,17]. For instance, strong fair-
ness suffices to prove that no philosopher in the sys-
tem in Fig. 1(a) may starve, but it is not enough for
the refined system in Fig. 1(b) since an execution with
trace ini1(ini3end1ini1end3)

ω is strongly fair but the
second and the fourth philosophers starve. Regarding
fault tolerance, it has been recently proved that the din-
ing philosophers, the consensus, or the committee co-

https://core.ac.uk/display/157758106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1. (a) A four-philosopher system in which each eat transition co-ordinates a philosopher with its two neighbouring forks. (b) A refined system
in which the ini and end transitions represent the start and finish of the corresponding eat actions. (c) Part of a concurrent execution with conflicting
observations.
ordination problems may be implemented in a faulty
environment if conspiracies are avoided [18].

If a transition system is used to model a distributed
system, then its executions are called observations since
they implicitly reflect the point of view of a process that
perceives the actual concurrent executions through the
messages it gets from the others. In this context, equiv-
alence robustness is desirable to avoid conflicting ob-
servations of the same actual concurrent execution [2,5,
10,11]. For instance, assume that the system described
in Fig. 1(b) is implemented so that each philosopher is
an independent process that broadcasts the transitions it
executes to the others; Fig. 1(c) depicts an excerpt of an
execution in which the first and the third philosophers
observe the trace ini1(ini3end1ini1end3)

ω , which corre-
sponds to a fair execution of the transition system; how-
ever, the second and the fourth philosophers observe the
trace ini1(ini3end1end3ini1)ω , which is equivalent to the
previous one but corresponds to an unfair execution of
the transition system. Apart from its practical interest to
avoid conflicting observations, equivalence robustness
is also desirable for systems in which several fairness
notions need to be combined [2,5] and a strong require-
ment for a fairness notion to be implementable by means
of wait-free schedulers [9].

On account of the previous results, several authors
have worked on schedulers to prevent conspiracies, viz.:
Attie, Francez, and Grumberg proposed a scheduler that
prevents conspiracies that are due to race conditions in
a subset of systems written in IP that are known as con-
spiracy resistant [1,6], i.e., systems in which disabling a
transition deliberately may not lead to deadlock; Völzer
got inspiration from an earlier proposal by Joung [8]
and designed a scheduler that does not require the sys-
tem under consideration to be conspiracy resistant [18];
Ruiz et al. characterised potential conspiracies and de-
signed a centralised scheduler that prevents conspiracies
at the cost of reducing concurrency if the number of
potentially conspiratorial situations detected exceeds a
predefined threshold [15,16]. Contrarily, other authors
have focused on devising fairness notions to charac-
terise and rule out (some) conspiracies, viz.: Best’s ∞-
fairness [4], Queille and Sifakis’s predicate reachabil-
ity fairness [14], and Attie, Francez, and Grumberg’s,
Lamport’s or Völzer’s hyperfairness notions [1,12,18].
Attie et al. also proved that preventing conspiracies in
conspiracy-resistant systems enforces equivalence ro-
bustness [1], and Joung worked on restricting and im-
plementing a fairness notion so that it precludes the
executions that are not equivalence robust [9,10]; re-
cently, Kurki-Suonio pointed out that it is a better idea
to introduce additional synchronisation so that a system
can regulate itself and prevent the executions with un-
fair equivalents from occurring [11], but this idea was
not developed further.

In this paper, we prove that scheduling pairs of states
and transitions in a strongly fair manner suffices to pre-
vent conspiracies in finite, functional transition systems;
in turn, this suffices to preserve equivalence robustness
if the system is connected. To the best of our knowl-
edge, these results are novel since the previous attempts
focused on trying to schedule transitions independently
from states [1,18] or just trying to characterise poten-
tially conspiratorial situations [15,16]. We also present
a transformation scheme to implement our results and
sketch how to build it into to a well-known scheduler [2]
for Action Systems [2,11] and Interacting Processes [6].
The transformation improves on Attie et al.’s scheduler
in that we do not require the original system to be con-
spiracy resistant or the conspiracies to be due to race
conditions, and it is not bounded up with the IP lan-
guage; it improves on Joung’s or Völzer’s results in that
we do not commit to a particular communication model,
which makes our solution more general; it improves on
Ruiz et al.’s previous results in that our scheme does not
rely on a heuristic to detect conspiracies, and it may be
implemented in a distributed manner.

2. Preliminaries

Definition 1 (Transition system). A transition system S

is a triple (Q,Q0, T) in which Q is a set of states,
Q0 ⊆ Q is a set of initial states, and T ⊆ 2Q×Q is
a set of transitions. For each state q and transition t ,
the set of t -successors of q is t (q) = {r ∈ Q | (q, r)

∈ t}. The domain of transition t is dom(t) = {q ∈ Q |
∃r ∈ Q · (q, r) ∈ t}; its image is img(t) = {r ∈ Q |
∃q ∈ Q · (q, r) ∈ t}. The set of outgoing transitions of
state q is out(q) = {t ∈ T | q ∈ dom(t)};1 the set of
incoming transitions is in(q) = {t ∈ T | q ∈ img(t)}.
State q is reachable from state p iff there is a finite
sequence of states 〈r0, r1, . . . , rn−1〉 ∈ Q∗ and a finite
sequence of transitions 〈u0, u1, . . . , un〉 ∈ T ∗ such that
r0 ∈ u0(p), r1 ∈ u1(r0), . . . , q ∈ un(rn−1). S is con-
nected iff for every (p, q) ∈ Q × Q, q is reachable
from p; S is finite iff Q is finite; S is functional iff
|t (q)| = 1 for every q ∈ Q and t ∈ out(q).

Definition 2 (Execution). Let S = (Q,Q0, T) be a tran-
sition system. λ is an execution of S iff it is an infi-
nite sequence of steps 〈(q0, t0), (q1, t1), (q2, t2), . . .〉 ∈
(Q × T)ω such that q0 ∈ Q0 and for every i ∈ N,
qi+1 ∈ ti (qi); Π(S) denotes the set of all possible ex-
ecutions of S. Given a step of the form (q, t) ∈ Q × T ,
we say that state q is visited, that transition t is exe-
cuted, that every transition in out(q) is enabled, and that
the transitions in out(q) \ {t} are discarded. The trace of
execution λ is the sequence of transitions 〈t0, t1, t2, . . .〉.

Definition 3 (Fairness). Let S = (Q,Q0, T) be a tran-
sition system and λ an execution in Π(S). λ is strongly
fair with respect to T (or simply fair) iff every transi-
tion that is enabled infinitely many times in λ is exe-
cuted infinitely many times. λ is strongly fair with re-
spect to Q × T iff for all q ∈ Q and t ∈ out(q), if q

is visited infinitely many times in λ, then step (q, t)

appears infinitely many times in λ. For instance, the exe-
cution 〈(q0, ini1), ((q1, ini3), (q5, end1), (q3, ini1), (q5,

end3))
ω〉 of Fig. 1(b) is fair with respect to T , but unfair

with respect to Q × T .

Definition 4 (Conspiracy). Let S be a transition system
(Q,Q0, T) and λ an execution in Π(S). λ is conspirato-
rial iff there is a state q ∈ Q such that there are infinitely
many steps of the form (p, t), with p 	= q , such that q

is reachable from p, but it is visited finitely many times

1 Henceforth, we assume that out(q) 	= ∅ for every q ∈ Q since sink
states may be removed by introducing a stuttering transition that maps
them onto themselves [12].
only. S is conspiratorial iff there is a conspiratorial exe-
cution in Π(S).

Definition 5 (Equivalence robustness). Let S be a tran-
sition system and λ1, λ2 ∈ Π(S) two executions. λ1
and λ2 are equivalent iff their traces are permutations
of each other. λ1 is equivalence robust iff it is fair and
for every λ3 ∈ Π(S) such that λ3 is equivalent to λ1,
then λ3 is fair. S is equivalence robust iff every execu-
tion in Π(S) is equivalence robust.

3. Supporting results

In this section, we first establish a relationship be-
tween strong fairness with respect to Q × T and con-
spiracies, cf. Theorem 1; we then establish a connection
between conspiracies and equivalence robustness in sys-
tems that are connected, cf. Theorem 2.

Theorem 1. Let S = (Q,Q0, T) be a finite, functional
transition system and λ ∈ Π(S) an execution that is
strongly fair with respect to Q × T . λ is then strongly
fair with respect to T and non-conspiratorial.

Proof. Assume that λ is strongly fair with respect to
Q × T , but unfair with respect to T . This implies that
there is a transition t ∈ T that is enabled infinitely may
times in λ, but it is executed finitely many times only.
Since S is finite, there must be a state q ∈ dom(t) that
is visited infinitely many times in λ, but this contra-
dicts the hypothesis that λ is strongly fair with respect
to Q × T since this implies that step (q, t) must appear
infinitely many times in λ.

Assume now that λ is strongly fair with respect to
Q × T , but conspiratorial. This implies that there must
be a state p ∈ Q that is visited infinitely many times in
λ and a state q ∈ Q that is visited finitely many times
despite it is reachable from p. Note that p must ex-
ist or, otherwise, S would not be finite. Without loss of
generality, we may assume that q is the “closest” state
to λ, i.e., there exists t ∈ out(p) such that q ∈ img(t).
Since S is functional, t (p) = {q}, which contradicts
the hypothesis that λ is strongly fair with respect to
Q × T since this implies that the subsequence of steps
〈(p, t), (q, v)〉, for some v ∈ out(q), must appear infi-
nitely many times in λ. �
Theorem 2. Let S = (Q,Q0, T) be a finite, functional
transition system and λ a fair execution in Π(S). If S is
connected and λ is not conspiratorial, then λ is equiva-
lence robust.

(q2, δ2) ∈ t ′(q1, δ1) ⇔ t̂ ′(q1) = {q2} (1)

∧ δ1(q1, t̂ ′) = min
t∈T

{
δ1(q1, t) | t ∈ out(q1)

}
(2)

∧ δ2(q1, t̂ ′) ∈ N (3)

∧ (∀t ∈ T \ {t̂ ′} · t ∈ out(q1) ⇒ δ2(q1, t) = δ1(q1, t) − 1
)

(4)

∧ (∀t ∈ T \ {t̂ ′} · t /∈ out(q1) ⇒ δ2(q1, t) = δ1(q1, t)
)

(5)

∧ (∀q ∈ Q \ {q1}, t ∈ T · δ2(q, t) = δ1(q, t)
)

(6)

Fig. 2. Transitions of our transformation.
Proof. Assume that λ1 ∈ Π(S) is fair and non-conspira-
torial, but there exists an equivalent execution λ2 ∈
Π(S) that is unfair. This means that there is at least
a transition t that is enabled infinitely many times in λ2

but executes finitely many times only. Let q ∈ dom(t)

be one of the states that enable t infinitely many times,
u ∈ in(q) one of the transitions by means of which q

is visited infinitely many times, and p ∈ dom(u) one of
the states in which u is executed infinitely many times,
i.e., there is a transition v ∈ out(q) such that the sub-
sequence of steps 〈(p,u), (q, v)〉 is repeated infinitely
many times in λ2. Note that p, q , and u must exist or
otherwise S would not be finite. If λ2 is equivalent to
λ1, it implies that u must be executed infinitely many
times in λ1, which in turn implies that there must exist
r, s ∈ Q, w ∈ out(s) such that the subsequence of steps
〈(r, u), (s,w)〉 is repeated infinitely many times in λ1.
If p = r , then q = s since S is functional, which implies
that t is discarded infinitely many times in λ1 and con-
tradicts the hypothesis that this execution is fair. This is
also the case when p 	= r but q = s. If p 	= r and q 	= s,
then q must be reachable from s since we assume that
S is connected; this in turn implies that q must be vis-
ited infinitely many times in λ1 since this execution is
not conspiratorial, but t is executed finitely many times,
which contradicts the hypothesis that this execution is
fair. �
4. Transformation scheme

In this section, we present a transformation scheme
that uses Olderog and Apt’s scheduling policy [13] to
build a scheduler for Q × T into a given transition sys-
tem, cf. Definitions 6 and 7, as well as Lemma 1; we
then prove that it is correct, cf. Lemma 2 and Theorem 3.

Definition 6 (Transformation scheme). Let S = (Q,Q0,

T) be a finite, functional transition system. We define
its transformation as a new transition system Δ(S) =
(Q′,Q′ , T ′), where:
0
1. Q′ = Q × (Q × T → Z), i.e., every state is aug-
mented with a map that associates a counter with
every transition in every state. Each counter is in-
terpreted as a priority so that the smaller it is, the
greater the priority it represents becomes.

2. Q′
0 = Q0 × (Q × T → N), i.e., the initial priorities

are arbitrary natural numbers.
3. There is a total bijective mapping between T ′ and

T that is denoted as ̂ and verifies the formula
in Fig. 2. That is, transition t ′ ∈ T ′ may transit from
(q1, δ1) to (q2, δ2) iff (1) t̂ ′ transits from q1 to q2,
(2) t̂ ′ has the maximum priority amongst the transi-
tions that are enabled in q1, (3) the priority of t̂ ′ in
q1 is reset to an arbitrary natural number in q2, (4)
the priorities of the transitions that have been dis-
carded in q1 are increased in q2, i.e., their counters
are decreased, and (5), (6) the remaining transitions
keep their priorities.

Definition 7 (Projections). Let S be a finite, functional
transition system (Q,Q0, T), and Δ(S) = (Q′,Q′

0, T
′)

its transformation. Given a state q ′ ∈ Q′ of the form
(q, δ), we define its kernel as q̂ ′ = q . If λ′ = 〈(q ′

0, t
′
0),

(q ′
1, t

′
1), (q

′
2, t

′
2), . . .〉 is an execution of Δ(S), then we

denote its projection on S as λ̂′ = 〈(q̂ ′
0, t̂

′
0), (q̂

′
1, t̂

′
1),

(q̂ ′
2, t̂

′
2), . . .〉.

Lemma 1. Let S = (Q,Q0, T) be a finite, functional
transition system. If λ′ ∈ Π(Δ(S)), then λ̂′ ∈ Π(S).

Proof. It follows from (1) since no transition may be
enabled in Δ(S) unless its counterpart is also enabled
in S. �
Lemma 2. Let S = (Q,Q0, T) be a finite, functional
transition system, and Δ(S) = (Q′,Q′

0, T
′) its transfor-

mation. For all (q, δ) ∈ Q′, if (q, δ) is reachable from
an initial state, then, for all t ∈ T , r ∈ Q, δ(r, t) �
−|T | + 1.

Proof. 2 Let λ′ = 〈(q ′
0, t

′
0), (q

′
1, t

′
1), (q

′
2, t

′
2), . . .〉 be an

execution of Δ(S) so that q ′
i = (qi, δi) for all i ∈ N; let

Ui(q, k) = {t ∈ T | δi(q, t) � −k} for all index i ∈ N,
state q ∈ Q, and natural number k ∈ [1, |T |]. Thus,
proving that there is not a reachable state in which a
counter is less than or equal to −|T | amounts to prov-
ing that |Ui(q, k)| � |T | − k for all i ∈ N, q ∈ Q, and
k ∈ [1, |T |] since this implies that |Ui(q, |T |)| = 0 if
k = |T |.

The proof follows by induction and reductio ad ab-
surdum: initially, δ0(q, t) � 0 for all q ∈ Q and t ∈ T ;
for the inductive step, we assume that there exists a
state q ∈ Q and a natural number k ∈ [1, |T |] such that
|Ui+1(q, k)| � |T | − k + 1 for some i ∈ N. By (6), it is
clear that such a state must be qi since it is the only state
in which a transition may change its priority. By (4)–(6),
we conclude that for all u ∈ Ui+1(qi, k), δi(qi, u) �
−k + 1; thus, |Ui+1(qi, k)| � |T | − k + 1 according to
the induction hypothesis, which, in turn, implies that
|Ui+1(qi, k)| = |T | − k + 1 according to the reductio
ad absurdum hypothesis. Furthermore, t̂ ′i ∈ Ui+1(qi, k)

according to (2), which implies that δi+1(qi, t̂
′
i) � 0 ac-

cording to (3). This is contradictory since δi+1(qi, t) �
−k for all t ∈ Ui+1(qi, k) according to the reductio ad
absurdum hypothesis. �
Theorem 3. Let S = (Q,Q0, T) be a finite, functional
transition system and Δ(S) = (Q′,Q′

0, T
′) its transfor-

mation. The executions in Π(Δ(S)) are strongly fair
with respect to Q × T .

Proof. Let λ′ be an execution in Π(Δ(S)) and assume
that there is a state q ′ ∈ Q′ and a transition t ′ ∈ out(q ′)
such that q ′ is visited infinitely many times, but the
step (q ′, t ′) appears finitely many times in λ. According
to (4), every time t ′ is discarded, the counter associ-
ated with t̂ ′ in state q̂ ′ decreases by one, thus increasing
its priority. If this situation is repeated infinitely many
times, then a state in which this counter might be an
arbitrarily small integer might be visited, which would
contradict Lemma 2. �
5. Conclusions

We have devised a transformation scheme for fi-
nite, functional transition systems that uses Olderog and
Apt’s policy to schedule pairs of states and transitions
in a strongly fair manner. We have proved that this re-
sults in a system that is not conspiratorial; if the original

2 We use the proof method in Ref. [13, Theorem 4.1].
system is connected, this in turn implies that the result
is equivalence robust, too. Furthermore, the scheme is
correct if the range of integers available includes the in-
terval [−|T | + 1,0], i.e., it is implementable with finite
counters.

Our result is useful to improve Back and Kurki-Suo-
nio’s shared-bus scheduler [2] for Actions Systems [11]
or Interacting Processes [6]. Roughly speaking, it works
as follows: when a process is ready to execute an ac-
tion, it broadcasts a willingness message to inform the
others; when a process concludes that it is safe to exe-
cute an action, it broadcasts a select message so that the
other processes involved in that action can execute it; if
more than one action may be executed, the process se-
lects one of them at random. The authors described a
protocol that ensures that only one process may broad-
cast a select message for a particular action occurrence,
but the details are irrelevant here. It is not difficult to
improve this scheduler so that it can avoid conspira-
cies: we require each process to be equipped with a copy
of the transition system they implement as transformed
by the scheme presented in Section 4, so that when a
process is ready to send a select message it can know
what the current state of the system is and restrict the
choices available, i.e., it may safely delay the execution
of an action if necessary. (Note that the proposal by At-
tie, Francez, and Grumberg also delays the execution
of some actions, but it may lead to deadlock if the sys-
tem under consideration is not conspiracy-resistant [1].)
Obviously, for this idea to work it is necessary that all
of the processes get the same observation of the actual
concurrent execution, which is the case for shared-bus
networks, and all of the actions must terminate in finite
time, which was already a requirement for the original
scheduler.

The importance of this improvement is twofold: on
the one hand, Back and Kurki-Suonio proved that live-
ness properties are preserved by their scheduler as long
as the system under consideration is not conspirato-
rial; their original scheduler cannot prevent conspira-
cies, whereas our simple modification avoids them com-
pletely. On the other hand, Kurki-Suonio argued that the
problem with equivalence robustness lies in the classical
notion of observation, according to which an observer
must not interfere with the executions it observes [11];
he pointed out that an observer of a system is part of
that system and, thus, it should be allowed to intro-
duce additional synchronisation that does not result in
new executions but restricts them so that no conflicting
observations may occur; this is particularly interesting
for the subset of observers that are responsible for the
scheduling decisions, and our proposal to improve Back

and Kurki-Suonio’s scheduler may thus be seen as a
practical realisation of this idea.

Acknowledgements

We are thankful to our reviewers for their insightful
comments on an earlier version of this paper.

References

[1] P.C. Attie, N. Francez, O. Grumberg, Fairness and hyperfairness
in multi-party interactions, Distributed Computing 6 (4) (1993)
245–254.

[2] R.-J. Back, R. Kurki-Suonio, Distributed cooperation with action
systems, ACM Transactions on Programming Languages Sys-
tems 10 (4) (1988) 513–554.

[3] R.-J. Back, Q. Xu, Refinement of fair action systems, Acta Infor-
matica 35 (2) (1998) 131–165.

[4] E. Best, Fairness and conspiracies, Information Processing
Letters 18 (4) (1984) 215–220; Information Processing Let-
ters 19 (3) (1984) 162.

[5] N. Francez, R.-J. Back, R. Kurki-Suonio, On equivalence-
completions of fairness assumptions, Formal Aspects of Com-
puting 4 (6) (1992) 582–591.

[6] N. Francez, I. Forman, Interacting Processes, Addison-Wesley,
1996.

[7] R.J. van Glabbeek, U. Goltz, Refinement of actions and equiva-
lence notions for concurrent systems, Acta Informatica 37 (4–5)
(2001) 229–327.
[8] Y.-J. Joung, Two decentralized algorithms for strong interaction
fairness for systems with unbounded speed variability, Theoreti-
cal Computer Science 243 (1–2) (2000) 307–338.

[9] Y.-J. Joung, On fairness notions in distributed systems: A char-
acterization of implementability, Information and Computa-
tion 166 (1) (2001) 1–34.

[10] Y.-J. Joung, On fairness notions in distributed systems: Equiva-
lence completions and their hierarchies, Information and Com-
putation 166 (1) (2001) 35–60.

[11] R. Kurki-Suonio, Action systems in incremental and aspect-
oriented modeling, Distributed Computing 16 (2–3) (2003) 201–
217.

[12] L. Lamport, Fairness and hyperfairness, Distributed Comput-
ing 13 (4) (2000) 239–245.

[13] E.-R. Olderog, K.R. Apt, Fairness in parallel programs: The
transformational approach, ACM Transactions on Programming
Language Systems 10 (3) (1988) 420–455.

[14] J.-P. Queille, J. Sifakis, Fairness and related properties in transi-
tion systems, Acta Informatica 19 (1983) 195–220.

[15] D. Ruiz, R. Corchuelo, M. Toro, Fairness in systems based on
multiparty interactions, Concurrency and Computation: Practice
and Experience 15 (11–12) (2003) 1093–1116.

[16] D. Ruiz, R. Corchuelo, J.A. Pérez, M. Toro, An algorithm
for ensuring fairness and liveness in non-deterministic systems
based on multiparty interactions, in: Euro-Par 2002, pp. 563–
572.

[17] H. Völzer, Refinement-robust fairness, in: CONCUR 2002,
pp. 547–561.

[18] H. Völzer, On conspiracies and hyperfairness in distributed com-
puting, in: DISC 2005, pp. 33–47.

