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Abstract  

A computer procedure has been developed to calcu- 
late second-order thermal diffuse scattering (TDS) 
intensity for molecular crystals from lattice- 
dynamical calculations with an atom-atom potential 
in the Born-von K~irmfin formalism. It is applied to 
monoclinic phenothiazine and different contributions 
to second-order TDS intensity, acoustic-acoustic, 
acoustic-optic and optic-optic, are compared. Calcu- 
lations are also performed in the long-wave approxi- 
mation allowing for dispersion (LWD) and correction 
factors of Bragg intensities due to TDS contribution 
in the LWD approximation are, generally but not 
always, lower than lattice-dynamical ones; the ratio 
between LWD and 'exact' factors ranges from 0.4 to 
1.4 for reflections considered. 

Introduct ion  

In a previous paper (Criado, Conde & Mfirquez, 1985) 
we reported a computational procedure to calculate 
first-order thermal diffuse scattering (TDS) intensity 
from a lattice-dynamical point of view, using the 
external Born-von K~irmfin formalism within the har- 
monic approximation and a potential function in a 
pairwise form, where each pair contribution adopts 
the form: V ( r ) = - A / r 6 + B  exp ( - C r ) ;  A, B and C 
are constants empirically adjustable. This method was 
applied to monoclinic phenothiazine, where a pro- 
posed potential function model had been successful 

* This work forms part of the Doctoral Thesis. 

0108-7673/85/040316-05501.50 

for calculating the thermal crystallographic para- 
meters (Criado, Conde & Mfirquez, 1984) and the 
contribution of inelastic TDS intensity to Bragg reflec- 
tions measured on a diffractometer by calculating the 
first-order correction factors for different reflections. 
Further calculations revealed the influence of first- 
order TDS intensity over electronic density maps and 
structural parameters obtained in least-squares refine- 
ments. The long-wave limit (Born & Huang, 1968) 
allowing for dispersion of the acoustic mode frequen- 
cies was found to be quite suitable when calculating 
correction factors because inside the small volumes 
used to scan the Bragg intensity around a reciprocal- 
lattice point this limit is usually a good approxi- 
mation. 

Most of the existing programs that correct 
measured Bragg intensities for thermal diffuse scatter- 
ing effects (Helmholdt & Vos, 1977; Walker & 
Chipman, 1970) use the long-wave (LW) approxima- 
tion taking as the starting point the elastic constants 
of the crystal and calculating the frequencies and 
polarization vectors from them, and only very recently 
(Helmholdt, Braam & Vos, 1983) has the dispersive 
character of the acoustic modes been taken into 
account (LWD approximation) using acoustic 
frequencies obtained from lattice-dynamical calcula- 
tions. 

For the second-order TDS contribution, less effort 
has been devoted to it, mainly because of the huge 
amount of computational time required. The pro- 
grams that consider it adopt the LW approximation 
(Stevens, 1974) and, in order to reduce the computing 
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time, a second approximation upon the first consisting 
of a theoretical evaluation of the Brillouin zone 
integral (Ramachandran & Wooster, 1951). The ques- 
tion of the reliability of the LW approximation in the 
calculation of the second-order TDS intensity remains 
open and, if we consider that second-order TDS 
intensity increases its relative importance with respect 
to first order for high-order reflections, its contribu- 
tion may be important when measuring high-order 
data, necessary in high-resolution density studies, and 
therefore an exact evaluation of second-order 
intensity is desirable. 

We have tried in this work to perform a lattice- 
dynamical calculation of second-order TDS intensity 
in order to compare it with that obtained in the 
long-wave approximation, and to study the changes 
introduced in Bragg correction factors when we adopt 
this approximation. 

tors of the mode (q j)  and can be obtained by 
diagonalization of the dynamical matrix D(q) (Born 
& Huang, 1968), calculated using mass-weighted 
external coordinates and principal inertia axes, and 
a further mass-unweighting of eigenvectors. 

If we adopt the LW approximation for the acoustic 
modes, neglecting the contribution of the optic 
modes, the expression of second-order TDS intensity 
takes the following form: 

dI2(S = G --q) S'* f " - - -  I F ( G ) f ~  ~ V' 2-  / " / -" / ' - '  "l~ Ej,(q)Ej,,(q ) 
dq  - -  2 r 2 n q'J'acJ"ac ~Oj,(q )09j,,(q ) 

×[s. eLW(q'j')s, eLW(q"j")] 2} 

and second-order TDS intensity turns out to be pro- 
portional to IF(G)I 2, where F(G) is the Bragg struc- 
ture factor. 

Basic theory 

The expression of the second-order TDS intensity at 
a point of the reciprocal space S = G -  q, where G is 
a reciprocal-lattice point (Cochran, 1963; 
Maradudin, MontroU, Weiss & Ipatova, 1971) is given 
by 

d I 2 ( S = G - q ) / d q  
S 2 

------ E E E Ej,(q')Ej.(q")2 , : ,, I f2(S, q 'J 'q '~/") l : ,  
2 q, j, r' ~ J ' ( q ) ~ r ' ( q )  

where S is the dispersion vector, q=q'+q",  ~ j ( q )  is 
the angular frequency of mode (q j)  and j labels the 
different modes with the same wave vector q. Ej(q) 
is the energy of mode (q j),  proportional to KBT for 
high temperatures, q' runs over all allowed wave 
vectors inside the Brillouin zone, and F2(S, q'j'q"j") 
is the second-order structure factor, which, for a 
molecular crystal with six degrees of freedom per 
molecule, and neglecting the internal mode contribu- 
tion, takes the form 

F2(S, q'j'q'7") 

= Y. Y. {f~ (S) r~ (S)s. [et (q'l kj ') + e'(q'lkj') ×x(ki)] 
k i 

xs .  [e'(q"lkj")+e'(q"[kj") xx(ki)] 

xexp [iS . x (k i ) ]exp[ iG.x (k ) ] } ,  

where k and i label different molecules in the unit 
cell and different atoms in each molecule, fki(S) is 
the atomic scattering factor of atom ki, T~(S) is the 
temperature factor, s is a unit vector along the direc- 
tion of S, x(k) is the position vector of the centre of 
mass of molecule k and x(ki) is the position vector 
of atom i belonging to molecule k, with respect to 
the principal inertia axes. e' (ql kj) and er(q[ kj) are the 
translational and rotational components, respec- 
tively, relative to molecule k, of the polarization vec- 

Method of calculation 

The computer program reported by us to calculate 
first-order TDS intensity (Criado, Conde & Mfirquez, 
1985) has been improved in order to allow the calcula- 
tion of second-order TDS intensity. The calculation 
of the intensity at a point S = G - q  Of the reciprocal 
space requires a sum over all pairs of modes (q'j') 
and (q'7") such that q = q' + q", but the expression for 
I2(S = G -  q) is symmetric in q' and q", therefore we 
may save computing time if we calculate only once 
the contributions arising from pairs q' and q". For a 
given q, contributions arising from pairs q' and q" 
such that q' = 0 and q " -  q present the same problems 
as those encountered in the calculation of thermal 
crystallographic parameters: wj,(q') tends to zero 
rapidly and the numerical integration fails. To calcu- 
late this contribution, where the rest of the factors 
are roughly constant as q'-~ 0, we have utilized the 
method of Kroon & Vos (1978) consisting of an 
analytical evaluation of this contribution, also used 
by us in the calculation of thermal parameters in 
phenothiazine (Criado, Conde & Mfirquez, 1984), 
where further details can be found. 

We have also programmed the LW approximation 
allowing for dispersion, neglecting the rotational 
components of the polarization vectors and using the 
frequency values given by lattice-dynamical calcula- 
tions. 

The practical way of performing Brillouin sums is 
as follows: for a given q, q' is allowed to run through 
the Brillouin zone (BZ) and q" is calculated as q"= 
q -  q'. If q" lies outside the BZ, it is reduced by adding 
a suitable vector G so as to lie inside, and a selection 
procedure prevents the contribution of a reduced 
couple q', q" lying inside the BZ from being summed 
twice. 

This method is equivalent to that used frequently, 
consisting of a calculation of BZ overlapping integrals 
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related to different reciprocal-lattice points, and fur- 
nishes all the possible couples of phonons contribut- 
ing to the second-order TDS intensity. 

Results 

When we calculated first-order intensity, the Brillouin 
zone was divided into volume elements (25 divisions 
along each reciprocal basic vector) and the corre- 
sponding eigenvalues and eigenvectors obtained by 
diagonalization of the dynamical matrix were stored 
and used for all further calculations. Nevertheless, 
this density of sampling turned out to be impracti- 
cable when we proceeded to calculate second-order 
TDS intensity owing to the large amount of time. 
Because of this we have chosen a thicker mesh consist- 
ing of 13 divisions along each reciprocal vector, based 
on the fact that a similar sampling density has been 
sufficient when performing Brillouin sums in order 
to calculate thermodynamic properties and thermal 
crystallographic parameters (Criado, Conde & 
M~irquez, 1984) and on the smoother character of the 
second-order TDS with respect to the first-order one 
(Pawley, 1969). In Fig. 1 we show thermal diffuse 
scattering intensity along b* calculated for monoclinic 
phenothiazine at 300 K with this sampling density 
where we observe divergent behaviour of the intensity 
over the reciprocal-lattice points owing to the contri- 
bution of the acoustic modes, except for the system- 
atic absences (0k0): k = 2 n +  1), where the second- 
order TDS structure factor corresponding to acoustic 
pairs such that q '=  -q" and [q'[ <¢, [q"[ <¢ tends to zero 
cancelling the divergence produced by 
toS2(q')to~:2(q"). If we compare Fig. 1 with Fig. 2, 
showing the calculated first-order TDS intensity 
(Criado, Conde & M~rquez, 1985), we observe that, 
in the range represented, the fall of the intensity with 
the scattering angle is smaller because the factor S 4 
cancels in part this effect and, for high-angle values, 
second-order contribution equals first-order one. 

When we compare the 'exact' (EX) lattice- 
dynamical calculations, performed with all the dis- 
persion branches, with the long-wave approximation 
allowing for dispersion (LWD), where only three 

acoustic branches have been taken into account, we 
can observe that for points far from the reciprocal- 
lattice points the LWD approximation gives a system- 
atic low contribution, undoubtedly due to the optic 
branches that have not been taken into account in 
this approximation. For points close to the reciprocal- 
lattice points the LWD approximation tends to fit the 
'exact" values, indicating that optical contribution is 
less important because of the difference in frequency 
values and, on the other hand, that LWD approxima- 
tion of acoustic modes is more accurate. 

Nevertheless, even when the behaviour of both 
calculations close to the reciprocal-lattice points are 
very similar, the agreement is not so good as in the 
first-order case, where values coincide perfectly for 
points near reciprocal points. The reason for this 
discrepancy is obvious: when we calculate first-order 
TDS intensity at a point S = G - q ,  only modes with 
wave vector q contribute, and if q is sufficiently small 
so that the long-wave limit is valid, both calculations 
will give identical results. On the contrary, when we 
calculate second-order TDS intensity, all pairs of 
vectors q' and q" such that q = q '+ q" contribute and, 
even when q is small, contributions from modes 
through all the Brillouin zone will be present, and 
although those with small wave vector, where the LW 
approximation is valid, will contribute the most, those 
near the zone boundary will also have their contri- 
bution. 

Bragg intensity second-order correction factors 

From the results obtained above it must be expected 
that the LWD approximation will give correction 
factors for Bragg intensities aE(G) that will reproduce 
the order of magnitude but not the correct values. To 
verify this conclusion we have calculated second- 
order TDS contribution to Bragg intensities using a 
constant symmetric volume for all reflections in a 
parallelepipedic form with edges equal to 3/13 of the 
corresponding basic vectors, and a volume of one 
more division along a* to obtain the background 
contribution. Even with this low sampling density, 
the full lattice-dynamical calculation of correction 

3O I, (TDS) 
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Fig. I. Calculated second-order TDS intensity along b*. 
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Fig. 2. Calculated first-order TDS intensity along b*. 
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factors a2(G ) for a given reflection takes an exces- 
sively long time, and for this reason we have tried to 
separate different contributions to second-order TDS 
intensity. The intensity can be divided into three parts: 
acoustic-acoustic, coming from phonon pairs q' and 
q", both acoustic; acoustic-optic, arising from acous- 
tic and optic phonons; and optic-optic, which comes 
from two optic phonons. The three contributions to 
the second-order TDS intensity through a given reflec- 
tion along b* can be seen in Fig. 3, together with the 
result obtained in the LWD approximation and it 
may be observed that both acoustic-optic and optic- 
optic profiles are practically uniform through the 
diffraction peak and their contribution will cancel 
with background correction but, on the contrary, the 
acoustic-acoustic contribution shows non-uniform 
behaviour around the reciprocal-lattice points. There- 
fore, values for a2(G) can be approximated taking 
into account only the three acoustic branches, both 
in the exact calculation and in the LWD approxima- 
tion, reducing the computing time considerably. 

In order to calculate the contribution of the volume 
element centred on the reciprocal-lattice points we 
have used again the method of Kroon & Vos (1978), 
calculating it as a function of the contributions of the 
surrounding elements, but now the functional form 
of second-order TDS intensity near the reciprocal 
points is smoother than the first-order one, it varies 
roughly as q-1 (Ramanchandran & Wooster, 1951) 
and the expression for the contribution of the q = 0 
element must be adjusted to this functional form. This 
contribution is 

I (q = 0) = E  0.055I(a) +Y. 0.09I(b) 
a b 

+X O.11I(c), 
c 

where a, b and c represent the different kinds of 
volume elements surrounding the q=O element 

15 

¢ 

J 
~S 4.0 S(2rt/b) Z~5 

Fig. 3. Di t Ie ren t  con t r ibu t ions  o f  s e c o n d - o r d e r  T D S  in tens i ty  to a 
ref lect ion a long  b*. 

Table 1. Bragg intensity correction factors in the 
"exact" and in the L WD calculations defined as 

t~2(G) = I2(G)/IBragg(G) 

h k I sinO/A(A -1) IF(G)I 2 0~2(G)(%) '~2LWD(G)(%) 
1 1 0 0-1074 266"2 0.2 0"1 
2 2 1 0.2282 39"31 3-4 1-4 

- 3  2 1 0.2555 147.3 5.1 5"7 
0 3 1 0-2576 436-6 4"1 3"3 
3 2 1 0.2756 60-91 5-8 3"3 
4 0 1 0.2833 577"4 5"7 6"9 
2 4 - 4  0.3937 149.2 23-6 19-0 
3 3 4 0.4037 61.61 21.4 13.4 
6 1 1 0.4236 12.41 39.2 29.4 
5 5 5 0.6260 0.05 141.6 74-3 

- 2  6 8 0.6296 1-331 175.5 139"5 
- 5  6 - 3  0.6438 5"618 154"5 176"8 

5 6 5 0.6857 1"251 187.0 105"0 
6 6 6 0.7513 0.624 273.3 153"0 

12 0 0 0"7981 0.0841 313"5 451"8 
- 8  7 7 0.8047 0.9212 467.4 568"0 

7 7 7 0-8765 0-3885 476"1 282.2 
7 8 6 0.9119 0.1041 618"4 328.2 
0 11 7 0.9879 0.0189 930-4 677.8 

(Kroon & Vos, 1978). As in the first-order case, an 
empirical parameter r/that multiplies the q = 0 contri- 
bution must be introduced to correct errors in numeri- 
cal integration and it can be adjusted performing a 
numerical integration of the q-1 function over a 
sphere and calculating r / in  order to obtain the ana- 
lytical value, yielding a value of ~7 = 1.78. 

In this way we have calculated second-order correc- 
tion factors at 300 K for a set of reflections both in 
the 'exact' calculation and in the LWD approxima- 
tion, which can be seen in Table 1. These values of 
ct2(G) must be understood only in order to compare 
the LWD approximation with the lattice-dynamical 
results, since the low sampling density used to scan 
the measuring volume produces numerical values 
considerably higher than their exact value, but, as the 
calculation conditions have been the same for both 
approximations, it may be considered as indicative 
of the reliability of the LWD approximation. It is our 
aim in future work to obtain an estimation of the real 
amount of second-order TDS contribution. 

Discussion 

The LWD approximation reproduces the order of 
magnitude but not the exact values as was the case 
for first-order correction factors and there is no sys- 
tematic disagreement between the two methods. The 
differences can be considered random and depend 
on the different effects that neglecting rotational com- 
ponents of polarization vectors introduces, especially 
near the zone boundary. Because of this, in order to 
perform accurate measurements of high-order reflec- 
tions it is advisable to adopt conditions (low tem- 
perature, principally) where second-order contribu- 
tions may be minimized, since an exact TDS correc- 
tion would involve a full lattice-dynamical treatment, 
difficult to perform, in general. 
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For the LW approximation, usually utilized in cor- 
rection of Bragg intensities, it must be expected that 
its results will be worse than those of LWD. The LW 
approximation tends to increase the frequency mode 
values with respect to the real ones when we come 
out of the long-wave limit and this effect will be more 
important when calculating the background contribu- 
tion, where the LW approximation is less valid, and 
therefore the tendency will be an overestimation of 
the net intensity calculated for the scanned volume 
with respect to LWD values, similar to the first-order 
case (Kroon & Vos, 1979). 

We thank the Computing Centre of the University 
of Seville for facilities given to run these rather 
lengthy calculations and the Spanish Government, 
which has supported in part this work through the 
Comisi6n Asesora de Investigaci6n Cientffica y 
Trcnica. 
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Abstract 

An Einstein model for thermal diffuse scattering is 
extended to a fully dynamical n-beam Bloch-wave 
treatment, where explicit account is taken of the scat- 
tering site symmetry from individual atoms. Dynami- 
cal effects in this model are related to orientation- 
dependent fluctuations in current density on localized 
scattering centres within the crystal, yielding excess 
or deficit Kikuchi bands. Calculated diffuse scatter- 
ing distributions are compared with experimental 
observations from rutile (TiO2). The predicted diffuse 
distribution for scattering from oxygen sites correlates 
reasonably well with experiment, implying a relatively 
weak contribution for (localized) thermal diffuse scat- 
tering of fast electrons from titanium sites. 

1. Introduction 

The Einstein model for thermal diffuse scattering 
(TDS) lends itself to interpretation in terms of local- 
ized scattering centres within a unit cell. It has been 

0108-7673/85/040320-08501.50 

shown that, for ionization events, a Bloch-wave for- 
mulation in describing the passage of a fast electron 
through a crystal can clearly predict the formation of 
excess or deficient bands in the inelastic beam, 
depending on (1) diffraction conditions for the elastic 
and inelastic beams, (2) scattering kinematics and (3) 
site of interaction within the crystal (Maslen & 
Rossouw, 1984; Rossouw & Maslen, 1984). In this 
paper we extend the Einstein model for TDS, 
developed by Hall & Hirsch (1965), to evaluate the 
scattering kinematics term in a dynamical n-beam 
Bloch-wave formulation. Computer simulations 
based on this theory are compared with the diffuse 
scattering observed from TiO, viewed down the c axis. 

2. Theory 

Hall & Hirsch (1965) derived a formula for the TDS 
intensity as a function of momentum transfer hq to 
the crystal, using an Einstein model for uncorrelated 
thermal displacements of crystal atoms (here q = k -  
k', where k and k' are the wavevectors of the fast 
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