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Abstract 
Characterization of the spatial variability in tree water status is a prerequisite to conduct precise irrigation 

management within an orchard. This study assessed the suitability of a crop water stress index (CWSI) derived from 
high-resolution aerial thermal imagery to estimate tree water status variability in super high density (SHD) olive 
orchards. The experiment was conducted at a commercial SHD olive orchard near Seville (southwestern Spain). The drip 
irrigated trees were submitted to three irrigation regimes (four plots per treatment): a full irrigation treatment replacing 
the crop water needs (ETc) and two regulated deficit irrigation treatments replacing ca. 45% of ETc. During the irrigation 
season, meteorological variables, soil moisture content, leaf water potential and leaf gas exchange measurements were 
performed. Infrared temperature sensors (IRTS) installed about 1 m above the canopies were used to derive the required 
baselines for CWSI calculation. A thermal camera installed on a mini RPAS (Remote Piloted Aerial System) allowed 
recording high-resolution thermal images at 5 representative dates of the olive tree growing season. CWSI values derived 
from aerial thermal imagery were sensitive to the deliberately imposed variations in tree water status within the SHD 
olive orchard. Maximum stomatal conductance and midday stem water potential showed tight correlations with CWSI. 
We conclude that high resolution thermal imagery captured from a mini RPAS has proven to be a suitable tool to capture 
tree water status variability within SHD olive orchards. 
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1. Introduction 
Hedgerow orchards with high planting densities, also called super high density (SHD) olive orchards (1500 to 2000 

trees ha-1), are growing exponentially since they were introduced in Spain in the early 1990’s. Presently, it is estimated 
that the area devoted to SHD olive orchards worldwide is over 100,000 ha, of which around half are found in Spain (Rius 
and Lacarte, 2010). The majority of SHD olive orchards are drip irrigated and, given their growing importance in both 
devoted land and water use, the development of precision irrigation techniques to increase water use efficiency and crop 
productivity are needed. An important limitation for efficient irrigation is the spatial variability in crop water 
requirements since, when water is applied uniformly across the olive orchard, there will be zones unintendedly 
overwatered and others suffering of soil water deficit. Characterization of the spatial variability in tree water status is 
therefore a prerequisite to conduct precise irrigation management within SHD olive orchards.  

Mapping spatial variability in tree water status with traditional measurements of leaf or stem water potential using a 
pressure chamber is time consuming and costly. Moreover, this method has also the limitation of the long time required 
to characterize large orchards, as variations in tree water status due to changes in the atmospheric conditions may mask 
the actual spatial variability in tree water status. Remote sensing techniques offer a promising alternative to traditional 
tree water status measurements, as they may provide a snapshot of the whole orchard in a reduced period of time. The 
advent of Remote Piloted Aerial Systems (RPAS) has opened the possibility to develop remote sensing-based 
methodologies for precision irrigation more affordably than the costly airborne campaigns with manned aircrafts and 
with higher spatial and temporal resolutions than those normally offered by satellites.  

The use of crop temperature measurements for detecting plant water status was proposed in the 1960s (Fuchs and 
Tanner, 1966), although it was not until the 1980s when the concept of the crop water stress index (CWSI) was 
developed (Idso et al. 1981, Jackson et al. 1981). CWSI is a plant water status indicator derived from canopy temperature 
that has been successfully used since the 1980s, in most cases using hand-held infrared thermometers (Abdullah 
Alderfasi and Nielsen, 2001). Nowadays, the combined used of modern high-resolution thermal infrared cameras and 
RPAS offers the possibility to map spatial variability in tree water status from thermal imaging and temperature-derived 
indicators (Bellvert et al., 2016). CWSI is a normalized index that was developed to overcome the influence that other 
environmental variables causes on the relationship between crop temperature and water stress (Idso et al. 1981). As 
reviewed in Maes and Steppe (2012), CWSI can be determined by at least three different methodologies. The empirical 
CWSI is calculated as Idso et al. (1981):  
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where Tc-Ta denotes the measured canopy-air temperature difference; (Tc-Ta)LL is the lower limit of (Tc-Ta) for a given 
vapor pressure deficit (VPD) which is equivalent to a canopy transpiring at the potential rate; and (Tc-Ta)UL is the 
maximum (Tc-Ta), which corresponds to a non-transpiring canopy. (Tc-Ta)LL is a linear function of VPD (non-water-
stressed baseline, NWSB) that, once empirically obtained, (Tc-Ta)LL is calculated solving the baseline equation for the 
actual VPD. Based on the above, the objectives of this study were to determine the NWSBs required to compute CWSI in 
SHD olive orchards, and to assess the suitability of CWSI derived from high resolution aerial thermal imagery to 
estimate tree water status in SHD olive orchards. 
 

2. Materials and Methods  

2.1. Experimental site  
The experiment was conducted in 2015 at a commercial SHD olive orchard near Seville, southwestern Spain (37º 15’ 

N, 5º 48’ W).  The 9-year-old olive trees (Olea europaea L., cv. Arbequina) were planted at 4 m x 1.5 m tree spacing 
(1667 trees ha-1). The drip irrigation system consisted of one drip line per tree row and three 2 L h-1 pressure 
compensating drippers (0.5 m apart) per tree. One flow meter per irrigation treatment recorded the amount of water 
applied in each irrigation event. An irrigation controller (Agronic 2000, Sistemes Electrònics PROGRÉS, S.A., Lleida, 
Spain) was used for irrigation scheduling. Trees were fertigated following current commercial practices and no weeds 
were allowed to grow in the inter row spacing over the spring-summer seasons.   

Climate of the study area is Mediterranean, with rainfall occurring normally from late September to May. Average 
annual data of potential reference evapotranspiration (ET0) and precipitation recorded over the period 2002-2014 in a 
standard weather station located near the orchard are 1528 mm and 540 mm, respectively. Table 1 shows the weather 
data (monthly averages) recorded over the experimental year. The orchard soil has a sandy loam top layer (0.0-0.4 m) and 
a sandy clay layer (0.4-1.0 m) underneath. The electrical conductivity of the saturated soil-paste (ECe), pH and organic 
matter content determined for the top soil layer (0.0-0.4 m) was 2.5 dS m-1, 6.34 and 0.28%, respectively. 

 
Table 1. Weather variables measured over 2015 at a nearby standard weather station belonging to the Agroclimatic 

Information Network of the Junta of Andalusia. P (mm): rainfall; T (ºC): air temperature; RH (%): relative humidity; u 
(m s-1): wind speed; Rs (MJ m-2 d-1): solar radiation; ET0 (mm d-1): FAO-Penman Monteith reference crop 
evapotranspiration. The suffixes av, mx and mn indicate average, maximum and minimum, respectively. 

Month P Tav Tmx Tmn RHav RHmx RHmn u Rs ET0 
Jan 42.2 8.8 16.0 2.8 82 99 50 2.3 10.3 1.5 
Feb 6.8 9.4 15.8 3.4 75 95 45 2.5 12.5 2.1 
Mar 42.0 12.8 21.1 5.2 73 95 40 1.7 18.2 3.1 
Apr 26.8 16.4 24.0 9.3 71 97 38 1.6 21.5 4.0 
May 0.4 21.6 31.4 11.9 50 86 20 1.6 27.6 6.2 
Jun 2.2 24.0 32.8 14.8 47 77 23 2.4 28.5 7.3 
Jul 0.0 28.1 37.4 18.6 42 66 17 2.6 29.9 8.9 
Aug 1.6 26.1 34.3 18.7 50 73 26 2.6 23.6 7.0 
Sep 28.6 21.7 29.4 14.8 59 83 31 2.6 20.4 5.2 
Oct 73.4 18.7 25.0 13.7 74 92 45 1.9 12.6 2.9 
Nov 33.0 13.7 22.1 7.0 68 91 39 1.7 12.5 2.1 
Dec 25.2 12.0 20.3 5.5 70 90 42 1.3 9.1 1.6 
Year 282.2 17.8 25.8 10.5 63 87 35 2.1 18.9 4.3 

 

2.2. Irrigation treatments 
Three irrigation treatments were imposed in the orchard, as described in Padilla-Díaz et al. (2016). A full irrigation 

treatment (FI) in which trees were daily irrigated for the whole irrigation season to replace 100% of the irrigation needs 
(IN) was established. Two regulated deficit irrigation treatments (45RDI) for which the total water supplied along the 
season was aimed to replace 45% of IN were also established. One of the 45RDI treatments was scheduled on the basis of 
the crop coefficient method (45RDICC), whereas the other 45RDI treatment was scheduled from outputs of leaf turgor-
pressure (45RDITP) or ZIM probes (Zimmermann et al., 2008). More details on the irrigation scheduling and the 45RDI 
strategies can be found in Padilla-Díaz et al. (2016). A randomized block design with four 12 m × 6 m plots per treatment 
was used (Fig. 1). Each plot contained 24 trees, and measurements were made in the central 8 trees to avoid border 
effects. 
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2.3. Thermal imagery acquisition 
A thermal infrared (TIR) camera (Tau 2 324, FLIR Systems, Inc., Oregon, USA) was mounted on a multirotor type of 

RPAS (Remote Piloted Aerial System) model Phantom 2 (SZ DJI Technology Co., Ltd., Shenzhen, China). The RPAS is 
equipped with a GNSS receptor, has a flight autonomy of 25 min and a remote control range of 1,000 m in open spaces. 
The TIR camera was installed aiming vertically downward (nadir view) at the bottom of the RPAS. The camera spectral 
range is 7.5–13.5 µm with a resolution of 324 x 256 pixels, a focal length of 9 mm, and a field of view of 49° (H) x 39° 
(V). The thermal images were stored on board in a raw format with 14-bit radiometric resolution and calibrated using 
known surface temperatures of ground targets collected at the flight time. In particular, temperature of four selected trees 
measured with four infrared thermometers (IRTS) (see section 2.4), a cold reference (wet cotton sheet) and hot references 
(40 x 50 cm black plastic panels) located in the centre of each experimental plot (Fig. 1), both measured with a hand-held 
infrared thermometer model FLUKE 62 Max (FLUKE, Washington, DC, USA), were used as ground targets. The RPAS 
was flown across the experimental orchard on five clear sky days at 20 m above the ground level and at solar noon, 
delivering thermal images with a ground spatial resolution of 5 cm.  

 

 
Figure 1. Irrigation treatments distribution in the experimental SHD orchard. FI: blue plots; 45RDICC: green plots; 

45RDITP: yellow plots. The red line rectangles represent plots irrigated following the farmer criteria.    

2.4. Measurements at ground level 
Volumetric soil water content (θ) was measured in all plots (four per irrigation treatment) with a PR2-type Profile 

Probe (Delta-T Devices Ltd, Cambridge, UK) at 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0 m depths all along the irrigation season. θ 
measurements were always performed after irrigation, between 10.00 and 12.00 Greenwich Mean Time (GMT), which is 
close to solar time at the longitude of our experimental site. The probe was calibrated in situ by Fernández et al. (2011). 
The θ values were used to calculate changes on the relative extractable water (REW) for all treatments, as described 
elsewhere (Fernández et al., 2013). Midday stem (st) water potential was measured with a Scholander-type pressure 
bomb (PMS Instrument Company, Albany, Oregon, USA) the same days that the RPAS flew. st was measured at 11:30 
– 12:30 GMT in one leaf per tree from two representative trees per plot of each treatment. For st determination, leaves 
were taken from the inner part of the canopy, were wrapped in aluminium foil ca. 2 h before measurement. Stomatal 
conductance (gs) was measured on the same days and trees where st was measured, but between 09.00–10.00 GMT, the 
time for maximum daily stomatal conductance in olive (Fernández et al. 1997). A Licor LI-6400 portable photosynthesis 
system (Li-cor, Lincoln NE, USA) with a 2 × 3 cm standard chamber was used to measure gs in sunny leaves of current-
year shoots from the outer part of the canopy facing SE and at ambient light ( 1,500 μmol m−2 s-1) and CO2 (370 – 400 
μmol mol−1) conditions. 

Four Infrared Remote Temperature Sensors (IRTs) (model IR120, Campbell Scientific Ltd., Shepshed, UK) were 
mounted over two representative trees in FI and 45RDITP treatments. The sensors angular field of view is 20º, and the 
accuracy over calibrated range is  0.2 ºC. The IRTS were mounted on galvanized steel masts with an horizontal 
mounting arm (model IR1X0, Campbell Scientific Ltd., Shepshed, UK) ending with a white PVC solar shield (model IR-
SS, Campbell Scientific Ltd., Shepshed, UK) to protect the sensor. The IRTS were mounted aiming vertically downward 
(nadir view) and targeting the center of the canopy from a distance of approximately 1 m. The dense canopies formed by 
this type of growing system (i.e. hedgerow olive orchard) allowed IRTS to view mostly foliage in a circular area of 
approximately 0.35 m of diameter in the canopy top. The IRTS were connected to two dataloggers (model CR1000, 
Campbell Scientific Ltd., Shepshed, UK) that recorded canopy temperatures (Tc) every minute and stored the 15-min 
averages. The canopy temperature measurements started on 16 June, 2015 (DOY 167) and continued with a sole 
interruption of 12 days due to power outage until 5 November (DOY 275). 

Tc data measured with the IRTS installed above the well-watered trees were used to derive the Non-Water-Stress 
Baselines (NWSB) for CWSI calculation. Only clear-sky days were used for NWSB determination. Clear-sky days 
following a rainfall event were also discarded to avoid errors associated to wet foliage. Air temperature (Ta) along with 
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VPD data recorded in the weather station at the same time that Tc were used to derive the NWSB of the SHD olive 
orchard.  

2.5.  Image processing and CWSI calculation 

The thermal images taken with the RPAS were used to calculate the mean canopy temperature (Tc) of each 
experimental plot. Only the central 8 trees of each plot were used to calculate mean Tc to avoid border effects. An image 
segmentation algorithm based on the rule of ‘full width at half maximum’ (FWHM) (Rud et al., 2015) was implemented 
in R (R Core Team, 2015) to extract pure vegetation pixels from the thermal image. At solar noon, the effects of tree 
shadow are minimized, and thermal images are composed mainly by canopy, soil and mixed plant-soil pixels. The 
algorithm allowed distinguishing vegetation from background (mainly soil) according to differences between canopy and 
soil temperature in each thermal image. Once vegetation pixels were selected from a bi-modal histogram (i.e. histogram 
with two clearly differentiated peaks ascribed to soil and vegetation pixels in the point cloud) (Figure 2), the FWHM rule 
was used to distinguish pixels with high probability to be pure vegetation from pixels that are likely to mix vegetation, 
soil and/or shadow effects. The selected segment was then used to compute mean Tc for each experimental plot. Figure 3 
shows an example of the thermal imaging processing carried out. 

Mean Tc was used to calculate CWSI for each experimental plot using Eq. 1. For each flight day, LL was calculated 
from the NWSB determined with the IRTS as described in section 2.4 and actual air VPD. UL was determined as Ta + 
5ºC based on previous studies dealing with the same crop species (Rud et al., 2015). 

 

Temperature (C)

Vegetation

Soil

 
 

Figure 2. Example of bi-modal histogram of temperatures obtained from a thermal image of an experimental plot. 
 

3. Results and Discussion 

3.1. Determination of the non-water stress baselines (NWSB). 

The relationship between hourly T (Tc – Ta) and VPD values derived for well-watered olive trees throughout the 
period of study using clear-sky days did not yield any significant relationship when all hours and days were pooled 
together (data not shown). The relationships became significant when T and VPD were regressed for a given time of the 
day, as shown in Figure 4 using data taken at 12.00 GMT. The reason why the relationship T vs VPD for well-watered 
trees varies diurnally is the influence that weather conditions have on T, as demonstrated theoretically by Maes and 
Steppe (2012) and confirmed experimentally in previous studies, such as those conducted in pistachio trees (Testi et al., 
2008) and vineyard (Bellvert et al., 2014).   

In addition to the diurnal effect observed on NWSB, we also observed a marked seasonal variation in the T vs VPD 
relationship (Figure 4), as the NWSB shifted in August (Period B), as compared to that derived in June-July (Period A), 
and in September (Period C) as compared to those derived for the Periods A and B. This behaviour was not observed in 
pistachio trees (Testi et al., 2008), but has also been recently reported for peach trees (Bellvert et al., 2016).   
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Figure 3. Example of thermal image processing. From left to right:  (a) bi-colour thermal mosaic in which part of the 

temperature range has been selected for highlighting vegetation surface temperatures while the remaining temperature 
range is shown in grey scale; (b) thermal images of two experimental plots (FI and 45RDITP); (c) thermal images 

obtained once the vegetation histogram (see Figure 2) has been selected with the segmentation algorithm; (d) thermal 
images obtained once the FWHM rule has been applied with the segmentation algorithm.     
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Figure 4. Non-Water Stress Baselines (NWSB: T = a + b·VPD) determined for FI olive trees at solar noon (12.00 

GMT). The straight lines represent the regression lines. Period A: June-July, DOY 167-212 (T = 3.29 – 0.50·VPD, 
R2=0.82); Period B: August, DOY 215-243 (T = 2.85 – 0.54·VPD, R2=0.71); Period C: September, DOY 244-273 (T 

= 2.86 – 0.70·VPD, R2=0.56). Only clear-sky days were used.  

3.2. Seasonal time-course of CWSI 
The seasonal time-course of CWSI derived from aerial thermal imaging and the NWSBs described in the previous 

section showed different trends between the irrigation treatments (Figure 5a). FI trees maintained values close to zero 
throughout the period of study, which are indicative of non-limiting soil water conditions. The RDI treatments presented 
mean CWSI values close to those of FI on the first flight day, but their mean CWSI increased up to 0.6-0.7 in the next 
two flights, coinciding with a period of moderate water restriction in the RDI treatments. From DOY 240 onwards, 
although differences in CWSI between FI and the RDI treatments were slower, the latter still showed mean CWSI 0.2-0.3 
higher than that of FI. No clear differences in CWSI were observed between both irrigation treatments. 

The comparison of the seasonal evolutions of CWSI and REW (Figure 5b) reveals certain parallelism among soil 
water content and CWSI seasonal trends. The period when CWSI was higher in the RDI treatments coincides with the 
period where REW was lower (i.e. less available soil water) in the RDI treatments, confirming that the CWSI increments 
observed in the RDI treatments were due to decreased soil water availability. 

FI plot 

45RDITP 

(a) (b) (c) (d) 
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Figure 5. Evolution of (a) CWSI and (b) REW determined for FI, 45RDICC and 45RDIPB treatments. Each point is the 

mean of four and three replicates per treatment in (a) and (b), respectively. Up-facing arrows indicate the onset of water 
stress periods in RDI treatments; the down-facing arrow indicates the end of a water stress period. 

 

3.3. Relationship between CWSI and gs and st. 

Midday stem water potential (st) correlated significantly (R2=0.82) with CWSI across the experimental period 
(Figure 6a), following a linear relationship irrespective of the phenological stage. In peach trees, Bellvert et al. (2016) 
observed that the relationship between CWSI and leaf water potential was phenological-stage dependent, following a 
curvilinear model during the pre-harvest stages and linear during the postharvest stage. In other fruit tree species 
(pistachio), the CWSI vs st relationship was also linear and constant for the entire growing season.  
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Figure 6. Relationship between CWSI determined from aerial thermal imaging and (a) midday stem water potential 

(st) and (b) stomatal conductance (gs) for FI, 45RDICC and 45RDIPB treatments. The straight lines represent the fitted 
regression lines to the data. 
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When stomata close in response to soil drying, stomatal conductance (gs) is the physiological parameter that drives 
canopy temperature increments, as compared to well-watered plants under the same environmental conditions. The 
relationship between CWSI and gs derived for the olive trees when all data were pooled together (Figure 6b) was linear 
and highly significant (R2=0.83), thus supporting the tight linkage existing between these two water stress indicators. 
Both gs and st showed a similar level of correlation with CWSI, which is explained by the close relationship between gs 
and leaf water potential in response to soil drying already observed in olive trees (Erel et al., 2014). 

 

4. Conclusions 
This work presents a methodology to infer tree water status variability in SHD olive orchards from remotely sensed 

thermal imagery captured from a RPAS and Non-Water-Stress Baselines (NWSBs) derived locally for CWSI calculation. 
The study shows that the segmentation algorithm used, based on bi-modal histogram analysis and the rule of full width at 
half maximum, allowed extracting pure vegetation pixels from the experimental plots in a heterogeneous crop system 
such as SHD olive orchards. The NWSBs required for CWSI derivation was not unique throughout the growing season 
but, in addition to the known diurnal effects, strong seasonal effects were also found. This makes using different 
equations throughout the growing season to be needed. CWSI showed strong linear relationships with stomatal 
conductance and stem water potential, demonstrating the promising potential of this method to assessing crop water 
status variability and supporting irrigation decisions in SHD olive orchards.  
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