
Bayesian estimation of the half-normal 

regression model with deterministic frontier 

 

FRANCISCO J. ORTEGA  

Avenida Ramón y Cajal 1, Sevilla, Spain. 

Universidad de Sevilla, Sevilla, Spain 

Phone: +34  954556970 

e-mail: fjortega@us.es 

 
 

JOSE M. GAVILAN 

Avenida Ramón y Cajal 1, Sevilla, Spain 

Universidad de Sevilla, Sevilla, Spain 

Phone: +34  954556970 

e-mail: gavi@us.es 
 

 

 

 

 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157757918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

Bayesian estimation of the half-normal 

regression model with deterministic frontier 

 

 

 

Abstract A regression model with deterministic frontier is considered. This type of model has hardly 

been studied, partly owing to the difficulty in the application of maximum likelihood estimation since this 

is a non-regular model. As an alternative, the Bayesian methodology is proposed and analysed. Through 

the Gibbs algorithm, the inference of the parameters of the model and of the individual efficiencies are 

relatively straightforward. The results of the simulations indicate that the utilized method performs 

reasonably well.  
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1. INTRODUCTION 
The origin of the analysis of the econometric models with frontier and the calculation of 

efficiency measures can be set in Farrel (1957), where the innovative idea of analysing the 

efficiency of a productive process is established in terms of the observed deviations between the 

actual production and an ideal frontier of maximum output. Aigner and Chu (1968), following 

the initiative of Farrel (1957), propose a model where a given output is expressed as a function 

of a series of inputs and unknown parameters plus a negative random perturbation; the 

deterministic part of the model corresponds to the production frontier or maximum attainable 

value of output given the inputs, and the random perturbation (difference between the actual 

production and its potential maximum value) represents the level of inefficiency in the 

productive process. This formulation of the model is known as the deterministic frontier model 

(DFM) 

After the appearance of the stochastic frontier models (SFM), formulated for the first time by 

Aigner et al. (1977), Battese and Corra (1977), and Meeusen and van den Broeck (1977), the 

interest of the researchers in the DFM quickly declined in favour of the SFM. In the latter, a 

composite error term is introduced in the form of two random perturbations. The first is an 

inefficiency measure and the other represents all the possible sources of random variations. 

In the specific literature, there are a number of negative results concerning the DFM. It has 

been argued that this type of modelization does not take into account any source errors nor does 

it consider any other kind of random variations and therefore they are assigned to inefficiency in 

the productive process. Another drawback of this modelization is that it poses a non-regular 

problem, and therefore the properties of the maximum likelihood estimator (MLE) are 

uncertain. In Greene (1980), this latter disadvantage is partially solved: naming ε  the 

inefficiency, it is established that if the density of ε  and its derivative at the point 0ε =  are 

equal to zero, then the DFM verifies the usual conditions of regularity. Several distributions, 

such as the log-normal distribution, and the gamma distribution with shape parameter greater 

than or equal to two, fulfil the aforementioned conditions, while other commonly used 

distributions, such as the exponential and the half-normal distributions, fail to fulfil the 

conditions. 

Nor is the SFM free of drawbacks. In many cases, it is difficult to disentangle the random 

effect and the inefficiency of the composite error, and there is a significant proportion of 

samples that involve one or the other extreme (absence of inefficiency or absence of random 

errors), even for large sample sizes (Simar, 2007; Ortega and Gavilan, 2011). Therefore, 

consideration of the DFM (or at least the comparison of the result with the SFM) can be 

especially interesting when the estimation of the SFM suggests the absence of random errors 
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and, as a consequence, that 100% of the composite error is due to inefficiency. As a matter of 

fact, the software to estimate the SFM in this situation usually provides some kind of warning or 

error message. To be specific, using the version 1.1-0 of the package frontier in the software R 

(Coelli and Henningsen, 2013) the following warning message is obtained1: 

the parameter 'gamma' is close to the boundary of t he parameter space 
[0,1]: this can cause convergence problems and can negatively affect 
the validity and reliability of statistical tests a nd might be caused 
by model misspecification 

In the same way, version 9 of the software LIMDEP gives the following error message, stops 

the estimation, and no result is provided: 

Error 143: Models - estimated variance matrix of es timates is singular 

In Amsler et al. (2013), the DFM is analysed in a number of situations, concluding that in 

some simple cases it is possible to make an exact inference using analytic expressions for the 

MLE for finite samples. In models of a more complicated nature, the exact inference remains 

possible, although simulation processes are necessary to obtain the critical points. This property 

is interesting, since it cannot be forgotten that, in the SFM, the properties of the MLE and the 

inference process in general are asymptotic, and therefore imply limitations when the sample 

size is small or moderate.       

In this paper, the Bayesian estimation of the DFM through the Gibbs algorithm (Gelfand and 

Smith, 1990) is presented as an alternative. The Bayesian approach has been widely developed 

and utilized in the SFM, particularly since the publication of the paper by Van de Broeck et al. 

(1994). In Griffin and Steel (2007), a number of formulations of the SFM and their 

implementation in the software of Bayesian estimation WinBUGS are presented. However, to 

the best of our knowledge, the Bayesian literature has paid little attention to the DFM. 

The Bayesian approach to the DFM holds interesting advantages, such as the ease of adding 

constraints involving both the parameters and the observations, which make the model non-

regular, or the possibility of obtaining exact inferences for finite samples, not only for the 

parameters of the model but also for the individual efficiencies (although simulation processes 

are required to obtain the estimated values). 

The rest of the paper is organized as follows: in Section 2, the model, and the prior and the 

posterior distributions, are presented. In Section 3, the Gibbs algorithm for the considered 

model is developed. In Section 4, the properties of the estimators are analysed through 

                                                           
1 The parameter γ  mentioned is the proportion of the total variance of the composite error due to 

inefficiency. Therefore, if it is estimated to be 1, then the whole error is inefficiency, that is to say, the 

model does not have random noise and its frontier is deterministic. 
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simulation, and in Section 5, two well-known examples are revisited. Finally, in Section 6, the 

main conclusions of the paper are discussed. 

 

2. THE MODEL: PRIOR AND POSTERIOR 
DISTRIBUTIONS 

 

Let us consider the following production model: 

 , 1,...,i iy i nε= − ='
ix β   (1) 

where iy  is the production, k∈β ℝ   is a vector of unknown parameters (hence, k  is the number 

of parameters to estimate in the production function), ix  is the vector of exogenous variables 

(with 1 1ix i= ∀  , that is, the model has an intercept corresponding to the parameter 1β ), n   is 

the sample size, and 0iε >  is a random perturbation that measures the inefficiency of the i-th 

observation. The hypothesis that iε  follows a half-normal distribution (0,σ2) is assumed  

(Johnson et al., 1994; Pewsey, 2004), that is, the probability density function of iε  is given by: 

 ( )
2

22

2
exp , 0

22
i

i if
εε ε
σπσ

 
= − > 

 
  (2) 

and therefore, the probability density function of iy  is: 

 ( )2

22

2 1
( | , ) exp ,

22
i i if y y yσ

σπσ
 = − − ≤ 
 

' '
i i ix ,β x β x β   (3) 

The likelihood function of the model for a sample of size n is given by 

 ( ) ( )22 /2
2

1
, | , ( ) exp , 1,...,

2
n

i i
i

L y y i nσ σ
σ

−  ∝ − − ≤ ∀ = 
 

 ' '
i iβ y X x β x β   (4) 

where 1( ,..., ) ' n
ny y= ∈y ℝ   and [ ]| ... | k n×= ∈Μ1 nX' x x .  

In order to simplify the notation, the set { }/ 1,...,k
iy i nΒ = ∈ ≤ ∀ ='

iβ x βℝ  is defined, that is, 

B  is the parametric space or set of values of the parameter β  that is compatible with the 

observed set of data according to the established model. As a consequence, the constraints can 

be expressed as B∈β . The logical hypothesis that the set B is not empty is also assumed.  

Let us point out that the stochastic frontier production model is formulated as: 
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 , 1,...,i i iy u i nε= − + ='
ix β   (5) 

where the hypothesis of the model (1) holds and it is also assumed that iu  follows a Normal 

distribution ( )20, Uσ , and that there is independence between the perturbations iε  and iu . In this 

setting, a number of values iy  could be above  'ix β  due to the noise perturbation iu . In this 

way, the constraints , 1,...,iy i n≤ ='
ix β  are removed, thus resulting in a likelihood without 

constraints. 

As mentioned in Section 1, the interest is focused on the deterministic frontier model. The 

set of unknown parameters of the model (1) is ( ),σβ , where B∈β  and 0σ > . The Bayesian 

inference is based on the determination of the joint posterior distribution of the parametric 

vector ( ),σβ  given the set of data, such posterior distribution is denoted by ( ), | ,π σβ y X . In 

order to obtain the posterior distribution it is necessary, first of all, to choose a joint prior 

distribution for the vector of parameters ( ),σβ ; such prior distribution is denoted by ( ),π σβ .  

In the setting of the Bayesian analysis of the linear regression model, a normal prior 

distribution for β  and inverse gamma for 2σ  are frequently chosen; this Gaussian-inverse 

gamma distribution has the advantage of being conjugate, that is to say, the posterior 

distribution is also Gaussian-inverse gamma, which facilitates the inference process. However, 

this distribution is informative, because the hyperparameters must be chosen based on prior 

knowledge of the problem. 

In this paper, a non-informative prior distribution has been chosen, which eliminates the need 

for choosing the hyperparameters and represents the cases in which “little is known about the 

values of β  and 2σ ”. A number of methods to obtain non-informative prior distributions have 

been proposed. In the linear regression model, the non-informative prior distribution most 

commonly used (Jeffreys, 1961, p.182; Box and Tiao, 1973, p.117) is: 

 ( ) 1,π σ σ −∝β .  (6) 

In Zellner (1986), an excellent review of the linear regression model with various prior 

distributions is offered. 

The kernel of the joint posterior distribution is calculated by multiplying the likelihood 

function (4) by the prior distribution (6), thereby obtaining: 

 ( ) ( )22 ( 1)/2
2

1
, | , ( ) exp ,

2
n

i
i

yπ σ σ
σ

− +  ∝ − − ∈Β 
 

 '
iβ y X x β β   (7) 
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which can be expressed as 

 ( ) ( ) ( )2 ( 1)/2
2

1
, | , ( ) exp ' ,

2
nπ σ σ

σ
− +  ∝ − − − ∈Β 

 
β y X y Xβ y Xβ β . (8) 

As may be seen, the use of this non-informative prior distribution also leads to a Gaussian-

inverse gamma kernel for the posterior distribution. However, the algebraic manipulation of this 

distribution is not easy, since the constraint B∈β  makes it difficult to ascertain the integration 

limits, and forces the marginal distribution of each component jβ  to be defined piecewise. In 

order to avoid this complication and to give an answer to the inference problem, the Gibbs 

algorithm is utilized (Gelfand and Smith, 1990). 

 

3. FORMULATION OF THE GIBBS ALGORITHM 
As pointed out in Section 2, the kernel of the posterior distribution is Gaussian-inverse 

gamma. Therefore, 2 |σ −
β,y,X  follows a gamma distribution and | ,σβ X,y follows a normal k-

dimensional distribution (in this case truncated to the constraint B∈β ).  

Indeed, by taking into consideration that the joint posterior distribution (8) can be expressed 

as 

 ( ) ( ) ( ) ( )
1

2 22
1

, | , exp ' ,
2

n

π σ σ σ
+

− − ∝ − − − ∈Β 
 

β y X y Xβ y Xβ β   (9) 

it is straightforward to deduce that 2 |σ −
β,y,X  follows a gamma distribution, specifically: 

 ( ) ( )2 3 1
| , '

2 2

n
Gaσ − + − − 

 
β,y,X y Xβ y Xβ∼   (10) 

In order to obtain the distribution of | ,σβ X,y , let us consider 1ˆ ( )−=β X'X X'y  and 

ˆˆ = −u y Xβ  (the estimator and the least-squares residuals of the unconstrained linear regression 

model). By taking into consideration that 

 ( ) ( ) ( ) ( )'ˆ ˆˆ ˆ'− − = +y Xβ y Xβ u'u β - β X'X β - β ,  (11) 

the joint posterior distribution (8) can be written as: 

 ( ) ( ) ( )'
2 ( 1)/2

2 2

ˆ ˆ 1 ˆ ˆ, | , ( ) exp exp ,
2 2

nπ σ σ
σ σ

− +    ∝ − − ∈Β   
   

u'u
β y X β - β X'X β - β β   (12) 

from where it is obtained that 
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 ( )( )12ˆ| , , ,kN Bσ σ − ∈β X,y β X'X β∼ ,  (13) 

that is, a k-dimensional normal distribution truncated to the subset kB ⊆ ℝ . 

In principle, a simple algorithm can be formulated through the following straightforward 

procedure: 

Let m be the sample step of the algorithm. Given the values m
β  and ( )2 m

σ , obtained in the 

m-th step, the generated values in the next step are given by: 

1. Generate a value 1mv +
 of the distribution 2 |σ − m

β ,y,X . Take ( ) 12 11
m mvσ

+ += . 

2. a) Generate a value *β  from the distribution ( ) 12 ,
m

σ
+

β y,X , that is, generate a value 

   ( ) ( )( )1 1* 2ˆ ,
m

kN σ
+ −

β β X'X∼  . 

b) If B∈*
β  , then take m+1 *

β = β   

          If B∉*
β , then return to step 2.a) 

However, we have found that, in practice, the probability of rejection in this procedure is 

frequently so high that the method becomes unviable.  

In order to overcome this major difficulty, one solution is to apply the Gibbs algorithm by 

obtaining samples from the one-dimensional conditional distributions, that is, from | ,σ β y,X  

and | , ,jβ σ(j)β y,X , j=1,…,k, where ( )' 1
1 1 1,..., , ,..., k

j j kβ β β β −
− += ∈(j)β ℝ . 

Therefore the Gibbs algorithm for this model is formulated as follows: Let m be the sample 

step of the algorithm. Given the values m
β  and( )2 m

σ , obtained in the m-th step, the values 

generated in the next step are given by: 

1. Generate a value 1mv +  from the distribution 2 |σ − m
β ,y,X . Take( ) 12 11

m mvσ
+ += . 

2. FOR j=1 TO k 

Generate a value 1m
jβ +  from the distribution 

( ) 11 1 2
1 1 1| ,..., , ,..., , ,

mm m m m
j j kjβ β β β β σ

++ +
− + y,X  

      NEXT j 
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3. Take ( )'1 1
1 ,...,m m

kβ β+ +=m+1
β . 

 

In order to obtain simulated samples for | , ,jβ σ(j)β y,X , by rearranging the parameters, the 

following partition can be considered: 

 
2

andj j
β σ  

= Σ =     
   

'
j(j)

(j) j(j) j(j)

σ
β

β σ Σ
,  (14) 

where ( ) 12σ −=Σ X'X . If there are no constraints in the model, it is known that 

 ( )( )2ˆ ˆ| , , ,j j jNβ σ β σ+ −-1 ' -1
(j) j(j) (j) (j) j(j) j(j) j(j)β y,X Σ β - β σ Σ σ∼ .  (15) 

For the sake of simplicity, let us assume initially that all the explanatory variables take non-

negative values. Hence, the constraints , 1,...,iy i n≤ ='
ix β  are equivalent to 

 ( ), 1,..., max , ,i i
j j j

i
ij ij

y y
i n b

x x
β β β

 − − ≥ = ⇔ ≥ ⇔ ≥ 
  

' '
i(j) (j) i(j) (j)

(j)

x β x β
β X y ,  (16) 

where ( ) ( ){ }, , max i ij
i

b y x= − '
(j) i(j) (j)β X y x β . (Note that if some ijx  are zero, then the i-th 

observation does not take part in the set of constraints that the parameter jβ  must satisfy). In 

this way, it holds that 

 ( )( ) ( )2ˆ ˆ| , , , , , ,j j jN bβ σ σ β+ − ≥-1 ' -1
(j) j j(j) (j) (j) j(j) j(j) j(j) (j)β y,X β Σ β - β σ Σ σ β X y∼ ,  (17) 

that is, the one-dimensional conditional distributions are normal truncated to the interval 

( ) ), , ,b +∞ (j)β X y . In practice, it is frequent for this interval to have a very small probability, 

which renders the simulation by the acceptance-rejection method unfeasible. However, the 

simulation of values from this distribution can easily be performed by following the algorithm 

by Marsaglia, which is explained in Devroye (1986), p.380. 

Specifically, this algorithm generates values from a distribution (0,1)Z N∼  constrained to 

the range ,z a> where 0a > . The algorithm is as follows: 

1. Generate U, V independent values from a distribution U(0,1). 

2. Calculate 2 2 ( )Z a Log U= −  . 

3. If V Z a⋅ >  return to 1. If  V Z a⋅ ≤ , take the value Z as result. 
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To apply this algorithm to our case, it is sufficient to take Z in each step as the typified 

distribution of | , ,jβ σ(j)β y,X , generate a value of Z, and then undo the typification.  

In the framework of the production models, the variables are commonly measured in 

logarithmic terms and, as a consequence, negative values for the variables often appear.  

If the hypothesis concerning the non-negativity of the explanatory variables is removed, then 

the conditional distribution is similar, but now the range of the parameter is given by

( ) ( )1 2, , , ,jb bβ≤ ≤(j) (j)β X y β X y , where 

 
( ) ( ){ }
( ) ( ){ }

1
| 0

2 | 0

, , max

, , min .

ij

ij

i ij
i x

i ij
i x

b y x

b y x

>

<

= −

= −

'
(j) i(j) (j)

'
(j) i(j) (j)

β X y x β

β X y x β
  (18) 

If the set of indices { }| 0iji x >  is empty, ( )1 , ,b = −∞(j)β X y  is taken (similarly, if 

{ }| 0iji x < = ∅  then ( )2 , ,b = +∞(j)β X y ). In this way, when generating the values of the one-

dimensional conditional distributions | , ,jβ σ(j)β y,X , a number of different situations appear 

depending on the values of ( )1 , ,b (j)β X y  and ( )2 , ,b (j)β X y . This entails additional complexity 

when programming the Gibbs algorithm, which can be solved, according to the cases, by 

utilizing the Marsaglia algorithm or applying the acceptance-rejection method. 

As initial value 0
β , the corrected least-squares estimator is used (Green, 1980; Ortega et al., 

2009), which consists of modifying one of the components of the unconstrained least-squares 

estimator so that the obtained point belongs to the frontier of the feasible region. Specifically, 

the estimation of the intercept of the model is modified, by replacing the first component of β̂  

for { }*
1 1 1
ˆ ˆmax i

i
yβ = − '

i( ) ( )x β . 

 

4. SOME SIMULATIONS 
First of all, a number of simple simulated examples are carried out, which helps towards 

ascertaining the formulation of the model and offers a first evaluation of the proposed 

estimation method. Despite the fact that the analysed model presents some complications, the 

Bayesian estimation with the help of the Gibbs algorithm offer a solution that is relatively 

straightforward to put into practice and, as will be seen, in general provide satisfactory results. 
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Example 1. In order to better understand the nature of the problem and the complications of 

dealing with constraints involving both the parameters and the observations, we begin by 

considering a simple model, in which there is only one explanatory variable (plus an intercept), 

and a simulated sample of size 5n = . Therefore, the regression model is 

1 2 , 1,...,i i iy x i nβ β ε= + − = , where the hypotheses mentioned in Section 2 are assumed. The 

values 2
1 2 1β β σ= = =  are chosen. For the variable x, a sample of size 5 from a uniform model 

in [0,1] is simulated. From these values, the corresponding sample for the variable y   is 

simulated. The resulting sample is shown in the Appendix. 

The constraints that the considered model imposes are 1 2 , 1,...,i iy x i nβ β≤ + =  or, 

equivalently, 1 2 , 1,...,i iy x i nβ β≥ − = , where in general there will be redundant constraints. 

For the obtained sample, the ordinary least-squares estimator is 1̂ 0.3106β =  and 

2
ˆ 0.7938,β = which does not belong to the feasible region and that greatly departs from the 

actual value for the case of the intercept. As explained in Section 3, it holds that 

( )( )12
2

ˆ| , , ,N Bσ σ − ∈β X,y β X'X β∼ , where B is the set of points belonging to the feasible 

region. Therefore, the marginal posterior distribution of β  concentrates a greater probability in 

the zone of the frontier of the feasible region nearer to the point given by β̂ .  

In Figure 1, a scatter plot corresponding to a simulated sample of size 2000 of the 

distribution of | ,σβ X,y is offered, together with the straight lines that define the feasible 

region. Indeed, the points accumulate in the zone of greater probability. As mentioned earlier, 

some constraints can be redundant with some others (as is the case of the constraint in the 

bottom left-hand corner).  

 

Fig. 1: Simulated sample of the posterior distribution (Example 1). 

0.5 1.0 1.5 2.0 2.5 3.0 3.5
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In order to estimate the values of the parameters, the criterion of the mathematical 

expectation of the posterior marginal distributions is used. Therefore, the average of each of the 

components of the simulated sample is taken (it is well-known that they converge towards the 

mathematical expectations as the size of the simulated sample tends towards infinity). In the 

same way, estimations of the standard errors are obtained from the standard deviations of the 

simulated sample and the symmetrical probabilistic intervals are obtained from the quantiles of 

order 0.025 and 0.975 of the simulated sample (Chen et al., 2000). 

For the considered samples, the Bayesian estimation of the parameters is 1̂ 1.0924Bβ =  and 

2
ˆ 0.8605Bβ = ; the standard errors are ( )1̂ 0.6036BSE β =   and  ( )2

ˆ 1.0433BSE β = , while the 

symmetric probabilistic (or credible) intervals are 1( ) (0.3514,2.5636)SPI β =  and 

2( ) ( 1.5419,2.5196)SPI β = − . It should be emphasised that, in this case, the estimations are not 

very accurate because a very small sample size is considered. 

As a consequence of the constraints involving the parameters and the observations, in this 

type of model the probability density function of the joint posterior distribution is not 

continuous at the frontier, and therefore certain graphical representations (such as the three-

dimensional histogram and the contour plot) are not suitable, since they underestimate the true 

value of the density at the frontier. That is the reason why the scatter plot in Figure 1 has been 

shown. In order to have a better understanding of the posterior distribution, in Figure 2, the 

smoothed histograms of the marginal posterior distributions are presented. It is observed that the 

two distributions are skew and bell-shaped and have the highest density around the true values 

of the parameters. 

  

Fig. 2: Smooth Histogram of the posterior distribution of β1 (left) and β2 (right) of Example 1. 

 

Example 2. A model with two explanatory variables and an intercept is now considered, for 

which a simulated sample of size 50n =  is obtained. Therefore, the regression model is 

1 2 2 3 3 , 1,...,i i i iy x x i nβ β β ε= + + − = , where the hypotheses mentioned in Section 2 are 

1 2 3 4

0.2

0.4

0.6

-4 -2 2 4 6 8
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assumed. Independent samples of size 50 from the uniform model in [0,1] are simulated for the 

variables 2x  and 3x . Taking 2
1 2 3 1β β β σ= = = =  , the corresponding sample for the variable 

y   is simulated. The resulting sample is shown in the Appendix. 

For the considered set of data, the ordinary least-squares estimator is the vector

( )'ˆ 0.5632,0.7837,0.2729=β , which does not belong to the feasible region and is far from the 

true value of the parameter, especially for the case of the intercept and the second slope. 

Through the Gibbs algorithm, a simulated sample of size 2000 for the distribution of | ,σβ X,y  

is obtained, whose scatter plot is shown in Figure 3, where the zone of the feasible region with 

the highest probability can be observed.  

 

Fig. 3: Simulated sample of the posterior distribution (Example 2). 

 

For the sample generated, the results obtained by applying the Bayesian DFM are shown in 

Table 1. As can be noted, for this sample of moderate size, the accuracy of the estimator is 

acceptable. In Figure 4, the smoothed histograms of the marginal posterior distributions are 

presented, where it is observed that the highest densities are located around the true values of 

the parameters. The results obtained by using maximum likelihood in the SFM are also shown 

in Table 1. Since the considered sample has been generated from a deterministic frontier model, 

an estimation of the parameter gamma equal (or near) to one is expected. However, the 

estimation obtained is, surprisingly, practically zero ( ˆ 0.000047γ = ). Therefore, instead of 

identifying the deterministic frontier model, the SFM estimates, on the contrary, a stochastic 

frontier model without inefficiency, that is to say, all the composite error is assigned to noise. 

As a result of being unable to identify the true structure of the composite error of the model, the 

estimations of the parameters are very far from their true values. In this situation, all the 
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efficiencies are estimated to be practically 1 (the maximum attainable level of efficiency) in the 

SFM (all are above 0.995). For the case of the Bayesian DFM, the estimated average efficiency 

is 0.4587, which is near to the average of the true efficiencies, 0.4751. The average absolute of 

the differences between the true efficiencies and the efficiencies estimated through the Bayesian 

DFM is 0.018 (where the largest difference is 0.055), and their Pearson and Spearman rank 

coefficients of correlations are 0.9986 and 0.9973, respectively, again indicating reliable 

estimations. To conclude, in this example the SFM approach is unable to identify the true 

structure of the composite error and therefore provides unreliable estimations of the parameters 

and of the efficiencies. The Bayesian DFM approach, however, provides accurate estimations. 

Table 1: Results of the Bayesian DFM and SFM estimations for the simulated sample of Example 2. 
Bayesian DFM SFM 

Parameter Estimation Std. Error SPI Estimation Std. Error 

0β  1.05907 0.090510 (0.948005, 1.29077)  0.566297 1.159324 

1β  1.04719 0.176417 (0.627511, 1.31936) 0.783662  0.267659 

2β  0.90686 0.194569 (0.529324, 1.31864) 0.272940  0.283047 

2σ  1.23846 0.272368 (0.822994, 1.86607) 0.311541  0.063564 

 

 

 

  

Fig. 4: Smooth Histogram of the posterior distribution of β1 (upper), β2 (bottom left) and β3 (bottom 

right) of Example 2. 
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Similar examples, with a greater number of explanatory variables and with different starting 

values for the parameters, have been analysed. It has been observed that the accuracy of the 

estimators remains unaltered. Generally speaking, in the setting of the regression models with 

frontier (both deterministic and stochastic), the greatest difficulty is the estimation of the 

intercept; as a matter of fact, the ordinary least square estimators of the slopes are consistent 

(Green, 1980). The number of explanatory variables in the model and the values of the slopes 

are not determining factors in the statistical properties of the estimators of the intercept and the 

efficiencies. In this sense, in Coelli (1995), a simulation analysis for stochastic frontier models 

is carried out in which there is only one intercept and no explanatory variables, and it is argued 

that the main results remain unchanged when including explanatory variables. In Olsen et al. 

(1980), it is also observed that the inclusion of four explanatory variables in the stochastic 

frontier model provides very similar results to those of the model containing only the intercept. 

The following is a Monte Carlo analysis, in which, for each of the chosen values of n , 1000 

samples of size n  are generated for the considered model. To these samples, the Gibbs 

algorithm with samples of size 2000 is applied, with the objective of studying the bias and the 

mean squared error (MSE) of the estimators, the length (Len) of the symmetrical intervals of 

probability 0.95 (SPI), and the proportion of success of such intervals (Succ), that is, the 

frequentist coverage probability of the symmetrical Bayesian intervals. For the case of the 

estimated efficiencies, their averages for each of the observations are obtained. 

A model with one explanatory variable and an intercept is selected, together with the values 

2
1 2 1β β σ= = = . With the intention of analysing the possible influence of the dispersion in the 

set of data of the explanatory variables on the results, the procedure is carried out twice: the first 

time, the values for the variable x   are simulated from the model (0,1)U ; while the second 

time, the model (0,5)U  is used instead. The results obtained are shown in Tables 2 and 3, 

respectively. 

Table 2: Properties of the estimators and probabilistic intervals ( )2
1 2 1, (0,1) .ix Uβ β σ= = = ∼  

 β1 β2 

n Bias MSE SPI Len Succ Bias MSE SPI Len Succ 

10 -0.0297 0.0746 (0.583,1.557) 0.974 0.912 0.0051 0.2736 (0.067,1.948) 1.881 0.904 

20 -0.0074 0.0213 (0.779,1.337) 0.558 0.944 0.0047 0.0909 (0.429,1.621) 1.193 0.948 

50 -0.0020 0.0060 (0.895,1.178) 0.283 0.948 0.0000 0.0173 (0.748,1.258) 0.509 0.944 

100 0.0001 0.0019 (0.949,1.109) 0.159 0.948 -0.0003 0.0055 (0.865,1.134) 0.269 0.946 

 σ2 Efficiencies (averages) 

n Bias MSE SPI Len Succ Bias MSE SPI Length Succ 

10 -0.1109 0.2383 (0.346,2.143) 1.797 0.856 0.0178 0.0113 (0.352,0.658) 0.306 0.908 

20 -0.0529 0.1219 (0.489,1.768) 1.279 0.904 0.0041 0.0035 (0.410,0.599) 0.190 0.938 
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50 -0.0297 0.0419 (0.660,1.449) 0.790 0.928 0.0013 0.0008 (0.465,0.552) 0.088 0.951 

100 -0.0099 0.0210 (0.737,1.297) 0.560 0.938 0.0008 0.0002 (0.495,0.541) 0.047 0.947 

 

In relation to the bias, the values are, in general, close to 0 (with the exception of the 

parameter σ for 10n = ),  and are smaller, in absolute values, as the sample size increases. 

Therefore, it can be concluded that the estimators have a good behaviour with respect to the 

estimation bias. In addition, it should be noted that the parameters 1β  and 2σ  present 

persistence of negative bias while 2β  and the efficiencies present positive bias in almost all the 

cases.    

With regard to the MSE and the length of the intervals, reasonable values are obtained. In 

general, as expected, these two quantities decrease as the sample size increases.  

On the other hand, it can be observed that the frequentist coverage probability of the 

Bayesian intervals is close to their nominal probability (0.95) for sample sizes of 20 or over  

except for the case of the parameter 2σ , in which the values are maintained a little below the 

nominal value. For small sample sizes (10n = ), the coverage probability is less than 0.95 in all 

cases. 

The simulation analysis carried out also shows that the estimators of the parameters 1β  and 

2β , and of the efficiencies, have a better behaviour than the estimator of the parameter 2σ .  

Table 3: Properties of the estimators and probabilistic intervals ( )2
1 2 1, (0,5)ix Uβ β σ= = = ∼  

 β1 β2 

n Bias MSE SPI Len Succ Bias MSE SPI Len Succ 

10 -0.0289 0.0455 (0.553,1.292) 0.739 0.930 0.0005 0.0055 (0.807,1.081) 0.275 0.922 

20 -0.0036 0.0283 (0.758,1.350) 0.591 0.934 -0.0015 0.0032 (0.888,1.097) 0.209 0.936 

50 -0.0034 0.0054 (0.896,1.162) 0.266 0.952 -0.0001 0.0008 (0.952,1.050) 0.098 0.946 

100 0.0005 0.0012 (0.951,1.081) 0.1306 0.950 -0.0004 0.0002 (0.973,1.026) 0.053 0.958 

 σ2 Efficiencies (averages) 

n Bias MSE SPI Len Succ Bias MSE SPI Len Succ 

10 -0.1313 0.2406 (0.343,2.114) 1.771 0.842 0.0179 0.0106 (0.352,0.651) 0.299 0.926 

20 -0.0832 0.1099 (0.488,1.725) 1.237 0.890 0.0052 0.0036 (0.410,0.597) 0.187 0.933 

50 -0.0226 0.0431 (0.659,1.455) 0.7957 0.930 0.0022 0.0008 (0.466,0.554) 0.088 0.949 

100 -0.0073 0.0197 (0.766,1.327) 0.561 0.948 0.0002 0.0002 (0.489,0.536) 0.047 0.947 

 

The effect of the variability of x is clearly manifest in the MSE and the length of the interval 

of the parameter 2β ; as expected, these two quantities significantly decrease as the dispersion 

of the explanatory variable increases. It can also be observed that any increase in the variability 

of x  has no appreciable effect on the other parameters nor on the efficiencies. 
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Finally, in order to analyse the influence of the variance of the perturbation ε  on the 

estimators, the simulation study has again been made selecting 1 2 1β β= =  and 2 9σ = , and 

taking values for x  from distributions (0,1)U and (0,5)U . The results for (0,1)Ux ∼  are shown 

in Table 4; similar results are obtained for (0,5)Ux ∼  and are therefore omitted. 

Table 4: Properties of the estimators and probabilistic intervals ( )2
1 2 9, (0,1) .ix Uβ β σ= = = ∼  

 β1 β2 

n Bias MSE SPI Len Succ Bias MSE SPI Len Succ 

10 -0.1318 0.8989 (-0.280,2.840) 3.120 0.906 0.034 2.764 (-1.820,3.876) 5.696 0.902 

20 -0.0422 0.2653 (0.277,2.091) 1.814 0.924 0.0032 0.8939 (-0.693,2.721) 3.414 0.922 

50 -0.0090 0.0528 (0.695,1.511) 0.816 0.930 0.0028 0.1559 (0.239,1.755) 1.516 0.942 

100 -0.0030 0.0159 (0.844,1.267) 0.423 0.950 0.0049 0.0540 (0.607,1.396) 0.789 0.943 

 σ2 Efficiencies (averages) 

n Bias MSE SPI Len Succ Bias MSE SPI Length Succ 

10 -1.3386 17.5966 (3.027,18.554) 15.527 0.824 0.0298 0.0226 (0.0824,0.4387) 0.3563 0.917 

20 -0.7046 8.077 (4.365,15.547) 11.182 0.924 0.0108 0.0096 (0.1185,0.3487) 0.230 0.926 

50 -0.1916 3.6670 (5.913,13.079) 7.166 0.928 0.0019 0.0023 (0.173,0.288) 0.115 0.947 

100 -0.0889 1.7619 (6.732,11.772) 5.039 0.914 0.0001 0.0007 (0.202,0.265) 0.063 0.943 

 

As expected, the increase of the variance of the perturbations has the effect of decreasing the 

accuracy of the estimators of the parameters 1β , 2β  and 2,σ  and of  making the bias, the MSE 

and the length of the probabilistic intervals larger. No influence on the coverage probabilities is 

observable.  

For the case of the bias, since its absolute values are small, no clear factor of increase is 

visible. When analysing the parameters 1β  and 2β , it can be appreciated that the length of the 

probabilistic intervals increases by an approximate factor of 3, while the MSE increases by an 

approximate factor of 9. These results are consistent with those for the ordinary least square 

estimator in the usual lineal regression model. The length of the probabilistic interval for 2σ  is 

approximately multiplied by 9 and its MSE by 81. In relation to the efficiencies, no significant 

variations are produced in the bias, nor in the MSE, nor in the length of the probabilistic 

intervals for the averages. Clearly, there is a decrease in the endpoints of such intervals, because 

when increasing σ , the average inefficiency increases and therefore the efficiency decreases. 

5. TWO WELL-KNOWN EXAMPLES REVISTED 
In this section, the estimation method analysed is applied to two well-known databases in the 

literature on the frontier production models. The first set of data, considered in Whiteman and 

Pearson (1993) and in Coelli et al. (1998), refers to telecommunication companies belonging to 

21 countries in 1990. A single output y  is considered, (which is an index based on incomes) 
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and two inputs: the capital factor 1x  (measured through the kilometres of the lines) and the 

labour factor 2x  (number of employees). The set of data is shown in the Appendix.  

In this framework, we estimate, following the proposed methodology, a Cobb-Douglas 

production model, that is, 0 1 2β β β= + + −1 2y x x ε , where the variablesy , 1x , 2x  are measured 

in logarithms and the  perturbation ε  follows a half-normal distribution (0,σ2), σ>0.  

The estimations of the parameters, together with their standard errors and symmetrical 

Bayesian intervals with probability 0.95, are shown in Table 5. As a starting point for the Gibbs 

algorithm, the unrestricted least-squares estimator is utilized, whose first component is modified 

so that it belongs to the frontier of the feasible region. A sample of size 10,000 from the joint 

posterior distribution is generated, from which the estimations offered in Table 5 are obtained. 

The results obtained in Coelli et al. (1998) are also shown in Table 5, where the parameters are 

estimated using maximum likelihood in a stochastic frontier production model. On page 198, 

they point out that “These results indicate that the vast majority of residual variation is due to 

the inefficiency effect, iu , and that the random error, iv , is approximately zero”, that is, that the 

frontier is actually deterministic. Therefore, the warning and error messages mentioned in the 

introduction are shown when using specific software to obtain the estimations of the model. 

Table 5: Results of the estimation of the telecommunications model. 

Bayesian DFM SFM 
Parameter Estimation Std. Error Interval Estimation Std. Error 

0β  0.221224 0.088662 (0.098279, 0.429807) 0.170302 0.084008 

1β  0.923822 0.193276 (0.466299, 1.254850) 0.968427 0.216607 

2β  -0.075194 0.176745 (-0.402556, 0.322700) -0.100169 0.197732 

2σ  0.376945 0.127413 (0.198190, 0.670106) 0.286561 0.077963 

As can be observed, all the results achieved using SFM are similar to those obtained here by 

means of the Bayesian DFM. The largest discrepancy is observed in the parameter 2σ , both in 

the estimation and in the standard error, where the absolute difference is  approximately 0.09 for 

the estimation and 0.05 for the standard error. For the parametric vector β , the largest 

difference for the estimations is 0.05 (for the intercept) and for the standard error, this is 0.02 

(for 1β ). 

In Table 6, the estimated efficiency is shown for each country, together with its standard 

errors and probabilistic intervals obtained using the Bayesian DFM. The estimated efficiencies 

calculated in Coelli et al. (1998) using the SFM are also shown. Only the estimated efficiencies 

are attained because, in principle, the maximum likelihood estimation of the SFM allows neither 

the standard errors nor the confidence intervals of the estimated efficiencies to be obtained.  
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Table 6: Efficiency of each of the countries. 

 Bayesian DFM SFM 

Country Efficiency Std. Deviation Interval Efficiency 

Australia 0.743777 0.072733 (0.575758, 0.859353) 0.784300 

Austria 0.482098 0.026884 (0.410351, 0.511599) 0.510347 

Belgium 0.610151 0.030610 (0.530624, 0.651875) 0.645905 

Canada 0.685817 0.041381 (0.585526, 0.746132) 0.707590 

Denmark 0.860641 0.047756 (0.742071, 0.924397) 0.915252 

Finland 0.699179 0.047142 (0.594844, 0.773231) 0.747832 

France 0.660550 0.061755 (0.536390, 0.790499) 0.668246 

Germany 0.533938 0.043088 (0.426544, 0.606291) 0.543229 

Iceland 0.702297 0.170060 (0.358880, 0.985397) 0.788019 

Ireland 0.654088 0.106575 (0.429755, 0.825631) 0.715014 

Italy 0.573716 0.051907 (0.474924, 0.684528) 0.582440 

Japan 0.507945 0.063716 (0.395931, 0.651712) 0.504949 

The Netherlands 0.796301 0.060814 (0.647231, 0.911924) 0.825264 

New Zealand 0.664976 0.089423 (0.472417, 0.807720) 0.722120 

Norway 0.784314 0.054093 (0.663300, 0.867537) 0.841189 

Portugal 0.516446 0.051210 (0.404777, 0.597854) 0.555615 

Spain 0.374454 0.022856 (0.321480, 0.413652) 0.386433 

Sweden 0.876195 0.044082 (0.769552, 0.940367) 0.922833 

Switzerland 0.947784 0.050564 (0.809997, 0.998708) 0.999471 

Turkey 0.157315 0.009541 (0.132828, 0.172900) 0.163748 

UK 0.914882 0.074745 (0.714045, 0.997120) 0.939083 

 

With regard to the efficiencies, it is also observed that the results are very similar. The 

estimated average efficiency using the Bayesian DFM is 0.654613 while it is estimated to be 

0.688994 when using the SFM. The estimated efficiencies using the Bayesian DFM are slightly 

lower than those obtained by utilising the SFM, however the average absolute difference is 

approximately 0.03, with the largest difference approximately 0.08 (for Iceland). Overall, the 

Pearson correlation coefficient for the estimations obtained for the two methodologies is 

0.995364; and if solely the rank of the efficiencies is considered, then a Spearman rank 

correlation equal to 0.988312 is obtained. In both cases, the correlations are almost perfect. 

The second set of data refers to 247 dairy farms located in Northern Spain, in the year 1997. 

The output variable y  is given by the production of milk (in litres). Four inputs are considered: 

the total farm area 1x   (in hectares), the total labour, including hired and family labour 2x  (in 

worker equivalents), the total amount of feedstuffs fed to the dairy cows 3x  (in kilograms) and 

the average number of milking cows 3x . Additional information about the variables can be 

found in Cuesta (2000) and Alvarez and Arias (2004). 
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In this setting, we estimate, according to the proposed methodology, a Cobb-Douglas 

production model, that is, 0 1 2 3 3 4 4β β β β β= + + + + −1 2y x x x x ε , where the variables y , 1x , 2x ,

3x , 4x  are measured in logarithms, and the  perturbation ε  follows a half-normal distribution 

(0,σ2), σ>0.  

The estimations of the parameters, together with their standard errors and symmetrical 

Bayesian intervals with probability 0.95 are shown in Table 7. The starting point for the Gibbs 

algorithm and the sample of size has been selected as in the previous example. The results 

obtained by using maximum likelihood in the SFM are also shown in Table 7. 

Table 7: Results of the estimation of the Spanish dairy farm model. 

Bayesian DFM SFM 
Parameter Estimation Std. Error Interval Estimation Std. Error 

0β  5.59068 0.0992867 (5.31677, 5.71072) 5.0939209 0.1721667 

1β  0.0632154 0.0294959 (0.0226294, 0.12624) 0.0514371 0.0262519 

2β  0.0483018 0.0323639 (-0.0312353, 0.0962546) 0.0600841 0.0285625 

3β  0.413672 0.0157697 (0.393733, 0.447925) 0.4468382 0.0238105 

4β  0.55758 0.0157742 (0.522018, 0.581791) 0.5733713 0.0438262 

2σ  0.0884606 0.0083477 (0.0733932, 0.1055258) 0.0404724 0.0059082 

As can be appreciated, the results are similar in the two approaches. However, the estimation 

of the parameter γ  in the stochastic frontier setting is 0.8751, indicating that there is a 

stochastic frontier. This means that the Bayesian approach for the studied case of deterministic 

frontier is robust and performs reasonably well in the setting of a stochastic frontier with a high 

value of the parameter γ  (the variance of the inefficiency term is much larger than the variance 

of the noise). For the estimations, the largest absolute difference between the two approaches is 

0.4968 and is observed in the intercept; all the other absolute differences remain below 0.05.  In 

relation to the standard errors, the largest absolute difference between the two approaches is 

0.0729 and it is again observed in the intercept; all the other absolute differences remain below 

0.03. With regard to the estimated efficiencies, the results are also similar. The estimated mean 

efficiency through DFM is 0.7756 and through SFM this is slightly higher, at 0.8657, due to the 

fact that, in the DFM framework, all the random error in the model is assigned to inefficiency 

while in the SFM case a little part of the error is random noise, and hence the global inefficiency 

is higher in the DFM framework, in other words, the global efficiency is lower. The average 

absolute difference between the estimated efficiencies in the two approaches is 0.0948, while 

the Pearson correlation is 0.8653 and the Spearman rank correlation is 0.8817, thereby 

indicating a high degree of concordance between the two approaches. In conclusion, in general, 

similar results are obtained, indicating the robustness of the Bayesian DFM approach. However, 
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as the frontier in this case is estimated to be stochastic, the differences between the two 

approaches are larger than in the previous example, in which the frontier is estimated to be 

deterministic. 

6. CONCLUSIONS 
The literature on frontier models has, in general, paid little attention to the DFM since the 

appearance of the SFM. However, the formulation using a deterministic frontier is simpler and 

enables exact results to be attained for the inference based on ML estimation in a number of 

cases (Amsler et al., 2013). The deterministic frontier model can be particularly useful in those 

situations where the effects of the inefficiency and the random noise in the SFM are 

complicated (and even “virtually impossible”) to disentangle, especially when the estimation of 

the SFM suggests that the entire variance of the composite error is due to inefficiency. 

One of the main drawbacks of the DFM is that it poses a non-regular estimation problem 

(using the most common probability distributions for the inefficiency term), which renders the 

inference through maximum likelihood difficult. It has been shown that the formulation of the 

Gibbs algorithm for the estimation of the model using the Bayesian methodology is relatively 

straightforward and that it holds a number of advantages in comparison with other estimation 

methods, such as dealing with constraints involving both the parameters and the observations 

(which make the model non-regular), and the possibility of making inferences in a direct way 

concerning the individual efficiencies. Furthermore, as the kernel of the exact posterior 

distribution is used, the approximations to the exact results depend on the size of the simulated 

sample in the Gibbs algorithm, which can be as large as desired (in the maximum likelihood 

framework, the approximations depend on the sample size, which is fixed). 

Both the simulation analysis and the examples considered show a good behaviour of the 

proposed methodology. For moderate sample sizes, the biases and the mean squared errors are 

considerably small and the frequentist coverage probability of the Bayesian intervals is 

practically identical to their nominal probability. 
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APPENDIX: SETS OF DATA UTILIZED IN THE 
EXAMPLES 

Simulated sample (Example 1) 

y 1.389195 0.637083 -0.361800 1.365756 0.625770 
x 0.611111 0.153082 0.367411 0.593594 0.923927 

 

Simulated sample (Example 2) 

y {1.08249, 0.350275, 0.111249, 1.67043, 0.804949, 0.460018, 1.07821, 1.01255, 0.141129, 1.54748, 
0.296863, 0.776595, 1.72269, 1.61751, 0.957871, 1.29077, 0.735434, 1.15074, 1.22122, 0.910826, 
2.25897, 0.651734, 0.448724, 1.69737, 1.04723, 1.87568, 1.42077, 1.60624, \ 
1.32974, 1.19284, 0.901887, 0.453288, 1.84041, 0.855025, 0.0904449, 1.05235, 1.58625, 1.49994, 
0.544752, 2.65495, -0.155022, 1.82489, 1.24477, 0.711652, 1.66001, 0.570469, 0.21666, 1.00615, 
2.26923, 1.40828} 

x2 {0.728113, 0.50603, 0.212999, 0.755097, 0.684416, 0.367649, 0.0441774, 0.934338, 0.340176, 
0.572793, 0.350698, 0.893679, 0.195965, 0.876396, 0.80044, 0.680444, 0.0483495, 0.196176, 
0.350175, 0.553006, 0.671351, 0.20208, 0.10168, 0.399454, 0.490328, 0.844086, 0.529784, 
0.871228, 0.162341, 0.851186, 0.699436, 0.15938, 0.453054, 0.218776, 0.211959, 0.514752, 
0.675255, 0.659948, 0.872841, 0.879089, 0.319521, 0.891303, 0.191057, 0.955342, 0.0475877, 
0.149271, 0.117269, 0.822466, 0.83501, 0.201067} 

x3 {0.620443, 0.797728, 0.486157, 0.254354, 0.909706, 0.65939, 0.174122, 0.885507, 0.114798, 
0.607201, 0.708227, 0.0685596, 0.613377, 0.802765, 0.40258, 0.0449246, 0.598802, 0.144266, 
0.193644, 0.649677, 0.783038, 0.0725557, 0.662766, 0.4495, 0.202687, 0.614011, 0.990142, \ 
0.370271, 0.771085, 0.0345378, 0.609937, 0.186131, 0.444118, 0.725772, 0.896521, 0.309074, 
0.573408, 0.370633, 0.792472, 0.798635, 0.280654, 0.922334, 0.080111, 0.21696, 0.834997, 
0.311379, 0.167264, 0.93436, 0.626333, 0.446917} 

 

Set of data on the production and inputs in the example of telecommunications (Section 5). 

Country Output Index 

Main lines Number of 
Employees  

 (106 km) (105) 

Australia 0.74 0.7767 0.85 

Austria 0.24 0.3223 0.18 

Belgium 0.36 0.399 0.26 

Canada 1.26 1.5296 1.05 

Denmark 0.39 0.2911 0.18 

Finland 0.29 0.267 0.2 

France 2.06 2.8085 1.56 

Germany 1.73 2.9981 2.12 

Iceland 0.02 0.0126 0.02 

Ireland 0.11 0.0983 0.13 

Italy 1.48 2.2350 1.18 

Japan 2.73 5.3236 2.77 

The 
Netherlands 

0.77 0.694 0.32 

New 
Zealand 0.16 0.1473 0.17 

Norway 0.27 0.2132 0.15 

Portugal 0.19 0.2379 0.23 
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Spain 0.59 1.2603 0.75 

Sweden 0.71 0.5849 0.42 

Switzerland 0.56 0.3943 0.22 

Turkey 0.15 0.6893 0.36 

UK 2.53 2.5404 2.27 

 

 

 
 


