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Abstract 12 

Capture and sequestration of CO2 released by conventional fossil fuel combustion is an urgent need 13 

to mitigate global warming. In this work, main CO2 capture and sequestration (CCS) systems are 14 

reviewed, with the focus on their integration with renewables in order to achieve power plants with 15 

nearly zero CO2 emissions. As a case study, the manuscript analyses the integration of a CO2 sorption-16 

desorption cycle based on Na2CO3/NaHCO3 into a coal fired power plant (CFPP) for CO2 capture 17 

with solar support for sorbent regeneration. The Dry Carbonate Process relies on the use of a dry 18 

regenerable sorbent such as sodium carbonate (Na2CO3) to remove CO2 from flue gases. Na2CO3 is 19 

converted to sodium bicarbonate (NaHCO3) through reaction with CO2 and water steam. Na2CO3 is 20 

regenerated when NaHCO3 is heated, which yields a gas stream mostly containing CO2 and H2O. 21 

Condensation of H2O produces a pure CO2 stream suitable for its subsequent use or compression and 22 

sequestration.  In this paper, the application of the Dry Carbonate CO2 capture process in a coal-based 23 

power plant is studied with the goal of optimizing CO2 capture efficiency, heat and power 24 

requirements. Integration of this CO2 capture process requires an additional heat supply which would 25 

reduce the global power plant efficiency by around 9-10%. Dry Carbonate Process has the advantage 26 

compared with other CCS technologies that requires a relatively low temperature for sorbent 27 

regeneration (<200ºC). It allows an effective integration of medium temperature solar thermal power 28 

to assist NaHCO3 decarbonation. This integration reduces efficiency losses to the associated with 29 

mechanical parasitic consumption, resulting in a fossil fuel energy penalty of 3-4% (including CO2 30 

compression). The paper shows the viability of the concept through economic analyses under 31 

different scenarios. The results suggest the interest of advancing in this Solar-CCS integrated concept, 32 

which shows favourable outputs compared to other CCS technologies.  33 
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 1 

Nomenclature  2 

ASU: Air separation unit 

BAC: Biomass annual cost 

BFB: Bubbling fluidized bed 

CaL: Calcium-Looping process 

CCS: Carbon capture and storage 

CFB: Circulating fluidized bed 

CFPP: Coal-fired power plant 

COE: Cost of electricity 

cCO2: Carbon tax  
COP21: 2015 Paris Climate Conference 

CPU: CO2 purification unit 

CSP: Concentrated solar power 

ECCS: Emission ratio with dry carbonate process 

integrated 

ECO2 AVOIDED: Avoided cost due to the 

avoided emission of CO2,  

EDRYCARBONATE: Carbon capture system 

installation cost  

ENET, GAIN, year: Annual benefit due to 

avoided emissions. 

EO&M: Operation and maintenance cost 

EINCR: Revenues due to electricity incremented 

cost   

Eref: Reference plant emission ratio  

ESOLAR: Solar plant installation cost 

ETOT, REV: Total annual revenues 

ETOT: Total investment cost 

FB: Fluidized Bed 

FC: Fuel cost 

FCF: Fixed charge factor 

FGD: Flue gas desulfurization 

GHG: Greenhouse gases 

IPCC: Intergovernmental Panel on Climate 

Change 

IRR: Internal rate of return (%) 

mCO2, FGPLANT: CO2 mass flows of flue gas exits the 

CFPP  

mCO2, CARB.OUT: CO2 mass flows of flue gas exits the 

carbonator 

MEA: Monoethanolamine solvent 

NGCC: Natural gas combined cycles 

NPV: Net Present Value 

O&M: Operation and maintenance 

PCC: Post-combustion capture 

PNET, year: Total electric energy per year produced 

by the plant. 
QCFPP: CFPP thermal power consumptions 

QDC: Dry carbonate thermal power consumption 

SE-SMR: Sorption-enhanced steam methane reforming 

SMR: Steam methane reforming 

SPB: Simple payback 

SPECCA: Specific energy consumption for CO2 

avoided  

TCR: Capital cost 

tonCO2, ref: Reference plant CO2 emissions 

tonCO2, CCS: CO2 emissions with the dry carbonate 

process integrated 
VOM: Variable cost 

WCFPP: CFPP net power production 

WCOMP: Electric consumption for CO2 compression 

Wcons, DC: Dry carbonate electric power consumption 

Wsolid: Electric consumption for solids conveying 

WGS: Water gas shift 

YR: Yearly Revenues 

ABS: Absorption efficiency 

plant: Plant efficiency 

CCS: Plant efficiency with the dry carbonate process 

integrated 
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1. Introduction 1 

There is a worldwide interest in finding competitive solutions for capturing and sequestering the 2 

carbon dioxide (CO2) released from fossil fuel combustion processes to mitigate global warming. In 3 

the 2015 Paris Climate Conference (COP21), a universal agreement signed by the consensus of 195 4 

countries was reached, which has been ratified in 2016, to drastically reduce CO2 emissions in order 5 

to keep global warming below 2°C from preindustrial levels [1]. To this end future coal-fired power 6 

plants (CFPPs) must be near to CO2 emissions free. Currently, 76.5% of the electricity generation in 7 

the world is produced by non-renewable sources [2]. The main R&D challenge for the viability of 8 

CFPPs and other fossil fuel based facilities is to capture CO2 by means of feasible and affordable 9 

technologies while, at the same time, penalties on power production and efficiency are minimized.  10 

 11 

Carbon capture and storage (CCS) technologies can be classified into three main groups: pre-12 

combustion, post-combustion and oxy-fuel combustion processes [3]. Despite post-combustion 13 

capture (PCC) processes are being widely investigated in the last years, Boundary Dam (100MWe) 14 

in Canada is currently the only commercial CFPP that applies CCS by using a chemical absorption 15 

process based on monoethanolamine (MEA). In amine-based systems the CO2 loaded solvent is 16 

separated from the rest of the exhaust gas and heated, which yields relatively pure CO2 ready for 17 

compression and sequestration. After regeneration, the solvent is cooled to be reused [4]. A main 18 

issue of systems based on amine absorption is the large amount of heat required to regenerate the 19 

solvent. This heat, which is usually obtained from the steam cycle, penalizes significantly the power 20 

plant efficiency. Moreover, amine-based systems have serious problems related to toxicity and 21 

corrosion [5].  In addition, additional power is required to compress the captured CO2 for transporting 22 

it through the pipeline network to the storage site. 23 

 24 

Among the new generation of CCS technologies under R&D the Dry Carbonate Process stands as 25 

one of the most interesting options. This process uses Na2CO3 solid particles as dry sorbent to separate 26 

CO2 from other flue gases through the gas-solid carbonation reaction. An important advantage of this 27 

approach is that sorption can occur at relatively low temperature (below 100ºC) to achieve a high 28 

capture capacity whereas regeneration is also carried out at relatively low temperatures (around 29 

200ºC). Such temperatures do not cause significant degradation of the sorbent besides of not requiring 30 

high amounts of energy supply [6]. Other advantages of the Dry Carbonate Process are the low cost 31 

of the sorbent as well as the high CO2 sorption capacity [7]. Due to the high interest attracted by this 32 

technology, CO2 capture pilot plants have been integrated in CFPP in USA and Korea [8]. Recent 33 

studies have analysed also its potential integration with the production of chemical products [9]. 34 

 35 

In this paper, a novel integration of the Dry Carbonate Process for CO2 capture with solar thermal 36 

power is analysed. The relative low temperature in the regeneration reactor allows for an effective 37 

integration with solar thermal power, which supplies medium temperature heat at relatively reduced 38 

cost. This combination yields a significantly reduced penalty in the global efficiency compared with 39 

other technologies. Therefore, the Dry Carbonate Process has the potential for a real breakthrough as 40 

CO2 capture system integrated in CFPP with a reduced penalty on the global process and a high CO2 41 

capture efficiency, which would help achieving a near to zero CO2 emissions power plant. The 42 

deployment of the Dry Carbonate process could represent an enormous step forward to efficiently 43 
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retrofit power plants based on no-renewable fossil fuels. Such ambitious goal is fully aligned with 1 

both the IPCC projections (CCS should contribute by about 55% to the cumulative global mitigation 2 

effort until 2100 [10]) and the IEA roadmap (1000 GW of installed Concentrated Solar power 3 

capacity by 2050 [11]).  4 

 5 

The present paper has the following structure. Firstly, an overview of CO2 capture technologies is 6 

given.  Different alternatives are discussed, highlighting advantages and challenges of the Dry 7 

Carbonate Process as compared to other techniques. Secondly, a case study based on the integration 8 

of a CFPP with the Dry Carbonate Process is described (layout, processes and chemistry). Based on 9 

these analyses an economic study is carried out to assess the proposed plant viability and sensitivity 10 

to different relevant parameters (price of electricity, cost of technologies, fuel cost variability, energy 11 

penalty, carbon taxes). The results obtained suggest the high interest of the proposed integration under 12 

some particular scenarios.  13 

2. CO2 capture technologies. A brief review  14 

This section is devoted to an overview of the state of art regarding CO2 capture technologies. It is 15 

structured around the three main CCS technologies ( Figure 1), namely pre-combustion, post-16 

combustion and oxy-fuel combustion processes [3].  17 

 18 

 19 

Figure 1: Overview of technologies for CO2 capture. 20 

 21 

2.1 Pre-combustion CO2 capture  22 

Pre-combustion CO2 capture is based on the reaction of a fuel with oxygen or air with or without the 23 

presence of steam to produce a gaseous fuel, synthesis gas or syngas, which mainly consists of 24 

hydrogen and carbon monoxide. Carbon monoxide reacts afterwards with steam in a catalytic reactor 25 

(or shift converter) to produce CO2 and more hydrogen. Finally, CO2 is separated by means of 26 

physical or chemical absorption processes to obtain a hydrogen-rich fuel [10]. 27 

 28 
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Syngas is usually generated from coal, biomass or natural gas by adding steam to the fuel (steam 1 

reforming) or by fuel partial oxidation. When natural gas is used as primary fuel in the conventional 2 

steam methane reforming (SMR) method  the main reaction takes place in reformer tubes filled with 3 

catalyst [12]. In the case coal or biomass are used as fuel, gasification is the main conversion 4 

technology used to produce syngas.  After syngas production, the water gas shift (WGS) reaction 5 

(Eq.1), involves the reaction between CO and steam to yield CO2 and H2 as products.  6 

 7 

𝐶𝑂(𝑔) + 𝐻2𝑂(𝑔)  𝐶𝑂2(𝑔) + 𝐻2          ∆𝐻298𝐾 = −41
𝑘𝐽

𝑚𝑜𝑙
                             (1)  8 

The high pressure (15-40 bar) of the produced gas stream (with a CO2 content in the range of 15-60% 9 

in dry basis) facilitates the removal of CO2 [13]. The captured CO2 is ready to be compressed and 10 

stored whereas the rich H2-product can be used for power production through a gas turbine [14], 11 

combined cycles [15] or in fuel cells [16].  12 

 13 

The main advantage of pre-combustion capture is the production of CO2 at elevated pressure, which 14 

reduces energy consumption for compression, and the production of a carbon-free fuel [10]. 15 

According to the IEA GHG program [17], an efficiency penalty of 16% is expected for natural gas 16 

combined cycles (NGCC) with pre-combustion CO2 capture. This efficiency drop is caused by syngas 17 

production (6%), H2/CO2 separation (5%), the WGS process (3%), and CO2 compression (2% ) [12]. 18 

 19 

Due to the expected efficiency drop, current research is focussed on reducing energy losses and 20 

investment costs associated with CO2 capture equipment. The most promising solution under study 21 

is based on the combination of reforming and the WGS reactions with CO2 removal in one single 22 

stage, which shifts the reaction equilibrium towards the production of hydrogen. Thus, several 23 

H2/CO2 separation technologies have emerged in the last years based on membranes and solid 24 

sorbents [12]. In this regard, an modification of this process is  the sorption-enhanced steam methane 25 

reforming (SE-SMR), where the process is enhanced by using a CO2 sorbent in the reactor, which 26 

promotes the WGS reaction and achieves in situ CO2 separation [18].  27 

 28 

An option widely investigated in recent years is to integrate pre-combustion and post-combustion 29 

technologies, which allows exploiting potential synergies between both technologies [19]. Thus, SE-30 

SMR-CaL and CaL enhanced gasification are being investigated. SE-SMR-CaL integration is based 31 

on CO2 capture by CaO solids, which is thermodynamically favourable at the process conditions [20]. 32 

According to Martinez et al. [21], the SE-SMR-CaL integration achieves much higher H2 production 33 

efficiencies (above 77%) in comparison with a conventional steam methane reforming (SMR) based 34 

plant using commercially available amines for CO2 capture.  35 

 36 

In the case of solid fuel gasification, it is also interesting to integrate the CaL process for increasing 37 

the hydrogen content in the syngas. According to Ramkumar and Fan thermodynamic analysis [22], 38 

the addition of CaO as sorbent allows to attain a hydrogen purity over 99% in the absence of a water-39 

gas shift catalyst at near-stoichiometric steam to carbon (S:C) ratios, especially when operating at 40 

high pressures (>21 atm) [22]. 41 
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2.2 Oxy-fuel combustion  1 

In oxy-fuel combustion a fuel is burned using pure oxygen rather than air as the primary oxidant. As 2 

a result fuel consumption is diminished and flame temperature is higher as compared to air 3 

combustion, where part of the released heat is absorbed by nitrogen. Oxy-combustion requires an air 4 

separation process to remove nitrogen from the intake air to obtain an enriched oxygen stream with 5 

an oxygen concentration as high as 95%. To avoid a too high flame temperature by directly firing the 6 

fuel with pure oxygen, the mixture is diluted with CO2 rich recycled flue gas, or staged combustion 7 

[23,24]. In this way combustion temperature and heat transfer rate are controlled, and conventional 8 

equipment designed for conventional fuel/air combustion can be used in the coal power plant 9 

retrofitting process [25]. According to Kather et al. [26] the flue gas recirculation appropriate to yield 10 

a mixture in the boiler with combustion temperatures and heat transfer fluxes similar to those obtained 11 

with conventional coal/air-combustion is in the range of 0.65-0.75 [27]. An alternative method to 12 

control flame temperature is the use of steam injection [28]. Although oxy-fuel combustion allows 13 

reducing CO2 emissions quite efficiently, oxygen separation from air is a high energy demanding and 14 

costly process. Thus, the main drawback for the commercial deployment of oxy-combustion is the 15 

high energy consumption for pure O2 production in the air separation unit (ASU). Cryogenic 16 

distillation is the common technique for this purpose, which requires an energy consumption of about 17 

200 kWh per kg of pure O2 [29,30].  18 

After a purification process, the almost pure CO2 stream (~95% vol) is suitable for compression and 19 

storage or utilization [31,32]. According to Escudero et al. [33], CO2 purification unit (CPU) specific 20 

energy consumption can be estimated as 143 kWh/tCO2. The energy penalty associated to the 21 

integration of oxy-fuel combustion is in the range 7–13% [26,33,34].  22 

 23 

Oxy-combustion has been successfully demonstrated in large-scale pilot projects (30 MWe) 24 

[27,35,36]. Currently, most of the research activities on oxy-combustion are focused on pulverized 25 

coal combustion. However, Fluidized Bed (FB) combustion seems to be also an interesting alternative 26 

technology for oxy-combustion [37].  FB oxy-combustion was employed in CIUDEN project [38] 27 

with a thermal power of 30MWth obtained from burning diverse fuels (petroleum coke, subbituminous 28 

coal and biomass among others) in a Circulating Fluidized Bed (CFB) boiler. Oxy-combustion using 29 

bubbling fluidized beds (BFB) has been also tested at the pilot scale [39]. A detailed review on current 30 

and proposed large scale oxy-coal combustion demonstration projects is presented in [25]. 31 

 32 

2.3 Post-combustion CO2 capture 33 

Post-combustion capture refers to CO2 removal from the exhaust gas of fossil fuel power plants, 34 

which can be accomplished by using chemical solvents, solid sorbents or electrochemical processes.  35 

In the currently mature chemical absorption technology, the solvent (typically an amine solution such 36 

as MEA) binds chemically with the CO2. Amine absorption and stripping consists of passing the post-37 

combustion flue gas through an aqueous amine solvent, which absorbs CO2 by chemical reaction [40]. 38 

Then, the solvent loaded with CO2 (the “rich” solvent) is heated up above typically 120 ℃ in the 39 

regenerator reactor wherein the CO2-amine chemical reaction is reversed to release nearly pure CO2 40 

and regenerate the amine. The so-called “lean” solvent is recycled back to the absorber to restart the 41 

Comentado [U1]: ?? 

Comentado [U2]: Que unidades?, especificar 

https://en.wikipedia.org/wiki/Flue_gas
https://en.wikipedia.org/wiki/Staged_combustion
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process while the released CO2 is compressed to a suitable pressure for an efficient transportation and 1 

storage [41]. Amine-based PCC can efficiently remove around 90% of the CO2 emissions. 2 

In spite that CO2 capture by chemical absorption using MEA is a well-established process in industry, 3 

the commercial deployment of this technology for post-combustion CO2 capture at large scale is 4 

hindered by a combination of factors such as high energy penalty (8-12%) due to regeneration of the 5 

solvent [42,43], amine toxicity [44], solvent degradation [45] and equipment corrosion [46].  6 

Sorption of CO2 by solids (either by chemical reaction or physical adsorption) is an alternative method 7 

to chemical absorption with potential advantages linked to the arguably lower energy requirement for 8 

regeneration and easier operation and maintenance. Suitable sorbents for CO2 removal should meet 9 

several requeirements including high sorption capacity, high selectivity towards CO2, fast kinetics, 10 

mild conditions for desorption, and high multicycle stability [47]. 11 

 12 

The calcium looping (CaL) process [48] is at the basis of a 2nd generation PCC technology [47] that 13 

uses CaO, typically derived from natural limestone, to capture CO2 from flue gases by means of the 14 

reversible carbonation/calcination reaction (Eq. 2): 15 

𝐶𝑎𝑂(𝑠) + 𝐶𝑂2(𝑔)  𝐶𝑎𝐶𝑂3(𝑠)           ∆𝐻298𝐾 = −178
𝑘𝐽

𝑚𝑜𝑙
                             (2)  16 

The sorbent is repeatedly cycled between two CFB reactors. In the carbonator, CO2 from the flue gas 17 

is captured by carbonation of the CaO particles. Taking into account that flue gases exiting from 18 

CFPP generally contain a mole fraction of CO2 in the range 10– 15% [48,49], carbonation proceeds 19 

at a satisfactory high rate at temperatures in the range 625–700°C while the reverse reaction to 20 

regenerate the sorbent is carried out in the calciner under high CO2 partial pressure, thereby at much 21 

higher temperatures (900–950°C) in order to achieve complete decarbonation in a typically short 22 

residence time of a few minutes [50–53].  The regenerated CaO particles are returned to the 23 

carbonator while a concentrated stream of CO2 is released from the calciner ready for compression, 24 

transport and sequestration. A drawback of the process is the progressive deactivation of the 25 

regenerated CaO with the number of cycles due to the harsh calcination conditions leading to marked 26 

grain sintering. Thus, the CaO residual conversion at these CaL conditions is just around 0.07-0.08  27 

[54,55], which requires a periodic feed of fresh limestone (make-up) to replace the poorly active 28 

sorbent. The endothermicity of the calcination reaction and the temperature difference between 29 

sorbent streams entering and leaving the calciner make it necessary to provide a high-energy input to 30 

the calciner. In order to achieve the required calcination temperature without CO2 dilution, Shimizu 31 

and co-workers [56] proposed to oxy-fire coal (auxiliary fuel) in the calciner with O2 provided by an 32 

external air separation unit, whose estimated size would be approximately one third of that required 33 

for an oxy-fuel power plant. This option serves to reach the high temperatures in the calciner typical 34 

of oxy-firing while CO2 is not diluted, albeit CaO deactivation is further enhanced by irreversible 35 

CaO sulphation and ashes due to in-situ coal  oxycombustion  [55–58]. Recently, a combination of 36 

Oxy-combustion and CaL technologies has been proposed for coal power plants with some expected 37 

benefits such as the reduction of the CaL system size [59]. 38 

 39 

The CaL technology has several potential advantages when compared to amine scrubbing including 40 

a higher CO2 capture efficiency (above 90%) with minor energy penalty over the power plant (4-9%) 41 
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[19,60] and  the low cost, wide availability and non-toxicity of natural CaO precursors such as natural 1 

limestone or dolomite [61]. Even though several pilot plant projects (~ 1-2 MWth) are already showing 2 

promising results [52,62] the CaL technology has not yet reached a demonstration stage. 3 

 4 

Another option for PCC is based on membrane separation, which uses the pressure difference between 5 

the flue gas and the removed CO2.  The membrane technology is generally useful to treat high-6 

pressure gases [64,65] in spite of which a large number of researches have adapted it for post-7 

combustion capture [43,66,67]. Regarding efficiency penalty associated to membranes use for PCC, 8 

it is estimated in the range of 4.9-8.5% [64]. Membrane separation is a promising solution to reduce 9 

the costs of PCC. However, the maximum pressure ratio attainable by feed compression and/or 10 

permeate vacuum is limited to approximately 10, due to cost and energy considerations [66].  11 

 12 

A recently proposed option for PCC is the use of electrochemical processes in Molten Carbonate fuel 13 

cells. Some studies show that electricity generation in the fuel cell partially compensates the penalty 14 

on the original cycle in wastewater treatment plants [68] and  power plants [69–71]. 15 

 16 

The development of dry CO2 capture processes based on cheap materials operating at relatively low 17 

temperatures, which would require relatively low energy for sorbent regeneration, is considered as a 18 

promising pathway to advance in the deployment of CO2 capture technologies [3,63]. In the present 19 

manuscript, the use of an abundant and cheap material such as sodium carbonate (Na2CO3) with a 20 

high dry CO2 sorption capacity at relatively low temperatures is studied. Na2CO3 is the sorbent 21 

employed in the Dry Carbonate Process (DCP) early proposed in [72,73] and currently being 22 

demonstrated at the pilot-scale stage [74]. As Nelson et al. report [6], this capture process exhibits 23 

many potential advantages. First, sorbent regeneration is achieved at relatively low temperatures 24 

(100–200 °C) and it uses a dry sorbent. This helps decreasing considerably the energy required for 25 

sorbent regeneration as compared to amine based absorption, wherein much energy is lost due to the 26 

requirement of heating the large amounts of water in which the amine is dissolved. The DCP does 27 

not require any flue gas pretreatment and the reactor materials are not subjected to high thermal 28 

stresses or corrosive issues at the temperatures of operation. A further important advantage, as  29 

proposed in this work, is that dry sorbent regeneration in the range of working temperatures can be 30 

efficiently assisted by medium temperature solar thermal power, which significantly reduces energy 31 

penalty at affordable costs.  32 

 33 

2.4 Challenges in the road to the deployment of CO2 capture technologies 34 

Each one of the above reviewed PCC technologies show specific advantages but also challenges to 35 

overcome at their different R&D development stages. Nonetheless, PCC is considered as the most 36 

appropriate technique to be applied in the short-term for its relatively easy integration in existing 37 

fossil fuel power plants [75]. PCC integration penalizes power plant performance and this hampers 38 

indirectly the global CO2 emissions reduction.  The use of renewable sources such as solar thermal 39 

energy or biomass to aid the process is a possibility for mitigating this penalty. An intense R&D 40 

activity is being carried out to assess the feasibility of PCC-solar integration with the focus on 41 

reducing solar installation costs and providing a significant fraction of the heat required for sorbent 42 

regeneration [76].  43 

 44 
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The main drawbacks that hinder the deployment of PCC technologies are the high cost of the full 1 

CCS chain and the high efficiency penalty imposed on the power plant. Further obstacles are the 2 

financing of CO2 transport infrastructure, legal and regulatory frameworks and insurance for safe 3 

permanent CO2 storage or utilization [63]. As discussed below, diverse alternatives have been 4 

analysed for mitigating the efficiency penalty through the assistance of solar thermal energy mainly 5 

focussed on amines and CaL based PCC systems. However, these studies fail generally to 6 

demonstrate net benefits from the solar-PCC integration in the absence of external incentives [77]. A 7 

main inconvenient for the integration of solar in the CaL process is that sorbent regeneration is rather 8 

energy intensive requiring calcination of large flow rates of solids at very high temperatures (900–9 

950°C)  [50].  On the other hand, sorbent regeneration in amine-based capture systems is carried out 10 

at relatively much lower temperatures (slightly above 120 ℃) [41]. Yet, regeneration of the aqueous 11 

amine solution involves heating a large amount of water which requires a high energy supply [78]. In 12 

this sense, the Dry Carbonate Process stands as a promising alternative since it demands a relatively 13 

small amount of energy supply for sorbent regeneration. In this process the dry sorbent (Na2CO3) is 14 

regenerated at much lower temperatures (150-200 ºC) as compared to the CaL system [6,72,74]. Thus, 15 

solar thermal energy requirements for sorbent regeneration would be significantly reduced, which 16 

would favour the flexibility and economic viability of the solar-PCC integration.  17 

3. Integration of renewables on post-combustion carbon capture systems 18 

A main objective of R&D activities on PCC is to significantly reduce CO2 emissions from fossil fuel 19 

plants with a reduced penalty on the power plant efficiency due to the high amount of energy required 20 

by the CO2 capture processes. One way on the road to facilitate demonstration and deployment of 21 

PCC technologies is the use of renewable energy sources such as solar or biomass. The energy 22 

supplied by these renewable sources does not contribute to additional CO2 emissions and is thus CO2 23 

neutral in the global process.   24 

The integration of solar thermal energy in PCC technologies can be achieved through two different 25 

strategies: i) by assisting sorbent regeneration, and ii) by contributing to power production to 26 

minimize the efficiency penalty. Main research activities regarding solar-assisted PCC are focused 27 

on amine-based CO2 capture and the recently emerged CaL process. In order to mitigate the high 28 

penalty associated to amine-based capture systems, a number of R&D activities have been carried out 29 

to assess the use of solar thermal technologies:  30 

 31 

 Parvareh et al. [76] analyzed the use of different solar thermal technologies to support amine-32 

based PCC for retrofitting CFPPs. They concluded that the large amount of thermal energy 33 

required for solar integration in this PCC technology would need a huge thermal storage and 34 

considerably high solar capital costs, which raises doubts on the feasibility of solar integration 35 

in amine based CO2 capture systems. In addition, the huge solar thermal energy requirement 36 

for such integration to be effective is not available in most geographical locations globally.  37 

 Mokhtar et al. [79] reported a study to reduce the energy intensity of the CO2 separation 38 

process for retrofitting existing fossil fuel power plants. Partial solar thermal energy 39 

integration was assessed to reduce the penalty derived from amine-based PCC energy input 40 

in a CFPP case study of 300MWe. A main conclusion of this work is that the proposed 41 
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integration could be economically viable for solar collector costs of USD100/m2 and if more 1 

than 22% of the required solvent regeneration energy is provided by solar thermal energy.  2 

 A techno-economic analysis of solar-assisted PCC applied to different locations in Australia 3 

has been recently reported by Qadir et al. [77]. The application was divided into three 4 

subsystems: the power plant (660MWe), the amine-based PCC plant and the solar collector 5 

field. Different solar technologies were compared under scenarios without and with heat 6 

integration between the three subsystems. Regarding solar collectors, the integration based on 7 

evacuated tube collectors performed better when heat integration between the three 8 

subsystems is properly acomplished, whereas parabolic trough collectors were more effective 9 

in the case without heat integration. The study concludes that process design (heat integration) 10 

and climatic constraints are important considerations for the effectiveness of solar-assisted 11 

PCC. However, the cases under study did not yield net benefits of using any of the solar 12 

collector technologies analyzed in the absence of incentives. 13 

 Li et al. [80] studied the feasibility of integrating solar thermal energy into amine-based PCC 14 

for a 520MWe CFPP.  They concluded that, in order to achieve lower cost of electricity and 15 

cost of CO2 avoidance as compared to the case without solar assisted PCC, the price of solar 16 

thermal collectors has to be lower than 150 USD/m2 and 90 USD/m2 for the solar trough and 17 

vacuum tube, respectively. Also, the viability of solar-assisted PCC was highly dependent on 18 

climate conditions.  19 

 Cohen et al. [41] have reviewed the use of high temperature solar thermal technologies to 20 

assist amine-based PCC. As a main outcome, it is concluded that using high temperature solar 21 

thermal energy for direct electricity generation is more efficient than using solar energy for 22 

assisting sorbent regeneration.  23 

 A small-scale pilot study has been carried out by Wang et al. [81,82] on amine-based PCC 24 

coupled with a solar thermal sub-system. Two types of solar collectors were used to gain the 25 

required thermal energy of the reboiler (parabolic trough collectors and linear Fresnel 26 

reflectors).  Both of them could provide the required temperature heat source at the small-27 

scale of the test. The results suggested that the efficiency of parabolic trough collectors was 28 

higher and less dependent on solar radiation.  29 

 Carapellucci et al. [83] analyzed two options for integrating renewable energies into a CFPP 30 

with CO2 post-combustion capture either using an auxiliary biomass boiler or a concentrating 31 

solar power (CSP) system. The obtained results for the biomass boiler integration showed that 32 

the power plant capacity was increased by approximately 14% whereas the energy penalty (-33 

8%) was weakly reduced as compared to the reference case (with an efficiency of 42%). 34 

Regarding the CSP system it was shown that its integration yields a 14% lower than the 35 

reference case whereas the net efficiency decreased during the day to 31%. 36 

 Sharma et al. [84] proposed a highly integrated amine-based CO2 capture power plant in which 37 

a solar thermal plant provides heat in order to avoid steam extraction from HP and IP turbines, 38 

which increases power production. By means of a Heat Exchanger Network (HEN) analysis, 39 

where the compressed gas energy is also utilized in the integration process, a significant 40 

reduction of power plant output penalty is achieved (efficiency is increased up to 34.9 % from 41 

29.4% for the base case). 42 

 43 

Comentado [U3]: Efficiency, penalty?? 
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In the case of CaL process, recent works have assessed the use of CSP to support CaL-based PCC for 1 

retrofitting fossil fuel power plants:   2 

 3 

 Zhang et al. [85] evaluated the energy efficiency of the CaL system when the calciner is driven 4 

by a combination of oxy-fuel combustion and CSP, which provides 101 MWth (a 7.4% of the 5 

total energy input in the calciner). An integration of the CCR process into an ultra-supercritical 6 

1019 MWth power plant was proposed. In this scheme, a fraction of the CO2 leaving the 7 

calciner was used as a heat transfer fluid in the solar collectors after which it is recycled to the 8 

calciner. Fossil fuel consumption in the calciner was reduced by 6.9 g/kWh compared to the 9 

coal-driven case, which entails a decrease of the additional CO2 generated and a decrease of 10 

the mass flow rate of fresh limestone makeup. This scheme leads to an overall efficiency 11 

penalty of 9.63% points associated to the CO2 capture process. The thermal efficiency of co-12 

driven case is just 0.28% points below that of the conventional coal-driven case (without CSP) 13 

due to the big losses of solar radiation to thermal conversion, which hinders the CSP 14 

efficiency. Accordingly, increasing the CSP capacity reduces coal consumption, but it greatly 15 

decreases the thermal efficiency due to the decrease of CSP efficiency. 16 

 Zhai et al. [86] analyzed the CaL-PCC integration partially assisted by CSP for retrofitting 17 

existing CFPPs in order to recover the energy of the capture system. The work analyzes the 18 

integration through two different strategies, i) CFPP with solar aided CO2 capture system 19 

((solar + CC) + PP), which uses solar energy to reduce the fuel consumption in the calciner (a 20 

similar case than in [85]), and ii) solar aided CFPP plant with CO2 capture system ((solar + 21 

PP) + CC) where solar energy is used in the main cycle for increasing power production. In 22 

both cases the solar thermal power available for the cycle is 88.58 MWth. Results show that 23 

the second case is more beneficial regarding technical and environmental aspects, whereas 24 

the first case ((solar + CC) + PP) achieve a thermal efficiency slightly higher than in the ((solar 25 

+ PP) + CC) case (31.20% against 31.09%).  26 

 Tregambi et al. [87] assessed the performance of coupling the CaL system to CSP for a 27 

100MWth CFPP with the aim of providing all the thermal energy required in the calciner by 28 

renewable energy. The maximum thermal energy needed in the calciner to be provided 29 

entirely by CSP was 135 MWth. As a novelty, the plant allows storing the excess power 30 

produced during the daytime as CaO resulting from the endothermic CaCO3 calcination 31 

reaction, which could be recovered from the exothermic CaO carbonation reaction during the 32 

nighttime. They concluded that the CO2 capture efficiency reaches a value close to 90% 33 

whereas 80% of the thermal input from the CSP system to the calciner can be recovered.  34 

4. Detailed analysis on Dry-Carbonate Process  35 

In the rest of this work the use of an abundant and cheap material such as sodium carbonate (Na2CO3) 36 

with a high dry CO2 sorption capacity at relatively low temperatures is analysed.  37 

 38 

5.14.1 Description 39 

CO2 is captured in the Dry Carbonate Process through the chemical binding of CO2 to Na2CO3 in the 40 

carbonator reactor at operating temperatures below 100°C. Na2CO3 is converted to NaHCO3 through 41 
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the chemical reaction with CO2 in the presence of steam. The sorbent is regenerated back to its 1 

carbonate form when heated at temperatures above 100ºC, thus releasing a nearly pure CO2 stream 2 

after steam condensation. The design of the Dry Carbonate Process takes into account the need to 3 

periodically replenish a certain amount of sorbent makeup due to particle attrition and the loss of 4 

sorbent activity by the irreversible reaction with SO2 and HCl. It should be noted however that in 5 

post- wet flue gas desulfurization, SO2 and HCl are present in the flue gas at very low concentrations 6 

(less than 20 ppm for SO2 and 1 ppm for HCl), which would require a lower amount of fresh sorbent 7 

makeup flow. Figure 2 shows a schematic flow diagram of the Dry Carbonate process. 8 

 9 

  10 

Figure 2: General scheme of the Dry Carbonate Process. 11 

 12 

The Dry Carbonate Process is particularly well suited for being retrofitted into CFPPs with wet flue 13 

gas desulfurization and for natural gas–fired power plants. In the work conducted by Nelson et al. 14 

[74] it was estimated that a commercial-scale Dry Carbonate Process (a 500 MWe nominal power 15 

plant fed with natural gas and carbon) would require an initial sorbent loading of roughly 387 tons 16 

and a makeup rate of fresh sorbent of about 0.2 tons/h. After integration of the Dry Carbonate Process, 17 

the net efficiency of the plant would suffer a drop from 40.5% to 33.4% (7.1 % penalty).  In the case 18 

of power plants fed only with coal, there is a larger concentration of CO2 in the flue gas and a larger 19 

amount of sorbent for CO2 capture is needed whereas a similar loss of efficiency is expected.  20 

 21 

The reactions involved in the capture of CO2 using Na2CO3 result in the reversible formation of 22 

NaHCO3 and Wegscheider’s salt (Na2CO3·3NaHCO3) according to Eqs. 3-4 [74]: 23 

 24 

𝑁𝑎2𝐶𝑂3(𝑠) + 𝐶𝑂2(𝑔) + 𝐻2𝑂(𝑔)  2𝑁𝑎𝐻𝐶𝑂3          ∆𝐻 = −135.56
𝑘𝐽

𝑚𝑜𝑙
            (3) 25 

 26 

𝑁𝑎2𝐶𝑂3(𝑠) + 0,6 𝐶𝑂2(𝑔) + 0,6 𝐻2𝑂(𝑔)  0,4 [ 𝑁𝑎2𝐶𝑂33𝑁𝑎𝐻𝐶𝑂3(𝑠) ]   ∆𝐻 = −135.98
𝑘𝐽

𝑚𝑜𝑙
   (4)                 27 

 28 

                                                                                  29 
Other possible reaction byproducts, such as sodium sesquicarbonate (Na2CO3·NaHCO3·2H2O) and 30 

sodium bicarbonate hydrate (NaHCO3·2H2O) are negligible at the reaction conditions of interest. 31 

Both forward reactions are exothermic. Therefore, heat integration is important for an efficient 32 
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implementation of the process in a commercial system. Thermodynamically, the formation of 1 

Wegscheider’s salt is favored under practical H2O and CO2 partial pressures at reaction temperatures 2 

of 70°C and above. For regeneration of the sorbent, NaHCO3 decomposes to Na2CO3, H2O and CO2 3 

in the temperature range of 100 °C–200 °C [88] although ideally fast conversion is reached at 200°C 4 

[89]. 5 

 6 

Multicycle carbonation/regeneration tests reported in [74] show the results plotted in Figure 3 for 7 

Na2CO3 conversion as a function of the cycle number (carbonation at 60ºC and regeneration at 8 

160ºC). Even though further thermogravimetric analysis tests should be carried out including a larger 9 

number of cycles and analyzing also the reaction kinetics, these results suggest that conversion is kept 10 

stable at a relatively high level (around 0.9), which may be explained by the relatively low 11 

temperatures used for sorbent regeneration. 12 

 13 

  14 

Figure 3: Na2CO3 conversion as a function of the cycle number (data extracted from  [74]). 15 

 16 

Potential contaminants present in the flue gas, such as SO2 and HCl, could react irreversibly with 17 

Na2CO3 at process conditions according to the following reactions (Eq. 5-6): 18 

 19 

𝑁𝑎2𝐶𝑂3 + 2𝐻𝐶𝑙   2𝑁𝑎𝐶𝑙 + 𝐶𝑂2 + 𝐻2𝑂                 (5) 20 
 21 

𝑁𝑎2𝐶𝑂3(𝑠)
+ 𝑆𝑂2(𝑔)

+
1

2
𝑂2(𝑔)

  𝑁𝑎2𝑆𝑂4 + 𝐶𝑂2      (6) 22 

 23 

Formation of NaCl and Na2SO4 reduces the capacity of the sorbent for CO2 capture in subsequent 24 

cycles. However, the relative concentrations of HCl and SO2 are one order of magnitude lower than 25 

the CO2 concentration present in the flue gas following wet FGD (flue gas desulfurization) treatment, 26 

which mitigates the irreversible loss of conversion due to this issue. 27 

 28 
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5.24.2 Chemistry of the process 1 

In order to gain further understanding of the dry carbonation process, the reaction mechanisms of 2 

Na2CO3 carbonation are detailed in this section. A possible mechanism by which Na2CO3 reacts with 3 

CO2 is (Eq. 7-10) [9]: 4 

 5 

𝐶𝑂2 + 2𝐻2𝑂 → 𝐻3𝑂+ + 𝐻𝐶𝑂3
−                     (7) 6 

 7 

𝐻𝐶𝑂3
− + 𝐻2𝑂 → 𝐻3𝑂+ + 𝐶𝑂3

−                       (8) 8 
 9 

𝑁𝑎2𝐶𝑂3 → 2𝑁𝑎+ + 𝐶𝑂3
−                                 (9) 10 

 11 

𝑁𝑎+ + 𝐻𝐶𝑂3
− → 𝑁𝑎𝐻𝐶𝑂3                                (10) 12 

 13 

If the gas contains SO2 other reactions would occur in the carbonation process. SO2 can dissolve into 14 

water yielding sulfurous acid (H2SO3), and then the sulfurous acid dissociates, forming H+ and HSO3
- 15 

(Eq. 11):  16 

 17 

𝑆𝑂2(𝑔) + 𝐻2𝑂 → 𝐻2𝑆𝑂3 → 𝐻+ + 𝐻𝑆𝑂3
−        (11) 18 

 19 

Meanwhile, before the gas is dissolved into water, part of the SO2 can react with O2 to form SO3, after 20 

which the SO3 gas may dissolve into water to form sulfuric acid, which dissociates to H+ and SO4
2 21 

ions leading to a reduction of the solution pH value. In addition, sulfurous acid (H2SO3) can also react 22 

with O2 to form sulfuric acid. These reactions are given by Eqs. 12-14: 23 

 24 

2𝑆𝑂2(𝑔) + 𝑂2(𝑔) → 2𝑆𝑂3(𝑔)                                        (12) 25 

𝑆𝑂3(𝑔) + 𝐻2𝑂 → 𝐻2𝑆𝑂4(𝑎𝑞) → 2𝐻+ + 𝑆𝑂4
2−                      (13) 26 

2𝐻2𝑆𝑂3(𝑎𝑞) + 𝑂2(𝑔) → 2𝐻2𝑆𝑂4(𝑎𝑞) → 4𝐻+ + 2𝑆𝑂4
2−        (14) 27 

Also, chlorine present in the flue gas could react with water to form H3O+ and Cl- (Eq. 15): 28 

𝐻𝐶𝑙 + 𝐻2𝑂 → 𝐻3𝑂+ + 𝐶𝑙−                       (15) 29 

Besides, part of Na+ could react with SO4
- and Cl- according to Eq. 16-17:   30 

𝑁𝑎+ + 𝑆𝑂4
− → 𝑁𝑎𝑆𝑂4                          (16) 31 

𝑁𝑎+ + 𝐶𝑙− → 𝑁𝑎𝐶𝑙                               (17) 32 

In order to model accurately the process, equilibrium reactions and salts formation were implemented 33 

in the computational model of our work. The salts formation reactions that can occur are (Eq. 18-21): 34 

 35 

2𝑁𝑎+ + 𝐶𝑂3
− + 10 𝐻2𝑂 → 𝑁𝑎2𝐶𝑂3 ∙ 10𝐻2𝑂          (18) 36 

2𝑁𝑎+ + 𝐶𝑂3
− + 7𝐻2𝑂 → 𝑁𝑎2𝐶𝑂3 ∙ 7𝐻2𝑂                (19) 37 

2𝑁𝑎+ + 𝐶𝑂3
− + 𝐻2𝑂 → 𝑁𝑎2𝐶𝑂3 ∙ 𝐻2𝑂                     (20) 38 

3𝑁𝑎+ + 𝐶𝑂3
−− + 𝐻𝐶𝑂3

− + 2𝐻2𝑂 → 2(𝑁𝑎2𝐶𝑂3 ∙ 𝑁𝑎𝐻𝐶𝑂3 ∙ 2𝐻2𝑂)         (21) 39 

 40 
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Thus, in addiction to sodium bicarbonate (NaHCO3) other salts can be formed from the reactions 1 

involving CO2, water and soda ash: sodium carbonate decahydrate (Na2CO3·10H2O), sodium 2 

carbonate heptahydrate (Na2CO3·8H2O), sodium carbonate monohydrate (Na2CO3·H2O), 3 

Wegscheider’s salt (Na2CO3·3NaHCO3) and trona (Na2CO3·NaHCO3·2H2O) [90]. Figure 4 shows 4 

the evolution of reaction equilibrium constants with temperature for the production of NaHCO3 and 5 

other salts used in this work (adapted from [9]). The data was well fitted to the equation  6 

 7 

 8 

Best fitting parameters are shown  in [90].  9 

 10 

 11 

Figure 4: Ln(Ks) values for reactions involved in NaHCO3 production (see for additional details) 12 

 13 

6.5. Case study: CFPP- Dry-carbonate process (DCP) integration 14 

6.15.1 Baseline CFPP 15 

This section shows results from the simulation of the retrofitting of a 150 MWe CFPP with a Dry 16 

Carbonate CO2 capture system to assess the effects on the power plant and global system performance 17 

and to assess the feasibility of assisting sorbent regeneration by solar thermal energy.  18 

Flue gas exiting the power plant is characterized by a dilute concentration of CO2 and a large 19 

volumetric flow at ambient pressure. Thus, a typical 505 MWe pulverized CFPP plant produces 28300 20 

m3 of flue gas per minute with a CO2 volume concentration between 10% and 15% [91]. In this work, 21 

a reference coal fired plant of 150 MWe has been considered. The reference plant scheme is illustrated 22 

in Figure 5 taking as a reference the integration model developed by Ortiz et al. [92]. The main data 23 

of the CFPP are given in Table 1. 24 

 25 

 26 
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Table 1: Reference data for a 150 MWe coal fired plant (data scaled from [48]). 1 

Item Magnitude Unit 

Coal consumption 61 ton/hr 

Air intake 692 ton/hr 

Gross power introduced with fuel 447 MWth 

Net power supplied 397 MWth 

Net Power produced 150 MWe 

Net efficiency 33.5 % 

 2 

Post-combustion flue gas characteristics are detailed in Table 2: 3 

 4 

Table 2: Flue gas flow for a 150 MWe coal fired plant (data scaled from [48]). 5 

Coal flue gas component Mole Flow (kmol/hr ) Mass Flow (tons/hr ) 

N2 17154.21 529.71 

CO2 3085.62 135.96 

H2O 1471.86 29.4 

O2 781.8 27.57 

CO 140.7 3.93 

NO 135.36 4.47 

SO2 37.53 2.64 

 6 

 7 

           8 

 9 

Figure 5: Reference coal fired power plant scheme used in the present work. 10 

 11 
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6.25.2 Dry Carbonate Process (DCP) integration  1 

A schematic representation of the integrated process for CO2 capture proposed in this work is shown 2 

in Figure 6. Simulations were done using ASPEN PLUSTM environment. Main units are indicated in 3 

the layout:  for carbonation (CARB) and decarbonation (DECARB) of the sorbent, two separation 4 

units and heat exchangers for heat recovery and water condensation at the end of the process are 5 

implemented. In the carbonator, inlet streams are water (WATHOT), sodium carbonate (NA2CO3) 6 

and cooled flue gas (FGPLAN4). The following assumptions have been considered in the simulation 7 

in ASPEN: i) ideal gas-solid separation, ii) auxiliaries are enough to heating and cooling necessities 8 

along the plant, iii) auxiliaries electric power consumption, iv) steady state operation is assumed, v) 9 

regenerator reactor model is based on chemical and phase equilibrium through Gibbs’ free energy 10 

minimization method and iv) 90% isentropic efficiency is considered in the CO2 compressor.  11 

 12 

Figure 6: Dry Carbonate Process layout. 13 

 14 

The carbonator works at 60°C and absolute pressure 1.01 bar for CO2 sorption. Under these 15 

conditions, formation of Weigscheider’ salt is thermodynamically favored. The CO2 input flow to the 16 

carbonator (FGPLANT) is 136 ton/hr (3080 kmol/hr) while the CO2 output flow (CARB-OUT) is 17 

10.7 ton/hr CO2. Efficiency of CO2 capture in the carbonator is evaluated as: 18 

 19 

𝜀𝐴𝐵𝑆 =
𝑚̇𝐶𝑂2,𝐹𝐺𝑃𝐿𝐴𝑁𝑇 − 𝑚̇𝐶𝑂2,𝐶𝐴𝑅𝐵−𝑂𝑈𝑇

𝑚̇𝐶𝑂2,𝐹𝐺𝑃𝐿𝐴𝑁𝑇
= 0,92 20 

 21 

Here ABS is the efficiency of absorption, while mCO2, FGPLANT and mCO2, CARB.OUT represent the CO2 22 

mass flows of flue gas exiting the CFPP and the carbonator, respectively. 23 

Assuming a conservative value for Na2CO3 conversion (X=0.75) in the carbonator ([74], see Figure 24 

3), the required mas flow of Na2CO3 is 430 ton/hr, which yields a mass ratio Na2CO3/CO2 of 3.2 25 

kgNa2CO3/kgCO2. In the best scenario (X=1), this mass ratio would be 2.4 kgNa2CO3/kgCO2. Na2CO3 26 

carbonation proceeds at an equimolar amount of CO2 and H2O, which yields a hot water requirement 27 

of at least 55.4 ton/hr. Within this amount, 27 ton/h are taken directly from the residual steam in the 28 
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post-combustion flue gas while the rest must be added from an external source. Table 3 shows the 1 

values of main operation parameters in the carbonator and calciner reactors. 2 

Table 3: Carbonator and calciner working conditions. 3 

 carbonator calciner 

Outlet temperature [°C] 60 140 

Outlet pressure [bar] 1,01 1.01 

Net heat duty [MWth] -101.240 122.480 

Total feed stream CO2 flow [ton/h] 135.550 0 

Total product stream CO2 flow [ton/h] 10.620 127.010 

Net stream CO2 production [ton/h] -124.930 127.010 

 4 

Following the proposed layout (Figure 6), the solids stream consists of Na2CO3·3NaHCO3 since 5 

NaHCO3 and H2O (NAHCO3C) is separated in the first separation unit from air and flue gas (FLUE) 6 

and is sent to the regenerator. Sorbent regeneration is carried out in this reactor, which releases a CO2 7 

concentrated stream. The amount of CO2 released in the regenerator is 127 ton/h at 140°C with a 8 

100% efficiency of CO2 stripping from the sorbent. 9 

 10 

From the energy balance in the regenerator, it may be calculated that a total 122.48 MWth are required 11 

for maintaining the process. This heat can be obtained by burning additional coal or from another 12 

external source. In this work, the novel use of solar thermal power is proposed for that purpose. 13 

Pressurized hot water can be stored for a relatively long time at temperatures above 140ºC. Table 4 14 

details the balances between the input and output flows in the calciner. It must be taken into account 15 

that part of the sorbent is lost during the overall process because of the irreversible reactions with SO2 16 

and HCl at the process conditions (Eqs. (5) - (6)). The loss of sorbent requires a make-up flow of 3 17 

ton/h of Na2CO3 in order to maintain the capture efficiency in the carbonator. After the regeneration 18 

stage, Na2CO3 is separated from the gas stream and it is recirculated into the carbonator at 80ºC. 19 

Table 4: Calciner streams composition. 20 

  CO2+NA NAHCO3H 

Temperature (°C) 140 60 

Pressure (bar) 1.01 1.01 

Mass flow (ton/hr)    

H2O 50.28 1.44 

CO2 124 0 

Na2CO3 323.25 442.7 

NaHCO3 0 11.39 

Wegsheider’s salt  44.39 
 21 

From the calciner, a gas flow of 17.8 ton/h (29% steam and 71% CO2 by weight) is sent to a train of 22 

heat exchangers/coolers for heating and H2O recovery. Finally, a flow of 12.7 ton/hr of pure CO2 is 23 

compressed through three intercooled stages up to 70 bar, with a global power consumption of 1.5 24 

MWe, after which it is sent to storage. Considering the energy needed in the regenerator for sorbent 25 

regeneration, integration of the DCP yields a plant efficiency given by Eq. 22: 26 
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 1 

                           𝜂𝑝𝑙𝑎𝑛𝑡 =
𝑊̇𝐶𝐹𝑃𝑃 − 𝑊̇𝑐𝑜𝑛𝑠,𝐷𝐶

𝑄̇𝐶𝐹𝑃𝑃 + 𝑄̇𝐷𝐶

                    (22) 

 

 

 

Here plant is the plant efficiency, WCFPP and QCFPP are the net power production and the thermal 2 

power consumptions of the CFPP, while Wcons, DC  and QDC are the electric power consumption and 3 

the thermal power consumption in the DCP, respectively.  By considering the work for CO2 4 

compression (WCOMP) and solids conveying (Wsolid), parasitic power consumption (Wcons,DC) is 5 

given by Eq. 23: 6 

 7 

𝑊̇𝑐𝑜𝑛𝑠,𝐷𝐶 = 𝑊̇𝑠𝑜𝑙𝑖𝑑 + 𝑊̇𝐶𝑂𝑀𝑃                       (23) 8 

 9 

Here a conservative value of Wsolid =5.5 kWh/ton can be used for estimating the solids conveying 10 

energy [93], which yields (Eq. 24): 11 

𝑊̇𝑠𝑜𝑙𝑖𝑑 = 𝑚̇𝑁𝑎2𝐶𝑂3 ∙ 5,5
𝑘𝑤ℎ

𝑡𝑜𝑛
= 2.37 𝑀𝑊𝑒𝑙           (24) 12 

being Na2CO3 the sodium carbonate mass flow. A summary of the global plant data is given in Table 13 

5.  14 

Table 5: Power balance without heat recovery. 15 

  

Power 

production 

Power 

consumption 

CFFP 150 MWe 447 MWth 

Decarbonator   122.5 MWth 

COMP  15 MWe 

Wsolid  2.37 MWe 

Net Power 132.53 MWe  

Total heat requirement  569.5 MWth 

 16 

By considering the extra-heat that must be supplied from coal to integrate the DCP, the global plant 17 

efficiency drops from 33.5% to 23.3 %. The results obtained by imposing different carbonator and 18 

regenerator temperatures are shown in Figure 7. 19 

 20 
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 1 

Figure 7: Thermal power required for different carbonator and regenerator temperatures. 2 

 3 

In the temperature range 50-70 ºC for the carbonator, power consumption varies within the range 4 

126.5MWth – 138.8 MWth. As will be seen below, integration of solar thermal power to aid sorbent 5 

regeneration, as newly proposed in this work, serves to mitigate significantly this significant loss of 6 

efficiency.  7 

 8 

6.35.3 Optimized plant configuration 9 

The modified configuration proposed in this section is schematized in Figure 8. A solid-solid heat 10 

exchanger (HEATEXCH) has been included between the two reactors with the aim of reducing the 11 

total amount of heat required in the regenerator. This heat exchanger allows for increased 12 

temperatures in the regenerator, which enhances the reaction rate with little additional expense of 13 

thermal power. The modified configuration also leads to a reduction of the power consumption for 14 

compression by introducing a multi-stage compression with inter-refrigeration included. A sensitivity 15 

analysis using this configuration has been also carried out to analyze the variation of power required 16 

for different carbonator/regenerator temperatures (Fig. 9). 17 
 18 
 19 
 20 
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 1 
 2 

Acronyms (equipment and streams):  

CARBONATOR: CO2 capture reactor 

CARBOUT: Final product from carbonator 

CO2: CO2 recovered from the system 

CO2 TO STORAGE: CO2 to the storage system (20 °C, 75 bar) 

COAL FIRED PLANT: Coal fired plant for electricity production 

COMP1: Compressor CO2 (1-10 bar) 

COMP2: Compressor CO2 (10-25 bar) 

COMP3: Compressor CO2 (25-75 bar) 

COOL: CO2 (20°C) intercooler 

FGPLANT: Flue gas exits the coal fired plant 

NA2CO3 COLD: Regenerated Na2CO3 (80°C) 

NA2CO3 HOT: Regenerated Na2CO3 (200°C) 

NAHCO3 COLD (fig.6): Solids exits the carbonator (60°C) 

NAHCO3 HOT: Solids entering the regenerator (140°C) 

HEATEX1 H2O-flue gas heat exchanger 

HEATEXCH: NaHCO3-Na2CO3 heat exchanger 

INTERC1: CO2 (20°C) intercooler 

INTERC2: CO2 (20°C) intercooler 

INTERC3: CO2 (20°C) intercooler 

MAKE UP: Sorbent Make up 

REGENARATOR: Sorbent regenerator 

SEPA1: Solid-gas separator 

SEPA2: Solid-gas separator 

WATER IN: Water to CO2 capture reactor 

 

 3 

Figure 8: Optimized plant configuration proposed in this work. 4 

 5 

 6 
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 1 

Figure 9: Power consumption for different operating conditions (including heat recovery). 2 

 3 

In this case, the analysis shows (Figure 9) that power consumption is in the range 111.9 MWth – 116.4 4 

MWth. In this new configuration, it is possible to increase temperature in the regenerator with just a 5 

slight increase of power consumption and the advantage of enhancing reaction kinetics. Thus, heat 6 

recovery reduces the heat required for sorbent regeneration by about a 10%. The heat required using 7 

this new configuration (with working conditions in the regenerator set to 200 °C and 1,01 bar) is 114 8 

MWth.  9 

 10 

The integration of solar thermal heat for aiding sorbent regeneration is a feasible option to achieve 11 

the required temperatures in the regenerator. This renewable heat source support would mitigate 12 

significantly the operational expenditure (OPEX) penalty associated to the carbon capture system 13 

integration. 14 

 15 

In order to minimize the power consumption of CO2 compression a multistage compression system 16 

is proposed. Configurations with two and three stages and different compression ratios were 17 

considered, Table 6. A three-stage compression with an inter-refrigeration stage at 20°C reduces the 18 

compression power from 15 MWe (baseline case) to 11.16 MWe  19 

 20 

Table 6: CO2 compression power 21 

 two-stage compression three-stage compression 

Component 

Exhaust  

Pressure (bar) Power (MWe) 

Exhaust  

Pressure (bar) Power (MWe) 

COMP1 9 6.29 4.2  3.78 

COMP2 75 6.02 17.6 3.78 

COMP3 - - 75  3.6 

Global Wcomp    12.31  11.16 

 22 
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Table 7 shows power consumption in the different parts of the system after introducing the proposed 1 

modifications: 2 

Table 7: Global plant energy balance. 3 

  Power production Power consumption 

CFFP 150 MWe 447 MWth 

Decarbonator   114.9 MWth 

COMP  11.16 MWe 

Wsolid  2.47 MWe 

Net Power 136.37 MWe  

Total heat   561.9 MWth 

 4 

 5 

With these modifications, the global efficiency of the plant (coal power plant + CCS) is increased by 6 

a 0.9% (from 23.3% to 24.2%).   In the above calculations, a constant value of sorbent conversion 7 

X=0.75 was used. Table 8 shows the effect of sorbent conversion (X) on global efficiency. This 8 

parameter should be determined with further certainty from lab-scale thermogravimetric studies under 9 

realistic process conditions such as the solids residence time in the reactors in future works. 10 

Nevertheless, the efficiency variation is just around 1% in a wide range of sorbent conversions 11 

(between 0.4 and 0.95, Table 8).  12 

 13 

Table 8: Efficiency values for different sorbent conversion factors (X). 14 

X 

Na2CO3 flow  

( kmol/hr ) 

Calciner 

(MWth) 

Carbonator  

( MWth ) 

Wsolid  

( MWe ) 

Efficiency 

(%) 

0.4 84.5 119.5 -104 4.6 23.2 

0.75 42.93 114.9 -101 2.47 24.2 

0.95 32.86 111 -98 1.89 24.37 

 15 

 16 

To achieve a near to zero CO2 emissions global system, renewable energy must be used for heating 17 

the regenerator, either solar or biomass when there is no availability of solar direct irradiation, which 18 

may be accomplished by storing heat. A number of storage materials for sensible storage systems are 19 

listed in Table 9. Solid storage and liquid storage media are presented for indirect storage of thermal 20 

energy, i.e. thermal energy from a heat transfer fluid (e.g. thermal oil, air) is transferred to a solid 21 

storage medium [94] . 22 

  23 
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Table 9: Main properties of materials to store energy in the form of sensible heat  [95,96] 1 

 
Temperature 

(°C) 
Cold          Hot 

Average 
density 
(kg/m³) 

Average 
heat 

conductivity 
(W/(mK)) 

Average 
heat 

capacity 
(kJ/(kgK)) 

Thermal 
diffusivity 

(m2/s) 

Volume 
specific 

heat 
capacity 

(kWht/m³) 

Volume 
(m3) 

Solid storage media 

Sand-rock-
mineral oil 

200 300 1700 1.0  1.30 4.5×10-7  60 22460.1 

Reinforced 
concrete 

200 400 2200 1.5  0.85 8.0×10-7 100 13271.9 

Cast iron 200 400 7200 37.0 0.56 9.2×10-6 160 6155.4 

Liquid storage media 

Mineral oil 200 300 770 0.12 2.6 6.0×10-8 55 24793.6 

Synthetic oil 250 350 900 0.11 2.3 5.3×10-8 57 23979.1 

Silicone oil 300 400 900 0.10 2.1  5.3×10-8 52 
Out of 
range 

Nitrite salts 250 450 1825 0.57 1.5 2.1×10-7 152 
Out of 
range 

 2 

For this study, the storage volume needed for supplying the heat for regeneration during 12 hours has 3 

been estimated. For example, a volume of 25m x 25m x 10m is required for cast iron in order to cover 4 

a storage capacity of 12 hours while if sand-rock mineral oil is used the  volume needed is 50m x 5 

50m x 10m (Table 9).  Storage capacity has been estimated including a utilization coefficient futilisation. 6 

This factor depends on the heat conductivity of the storage medium and the operational mode of the 7 

storage [95]: 8 

 9 

𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 = 𝑓𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  × 𝑚 × 𝑐𝑝 × ∆𝑇𝑚𝑖𝑥/𝑚𝑎𝑥  (36) 10 

 11 

where m is the mass [kg], cp is the mean heat capacity [J/(kgK)] and Tmix/max is the temperature 12 

difference of the working fluid. Estimated associated costs of the solar system are included in the 13 

economic sensitivity analyses. These volume sizes constrain the applicability of the integrated 14 

CCS/solar solution as depending on space availability. 15 

 16 

Another possibility for achieving the near to zero CO2 emissions global system would be using 17 

biomass to meet power requirements for the regenerator (114.9 MWth in the Best Estimate case). By 18 

considering an average heat capacity of biomass of 10.87 MJ/kg (Table 10), a biomass flow rate input 19 

of 44.5 ton/h is necessary. If wood chips are used, the storage capacity for the biomass needed for 20 

one week of plant operation would be around 17500 m3. 21 

Table 10: Properties of different typologies of wood chips 22 

Wood chips Hi[MJ/kg] [kg/m3] Hi[MJ/ m3] 

Chestnut 10,53 580 6106,24 

Beech 13,45 750 10084,95 

Spruce 7,90 450 3556,98 

Larch 11,60 660 7654,88 

Average 10,87 610 6630,29 

Comentado [U8]: Todavía no hemos hablado de casos... 
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Under the Carbon Emissions Reduction Target (CERT), a factor of 0.0249 kgCO2/kWh is assumed for 1 

wood [97]. In the case study a factor of 0.03 tonCO2/MWh is considered. Thus, an additional amount 2 

of 3.5 ton/h (from 10.7 ton/h to 14.2 ton/h) must be taken into account in the analysis. 3 

 4 

6.45.4 CFPP- Dry-carbonate process integration: Economic Analysis 5 

A detailed techno-economic analysis to assess the integration of medium temperature solar thermal 6 

technology to assist regeneration of the dry sorbent has been carried out. If heat for regenerator is 7 

obtained from solar thermal power the economic efficiency (defined in this case as the ratio between 8 

power production -136 MWe- and fossil fuel consumption -447 MWth- without considering solar 9 

thermal power) would be 30.5%.  A number of assumptions according to different scenarios were 10 

made for the economic analysis. These different scenarios were defined in terms of: 11 

 12 

- Electricity production, to take into account the penalty on electricity generation of the 13 

ancillary equipment consumption and parasitic loads (consumption in compressors, solids 14 

conveying and other ancillary equipment). All these factors have been considered by an 15 

electricity penalty of 10.1%.  16 

- Variation of fuel costs, to include in the analyses the variability of fuel costs.  17 

- Uncertainties in plant installation costs, to take into account uncertainty in the evolution of 18 

equipment costs. The maximum deviation has been taken as a  ±9% of the average installation 19 

price. 20 

- DCP costs. As for any novel technology, there is uncertainty on the installation costs and its 21 

evolution. A range of ±50% for CCS installation cost has been considered. 22 

- Different fixed charge factors were in addition considered for the different scenarios. 23 

 24 

Under these considerations, three scenarios were defined: 25 

 26 

- Scenario P (Pessimistic Scenario). The pessimistic scenario implies a combination of the 27 

following factors: highest penalty in electricity generation (it has been taken as the maximum 28 

error in estimating parasitic electricity losses), highest costs and a fixed charge factor of 0.15. 29 

- Scenario BE (Best Estimated Scenario). In this scenario, the values derived from the 30 

simulation above described were used to define the efficiency of the system. It considers a 31 

capital cost of 30 M€ [6]  for the CCS technology and a fixed charge factor of 0.1. 32 

- Scenario O (Optimistic Scenario). This optimistic scenario considers a range of minor fuel 33 

cost and minor costs of the CCS technology and plant installation. Furthermore, it considers 34 

the smallest change in electricity production and the smallest fixed charge factor of 0.075. 35 

 36 

Table 11 summarizes the data used for calculating the costs according to the different scenarios for a 37 

total amount of 1089 kton/year avoided CO2 emissions using the DCP. 38 

 39 

 40 

 41 

 42 

 43 
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Table 11: CO2 emission data for different scenarios. 1 

 
REFERENCE 

PLANT 

DRY 

CARBONATE 

(P) 

DRY 

CARBONATE 

(BE) 

DRY 

CARBONATE 

(O) 

Power (MWe) 150 150 150 150 

CCS Power consumption (MWe) - 25 13.63 13 

Regenerator Heat requirement (MWth) - 119 114.9 

 

111 

Net power (MWe) 150 125 136.37 137 

CO2 Emissions (ton/hr) 136 10.7 10.7 10.7 

CO2 Emissions (kmol/hr) 3080 243.2 243.2 243.2 

CO2 Avoided Emissions (kton/year)  1089 1089 1089 

CO2 Emissions (tons/ MWhe/hr) 0.9 0.085 0.078 0.078 

 2 

Along with capital investment and operating and maintenance (O&M) cost, energy consumption is a 3 

main factor that determines the viability of a CO2 capture technology. The specific energy 4 

consumption for CO2 avoided (SPECCA) is usually employed to quantify the additional fuel 5 

consumption (in MJ) needed to avoid the emission of 1 kg of CO2 into the atmosphere [42] (Eq. 25): 6 

 7 

𝑆𝑃𝐸𝐶𝐶𝐴 = 3600

1
𝜂𝐶𝐶𝑆

−
1

𝜂𝑟𝑒𝑓

𝐸𝑟𝑒𝑓 − 𝐸𝐶𝐶𝑆 
   [

𝑀𝐽

𝑘𝑔𝐶𝑂2
]                (25) 8 

 9 

where ref and CCS are the power plant efficiencies, and Eref and ECCS are the CO2 emissions ratios 10 

(in kgCO2 /MWhel) without and with the DCP integrated, respectively. Table 12 shows the results 11 

obtained from the SPECCA analysis for the different scenarios: 12 

 13 

Table 12: SPECCA Analysis for different scenarios. 14 

Item Scen.P Scen. BE Scen. O 

Net Power Production (MWe) 125 136,37 137 

CO2 CCS (ton/hr) 10,7 10,7 10,7 

ECCS (kgCO2/kWhel) 85.60 78.46 78.10 

CCS 0.232 0.242 0.244 

SPECCA (MJ/kgCO2) 5.86 5.03 4.90 

CCS_ECO 0.279 0.305 0.306 

SPECCA_ECO(MJ/kgCO2) 2.65 1.29 1.24 

 15 

If the analysis is performed in terms of operational expenditures, and heat for regeneration of the 16 

sorbent is provided by solar (evaluated as a free energy intake from the point of view of OPEX), an 17 

operational efficiency value can be defined as CCS_ECO= Net Power Production with CCS (MWe)/ fossil 18 

fuel consumption (MWth). For operational expenditures analysis, a new SPECCA definition is used 19 

(SPECCAECO) in order to remark the difference between concepts (see Table 12): 20 Comentado [U9]: No se entiende...cual es la def de este 

nuevo specca? 
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The economic cost of CO2 capture can be estimated in different ways, yet the most commonly used  1 

method contemplates incremental cost of electricity (€/kWh) and avoiding CO2  cost (AC) expressed 2 

in terms of  €/tonCO2 avoided [98] (Eq. 26-27): 3 

 4 

∆𝐶𝑂𝐸 = 𝐶𝑂𝐸𝐶𝐶𝑆 − 𝐶𝑂𝐸𝑟𝑒𝑓                     (26) 5 

𝐴𝐶 =
∆𝐶𝑂𝐸

(
𝑡𝑜𝑛𝐶𝑂2

𝑘𝑊ℎ
)

𝐶𝐶𝑆
− (

𝑡𝑜𝑛𝐶𝑂2

𝑘𝑊ℎ
)

𝐶𝐶𝑆

         (27) 6 

 7 

Here COE is the cost of electricity, the sub-index CCS represents the carbon capture and storage 8 

system and the sub-index ref refers to the reference plant (coal fired plant). For an accurate economic 9 

analysis, the lack of imposed taxes to CO2 emissions has been taken into consideration. The costs of 10 

electricity in the three different scenarios for the reference plant are given by Eq. 28: 11 

 12 

𝐶𝑂𝐸 = 𝑓𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 + 𝑓𝑢𝑒𝑙 𝑐𝑜𝑠𝑡 =
𝑇𝐶𝑅 ∙ 𝐹𝐶𝐹

8760 ℎ
+ 𝑉𝑂𝑀 +

𝐹𝐶

𝜂𝑒𝑙
       (28) 13 

where  is the global plant efficiency ( = 0.335 for the reference plant). 14 

 15 

Regarding the solar thermal power technology that would be used for producing the thermal power 16 

required for sorbent regeneration, a cost range between 1500-3500 €/kW [11] has been estimated for 17 

a parabolic trough  plant with thermal energy storage [94]. This solar thermal technology can supply 18 

heat for regeneration of the dry sorbent at the required temperatures in the regenerator. Thus, to supply 19 

the heat required for the CCS system the expected cost has been calculated as (Eq. 29): 20 

 21 

𝐸𝑆𝑂𝐿𝐴𝑅( 𝑀€ ) = 𝑐𝑆𝑂𝐿𝐴𝑅 (
𝑀€

𝑀𝑊
 ) ∙Φ𝑅𝐸𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝑂𝑅 (𝑀𝑊)              (29)  22 

 23 

where 𝑐𝑆𝑂𝐿𝐴𝑅 is the solar plant cost and   Φ𝑅𝐸𝐺𝐸𝑁𝐸𝑅𝐴𝑇𝑂𝑅 is the thermal power required by the 24 

regenerator. 25 

 26 

The summarized COE costs for the three scenarios are shown in Table 13: 27 

 28 

Table 13: COE for different scenarios. 29 

Item Item Units Scen. P Scen. BE Scen. O 

Fuel Cost [99] FC €/kWh 0.03 0.023 0.02 

Capital Cost TCR €/kWe 1200 1100 1000 

Fixed Charge Factor [99] FCF year-1 0.15 0.1 0.075 

Variable Cost VOM €/kWe 0.006 0.006 0.006 

COEref  €/kWh 0.116 0.087 0.074 

 30 

Table 14 shows the COE and investment costs for the three scenarios considered to facilitate the 31 

analysis on the effect of solar thermal power cost (in the range between 1500 €/kWth and 3500 32 

€/kWth). These include the cost of the heat storage system. Regarding the cost of electricity with a 33 
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CCS system, electric efficiency depends on power consumption for the different scenarios. Table 15 1 

shows the variation of COE for the different  solar thermal power costs.  2 

 3 

Table 14: COE for CCS system (as function of Solar Capital Costs). 4 

Item Item Units Scen. PE Scen. BE Scen. O 

Net Power Production   MWe 125 136.37 137 

el     27.9 29.9 30.2 

system   % 22.1 24.2 24.37 

Dry Carb. Capital cost [6]                 TCR M€/ MWe 0.32 0.223 0.148 

Solar Capital Cost [100] TCR M€/MWe 1.5 

COECCS   €/kWh 0.165 0.115 0.095 

AC   €/tonCO2 60.416 34.245 25.421 

Solar Capital Cost [100] TCR M€/ MWe 2 

COECCS   €/kWh 0.174 0.121 0.099 

AC   €/tonCO2 64.223 41.188 30.629 

Solar Capital Cost [100] TCR M€/ MWe 2.5 

COECCS   €/kWh 0.182 0.127 0.103 

AC   €/tonCO2 73.736 48.132 35.837 

Solar Capital Cost [100] TCR M€/ MWe 3 

COECCS   €/kWh 0.191 0.132 0.108 

AC   €/tonCO2 83.249 55.076 41.045 

Solar Capital Cost [100] TCR M€/ MWe 3.5 

COECCS   €/kWh 0.199 0.138 0.112 

AC   €/tonCO2 92.762 62.020 46.253 

 5 

Table 15: COE (€/kWhel) for different costs of solar thermal field. 6 

Solar Thermal cost ( €/kWt) Scen. P Scen. BE Scen. O 

1500 0.0492 0.0281 0.0209 

2000 0.0578 0.0339 0.0252 

2500 0.0664 0.0396 0.0295 

3000 0.0749 0.0453 0.0337 

3500 0.0835 0.0510 0.0380 

 7 

The costs of the other components and reactors are estimated in the range between 20 and 40 M€ [6]. 8 

Finally, maintenance and operation costs are assumed as 10% of the total investment cost. The 9 

investment cost of the CCS system is given by Eq. 30: 10 

 11 

𝐸𝑇𝑂𝑇 = 𝐸𝑆𝑂𝐿𝐴𝑅 + 𝐸𝐷𝑅𝑌𝐶𝐴𝑅𝐵𝑂𝑁𝐴𝑇𝐸 + 𝐸𝑂&𝑀                     (30) 12 

 13 
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where ETOT is the total investment cost, ESOLAR is the solar plant installation cost, EDRYCARBONATE is 1 

the carbon capture system installation cost and EO&M represents the cost due to operation and 2 

maintenance. Total CFPP retrofitting investment cost are shown in Table 16 as a function of 3 

investment costs for the three scenarios and solar field prices considered. 4 

 5 

Table 16: Total CFPP retrofitting investment cost calculated by considering several CSP plant 6 

prices. 7 

 8 

Solar Thermal Cost 1.5 M€/ MWe 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 179.25 172.35 166.5 

EDRY M€ 40 30 20 

EO&M M€ 21.92 20.23 18.65 

ETOT M€ 241.17 222.58 205.15 

Solar Thermal Cost 2 M€/ MWe 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 239 229.8 222 

EDRY M€ 40 30 20 

EO&M M€ 27.9 25.98 24.2 

ETOT M€ 306.9 285.78 266.2 

Solar Thermal Cost 2.5 M€/ MWe 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 298.75 287.25 277.5 

EDRY M€ 40 30 20 

EO&M M€ 33.87 31.725 29.75 

ETOT M€ 372.62 348.975 327.25 

Solar Thermal Cost 3 M€/ MWe 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 358.5 344.7 333 

EDRY M€ 40 30 20 

EO&M M€ 39.85 37.47 35.3 

ETOT M€ 438.35 412.17 388.3 

Solar Thermal Cost 3.5 M€/ MWe 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 418.25 402.15 388.5 

EDRY M€ 40 30 20 

EO&M M€ 45.82 43.21 40.85 

ETOT M€ 504.07 475.36 449.35 

 9 

 10 

 11 

 12 

 13 
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After the economic evaluation of electricity costs and avoided CO2 emissions with the DCP assisted 1 

by medium temperature solar thermal power, net present value (NPV) and Simple Pay Back (SPB) 2 

are analyzed with the goal of assessing the effects of carbon taxes and installation funds for 3 

renewables technologies. To carry out these analyses, carbon taxes are assumed as fixed through the 4 

next years in the worst scenario (Scenario P) while they are assumed to increase in future years for 5 

the optimistic scenario (Scenario O). Additionally, European or National funds could be received by 6 

the integration of solar thermal power to reduce CO2 emissions. The net gain from avoided CO2 7 

emissions is given by Eq. 31: 8 

 9 

𝐸𝐶𝑂2,𝐴𝑉𝑂𝐼𝐷𝐸𝐷 = (𝑡𝑜𝑛𝐶𝑂2,𝑟𝑒𝑓 − 𝑡𝑜𝑛𝐶𝑂2,𝐶𝐶𝑆) ∙ 𝑐𝐶𝑂2                   (31) 10 

 11 

where ECO2 AVOIDED is the avoided cost due to the avoided emission of CO2, tonCO2, ref  and tonCO2, CCS 12 

are the CO2 emissions without and with the DCP integrated, respectively, while cCO2 is the carbon tax 13 

expressed in €/tonCO2. The energy simple payback period, SPB, is the time to recover the initial 14 

investment in energy savings. SPB is calculated as the ratio of capital costs to the annual energy cost 15 

savings (Eq. 32): 16 

 17 

𝑆𝑃𝐵 =
𝐸𝑇𝑂𝑇

𝐸𝑁𝐸𝑇,GAIN,𝑦𝑒𝑎𝑟
                         (32) 18 

 19 

where ETOT is the total investment of the plant while ENET, GAIN, year represents the annual economic 20 

gain due to the avoided emissions.  Figure 10 illustrates the SPB curves for the three scenarios as 21 

function of total CFPP retrofitting capital cost. 22 

 23 

  24 

Figure 10: SPB curves according to the three scenarios as function of CFPP retrofitting capital costs. 25 

 26 

The net present value (NPV) is calculated as the discounted cash flow minus the capital cost (Eq. 33): 27 

 28 
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𝑁𝑃𝑉 = ∑
𝐸𝑁𝐸𝑇,𝐺𝐴𝐼𝑁,𝑦𝑒𝑎𝑟

(𝑖 + 1)𝑛

𝑛

𝑛=0

 − 𝐸𝑇𝑂𝑇                    (33) 1 

 2 

where n represents the year number and i represents the discount rate. Figure 11 illustrates the 3 

variation of NPV as a function of the carbon taxes value for fixed discount rate (i=0.1) and different 4 

values of investment cost.  5 

 6 

   7 

Figure 11: NPV for different carbon tax values and different investment costs. 8 

 9 

As can be seen, NPV changes substantially under different situations of carbon taxes. In addition for 10 

solar installations there are available funds that could be considered (European or National funds)  11 

that would favor retrofitting of the plant but they have not been included in this analysis.  12 

If the economic profit for the avoided CO2 emissions is not enough to balance the additional 13 

investment cost an increase of electricity price (∆𝑃𝑅𝐼𝐶𝐸𝐸𝐿) is required. The annual revenues due to 14 

this incremental cost is given by Eq. 34:  15 

 16 

𝐸𝐼𝑁𝐶𝑅 = ∆𝑃𝑅𝐼𝐶𝐸𝐸𝐿 (
€

𝑘𝑤ℎ
) ∙ 𝑃𝑁𝐸𝑇,𝑦𝑒𝑎𝑟 (

𝑀𝑊ℎ

𝑦𝑒𝑎𝑟
)       (34) 17 

 18 

where EINCR, expressed in M€/year, represents the revenues due to the incremented cost of selling 19 

electricity while PNET, year is the total electric energy per year produced by the plant. Thus, the total 20 

yearly revenue (ETOT, REV) would be (Eq. 35): 21 

 22 

𝐸𝑇𝑂𝑇,𝑅𝐸𝑉 = 𝐸𝑁𝐸𝑇,𝐺𝐴𝐼𝑁,𝑦𝑒𝑎𝑟 + 𝐸𝐼𝑁𝐶𝑅                                     (35) 23 

 24 

The required rise of electricity price associated to each case is shown in Table 17: 25 

 26 
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Table 17: Required increment of electricity sale price for maintaining a fixed value of IRR=0.1 1 

  Total Investment Cost (M€) Eincr ( M€/year)  Electricity price (c€/kWh) 

Without Carbon Tax  

200 23.5 1.967 

300 35.2 2.947 

400 47 3.934 

500 58.8 4.922 

Carbon Tax 20 

€/tonCO2 

200 0 0 

300 11.6 0.971 

400 23.4 1.959 

500 35.2 2.947 

Carbon Tax 

40€/tonCO2 

200 0 0 

300 0 0 

400 0 0 

500 11.5 0.963 

 2 

 3 

6.55.5 Heat storage for near zero CO2 emissions 4 

 5 

The use of heat storage for solar has been considered in the previous analyses by taking into account 6 

solar equipment costs. If biomass is alternatively employed, operating costs derive from the various 7 

stages of the supply chain (cutting, chipping, transportation). On average, a total cost of 50 €/ton 8 

[101] for  M40 (M40= 40% of humidity) wood chip can be estimated whereas the total cost would be 9 

85 €/ton [102] for M20 wood chip. In the case study the LHV is near a M40 wood chip class.  If a 10 

wood chip price of 60 €/ton is assumed, it would result a biomass annual cost of 31.18 M€. Under a 11 

scenario of 60 €/ton CO2 for carbon taxes a yearly revenue of 32.31 M€ could be achieved. For these 12 

calculations, a total investment cost within the range of 80-110 €/kW [103] is considered for the 13 

biomass system, where O&M costs are estimated as a 40% of the capital costs.  14 

 15 

6.65.6 Discussion  16 

 17 

The above results suggest a potential interest of the DCP for CO2 capture. The energy penalty that 18 

results from retrofitting a CFPP with this CCS technology  (~9%) is similar to that estimated for other 19 

technologies such as pre-combustion CO2 capture (~16%), amines scrubbing (~8-12%), membranes 20 

(~5-8.5%) and Calcium Looping (~4-9%). However, because of the low temperature needed to 21 

regenerate the sorbent, a CO2 neutral solar facility could be efficiently integrated to supply the heat 22 

required, which would reduce coal consumption and operation costs significantly. Solar energy 23 

integration would serve to decrease the energy penalty just to CO2 compression and ancillaries 24 

consumption, which leads to a near to zero CO2 emissions power plant.  The solar-CCS system 25 

penalty is estimated as just 3-4% points, with a SPECCA of only around 2 MJ/kg, which is well below 26 

the SPECCA values reported for other CO2 capture technologies. Previous works based on 27 

thermodynamic analysis of the DCP report an energy consumption of about 3 MJ/kg [8], which is in 28 

the range of the results obtained in this work.  29 

 30 
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The results obtained from the economic analysis strongly suggest the economic viability of using the 1 

DCP to retrofit a CFPP. Since the DCP is an emerging CCS technology, cost estimations are based 2 

on assumptions based on diverse scenarios. Thus, for a 150 MWe CFPP, the most optimistic scenario 3 

leads the total investment cost of 205 M€ whereas for the pessimistic scenario the calculated 4 

investment is 449 M€. If medium temperature solar energy is used to assist the DCP, the estimated 5 

costs are in the range between 25 and 46 €/tonCO2 (avoided CO2) and from 0.095 to 0.112 € per kWhe. 6 

According to Zhao et al. [8], the total capital cost of an Integrated Gasification Combined Cycle 7 

(IGCC) plant with a pre-combustion CO2 capture system is about 1775-2567$/kW, the cost of a CFPP 8 

with a MEA system for post-combustion CO2 capture would be about 1798$/kW, that of an oxy-9 

combustion plant would be about 1810 $/kW whereas that of a membrane/catalytic plant would be 10 

2082 $/kW. Considering the results obtained for the optimistic case, the total investment cost of the 11 

proposed solar assisted DCP is estimated in the range of 1500-3300 $/kW as function of solar facility 12 

cost. For that, the Dry Carbonate Process investment cost of 160-320€/kW, which is in the line of 13 

previous works [6,8].                 14 

 15 

It is important to point out that the above analysis is based on different assumptions for a novel 16 

integration scheme. However, the preliminary results obtained show an interesting potential to be 17 

further explored by a deeper analysis in future works. Future works should address in further depth a 18 

comparison between different CFPP-DCP-solar integration schemes to minimize energy penalty and 19 

investment costs. Since the carbonation reaction is exothermic, a proper use of the released energy is 20 

fundamental. Moreover, further work on the multicycle sorbent behavior at realistic process 21 

conditions is needed.   22 

 23 

7.6. Conclusions 24 

This paper is devoted in its first part to provide an overview of the currently most studied CO2 capture 25 

systems. The performance of CCS technologies is assessed, highlighting advantages, drawbacks and 26 

challenges. In a second part a novel analysis is carried out for the integration of medium temperature 27 

solar thermal energy into the Dry Carbonate Process to assist sorbent regeneration. The Dry 28 

Carbonate Process to capture CO2 is based on the use of a cheap, abundant and non-toxic material 29 

(Na2CO3) as dry sorbent at relatively low temperatures for both carbonation and sorbent regeneration. 30 

Our work shows that, when coupled with a medium temperature solar thermal power technology 31 

including thermal storage, the integration yields a nearly zero CO2 emissions with a reduced global 32 

penalty in the power plant and avoiding also the generation of hazardous waste. The efficiency of the 33 

power plant coupled to the Dry Carbonate Process to capture CO2 is decreased from 33.5% to 24.2% 34 

if fossil fuel is used to supply the heat for regeneration of the sorbent. This penalty is due to the 35 

amount of heat required for sorbent regeneration plus the power spent for CO2 compression and solid 36 

conveying. If solar thermal power is used for sorbent regeneration, the penalty drops remarkably and 37 

the global efficiency, defined in terms of operational expenditures, is just decreased from 33.5% to 38 

30%. Since additional fossil fuel would not be needed for sorbent regeneration most of this penalty 39 

is due to compression of the captured CO2. A cost estimation of CO2 capture by means of the Dry 40 

Carbonation Process coupled to solar thermal power (for the optimistic scenario) ranges from 25 to 41 

46 €/tonCO2 (avoided CO2) and from 0.095 to 0.112 € per kWhe   produced (compared to 0.087 €/kWhe 42 
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for the reference plant) as depending on the cost of the solar thermal technology. Thus, the highest 1 

costs are associated to the solar energy system. Although there is room for technology improvement 2 

and additional cost reductions could be expectedly achieved, the proposed integration based on solar 3 

thermal power and the Dry Carbonation Process can be considered as a promising technology as 4 

compared to other carbon capture technologies and renewable energy integrations recently proposed 5 

in the literature. 6 
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Figure 1: Overview of technologies for CO2 capture. 2 
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Figure 2: General scheme of the Dry Carbonate Process. 4 
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Figure 3: Na2CO3 conversion as a function of the cycle number (data extracted from  [74]). 2 
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Figure 12: Ln(Ks) values for reactions involved in NaHCO3 production from raw trona 4 
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Figure 5: Reference coal fired power plant scheme used in the present work. 4 
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Figure 6: Dry Carbonate Process layout. 
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Figure 7: Thermal power required for different carbonator and regenerator temperatures. 
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Acronyms (equipment and streams):  

CARBONATOR: CO2 capture reactor 

CARBOUT: Final product from carbonator 

CO2: CO2 recovered from the system 

CO2 TO STORAGE: CO2 to the storage system (20 °C, 75 bar) 

COAL FIRED PLANT: Coal fired plant for electricity production 

COMP1: Compressor CO2 (1-10 bar) 

COMP2: Compressor CO2 (10-25 bar) 

COMP3: Compressor CO2 (25-75 bar) 

COOL: CO2 (20°C) intercooler 

FGPLANT: Flue gas exits the coal fired plant 

NA2CO3 COLD: Regenerated Na2CO3 (80°C) 

NA2CO3 HOT: Regenerated Na2CO3 (200°C) 

NAHCO3 COLD (fig.6): Solids exits the carbonator (60°C) 

NAHCO3 HOT: Solids entering the regenerator (140°C) 

HEATEX1 H2O-flue gas heat exchanger 

HEATEXCH: NaHCO3-Na2CO3 heat exchanger 

INTERC1: CO2 (20°C) intercooler 

INTERC2: CO2 (20°C) intercooler 

INTERC3: CO2 (20°C) intercooler 

MAKE UP: Sorbent Make up 

REGENARATOR: Sorbent regenerator 

SEPA1: Solid-gas separator 

SEPA2: Solid-gas separator 

WATER IN: Water to CO2 capture reactor 

 

 

Figure 8: Optimized plant configuration proposed in this work. 
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Figure 9: Power consumption for different operating conditions (including heat recovery). 

 

 

 

  

Figure 10: SPB curves according to the three scenarios as function of CFPP retrofitting capital 

costs. 
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Figure 11: NPV for different carbon tax values and different investment costs. 
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Table 1: Reference data for a 150 MWe coal fired plant (data scaled from [48]). 

Item Magnitude Unit 

Coal consumption 61 ton/hr 

Air intake 692 ton/hr 

Gross power introduced with fuel 447 MWth 

Net power supplied 397 MWth 

Net Power produced 150 MWel 

Net efficiency 33.5 % 

 

 

 

 

Table 2: Flue gas flow for a 150 MWe coal fired plant (data scaled from [48]). 

Coal flue gas component Mole Flow (kmol/hr ) Mass Flow (tons/hr ) 

N2 17154.21 529.71 

CO2 3085.62 135.96 

H2O 1471.86 29.4 

O2 781.8 27.57 

CO 140.7 3.93 

NO 135.36 4.47 

SO2 37.53 2.64 

 

 

Table 3: Carbonator and calciner working conditions. 

 carbonator calciner 

Outlet temperature [°C] 60 140 

Outlet pressure [bar] 1,01 1.01 

Net heat duty [MW] -101.240 122.480 

Total feed stream CO2 flow [ton/h] 135.550 0 

Total product stream CO2 flow [ton/h] 10.620 127.010 

Net stream CO2 production [ton/h] -124.930 127.010 
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Table 4: Calciner streams composition. 

  CO2+NA NAHCO3H 

Temperature (°C) 140 60 

Pressure (bar) 1.01 1.01 

Mass flow (ton/hr)    

H2O 50.28 1.44 

CO2 124 0 

Na2CO3 323.25 442.7 

NaHCO3 0 11.39 

Wegsheider’s salt  44.39 

 

 

Table 5: Power balance without heat recovery. 

  

Power 

production 

Power 

consumption 

CFFP 150 MWel 447 MWth 

Decarbonator   122.5 MWth 

COMP  15 MWel 

Wsolid  2.37 MWel 

Net Power 132.53 MWel  

Total heat requirement  569.5 MWth 

 

 

 

Table 6: CO2 compression power 

 two-stage compression three-stage compression 

Component 

Exhaust  

Pressure (bar) Power (MW) 

Exhaust  

Pressure (bar) Power (MW) 

COMP1 9 6.29 4.2  3.78 

COMP2 75 6.02 17.6 3.78 

COMP3 - - 75  3.6 

Global Wcomp    12.31  11.16 
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Table 7: Global plant energy balance. 

  Power production Power consumption 

CFFP 150 MWel 447 MWth 

Decarbonator   114.9 MWth 

COMP  11.16 MWel 

Wsolid  2.47 MWel 

Net Power 136.37 MWel  

Total heat   561.9 MWth 

 

 

Table 8: Efficiency values for different sorbent conversion factors (X). 

X 

Na2CO3 flow ( 

kmol/hr ) 

Calciner 

(MWth) 

Carbonator  

( MWth ) 

Wsolid  

( MWel ) 

Efficiency 

(%) 

0.4 84.5 119.5 -104 4.6 23.2 

0.75 42.93 114.9 -101 2.47 24.2 

0.95 32.86 111 -98 1.89 24.37 

 

Table 9: Main properties of materials to store energy in the form of sensible heat  [95,96] 

 
Temperature 

(°C) 
Cold          Hot 

Average 
density 
(kg/m³) 

Average 
heat 

conductivity 
(W/(mK)) 

Average 
heat 

capacity 
(kJ/(kgK)) 

Thermal 
diffusivity 

(m2/s) 

Volume 
specific 

heat 
capacity 

(kWhth/m³) 

Volume 
(m3) 

Solid storage media 

Sand-rock-
mineral oil 

200 300 1700 1.0  1.30 4.5×10-7  60 22460.1 

Reinforced 
concrete 

200 400 2200 1.5  0.85 8.0×10-7 100 13271.9 

Cast iron 200 400 7200 37.0 0.56 9.2×10-6 160 6155.4 

Liquid storage media 

Mineral oil 200 300 770 0.12 2.6 6.0×10-8 55 24793.6 

Synthetic oil 250 350 900 0.11 2.3 5.3×10-8 57 23979.1 

Silicone oil 300 400 900 0.10 2.1  5.3×10-8 52 
Out of 
range 

Nitrite salts 250 450 1825 0.57 1.5 2.1×10-7 152 
Out of 
range 
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Table 10: Properties of different typologies of wood chips 

Wood chips Hi[MJ/kg] [kg/m3] Hi[MJ/ m3] 

Chestnut 10,53 580 6106,24 

Beech 13,45 750 10084,95 

Spruce 7,90 450 3556,98 

Larch 11,60 660 7654,88 

Average 10,87 610 6630,29 

 

 

 

Table 11: CO2 emission data for different scenarios. 

 
REFERENCE 

PLANT 

DRY 

CARBONATE 

(P) 

DRY 

CARBONATE 

(BE) 

DRY 

CARBONATE 

(O) 

Power (MWel) 150 150 150 150 

CCS Power consumption (MWel) - 25 13.63 13 

Regenerator Heat requirement (MWth) - 119 114.9 

 

111 

Net power (MWel) 150 125 136.37 137 

CO2 Emissions (ton/hr) 136 10.7 10.7 10.7 

CO2 Emissions (kmol/hr) 3080 243.2 243.2 243.2 

CO2 Avoided Emissions (kton/year)  1089 1089 1089 

CO2 Emissions (tons/ MWhel/hr) 0.9 0.085 0.078 0.078 

 

 

Table 12: SPECCA Analysis for different scenarios. 

Item Scen.P Scen. BE Scen. O 

Net Power Production (MW) 125 136,37 137 

CO2 CCS (ton/hr) 10,7 10,7 10,7 

ECCS (kgCO2/kWhel) 85.60 78.46 78.10 

CCS 0.232 0.242 0.244 

SPECCA (MJ/kgCO2) 5.86 5.03 4.90 

CCS_ECO 0.279 0.305 0.306 

SPECCA_ECO(MJ/kgCO2) 2.65 1.29 1.24 
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Table 13: COE for different scenarios. 

Item Item Units Scen. P Scen. BE Scen. O 

Fuel Cost [99] FC €/kWh 0.03 0.023 0.02 

Capital Cost TCR €/kWe 1200 1100 1000 

Fixed Charge Factor [99] FCF year-1 0.15 0.1 0.075 

Variable Cost VOM €/kWe 0.006 0.006 0.006 

COEref  €/kWh 0.116 0.087 0.074 

 

 

Table 14: COE for CCS system (as function of Solar Capital Costs). 

Item Item Units Scen. PE Scen. BE Scen. O 

Net Power Production   MWe 125 136.37 137 

el     27.9 29.9 30.2 

system   % 22.1 24.2 24.37 

Dry Carb. Capital cost [6]                 TCR M€/MW 0.32 0.223 0.148 

Solar Capital Cost [100] TCR M€/MW 1.5 

COECCS   €/kWh 0.165 0.115 0.095 

AC   €/tonCO2 60.416 34.245 25.421 

Solar Capital Cost [100] TCR M€/MW 2 

COECCS   €/kWh 0.174 0.121 0.099 

AC   €/tonCO2 64.223 41.188 30.629 

Solar Capital Cost [100] TCR M€/MW 2.5 

COECCS   €/kWh 0.182 0.127 0.103 

AC   €/tonCO2 73.736 48.132 35.837 

Solar Capital Cost [100] TCR M€/MW 3 

COECCS   €/kWh 0.191 0.132 0.108 

AC   €/tonCO2 83.249 55.076 41.045 

Solar Capital Cost [100] TCR M€/MW 3.5 

COECCS   €/kWh 0.199 0.138 0.112 

AC   €/tonCO2 92.762 62.020 46.253 
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Table 15: COE (€/kWhel) for different costs of solar thermal field. 

Solar Thermal cost ( €/kWt) Scen. P Scen. BE Scen. O 

1500 0.0492 0.0281 0.0209 

2000 0.0578 0.0339 0.0252 

2500 0.0664 0.0396 0.0295 

3000 0.0749 0.0453 0.0337 

3500 0.0835 0.0510 0.0380 

 

 

Table 16: Total CFPP retrofitting investment cost calculated by considering several CSP plant 

prices. 

Solar Thermal Cost 1.5 M€/MW 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 179.25 172.35 166.5 

EDRY M€ 40 30 20 

EO&M M€ 21.92 20.23 18.65 

ETOT M€ 241.17 222.58 205.15 

Solar Thermal Cost 2 M€/MW 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 239 229.8 222 

EDRY M€ 40 30 20 

EO&M M€ 27.9 25.98 24.2 

ETOT M€ 306.9 285.78 266.2 

Solar Thermal Cost 2.5 M€/MW 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 298.75 287.25 277.5 

EDRY M€ 40 30 20 

EO&M M€ 33.87 31.725 29.75 

ETOT M€ 372.62 348.975 327.25 

Solar Thermal Cost 3 M€/MW 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 358.5 344.7 333 

EDRY M€ 40 30 20 

EO&M M€ 39.85 37.47 35.3 

ETOT M€ 438.35 412.17 388.3 

Solar Thermal Cost 3.5 M€/MW 

 Units Scen. P Scen. BE Scen. O 

ESOLAR M€ 418.25 402.15 388.5 

EDRY M€ 40 30 20 

EO&M M€ 45.82 43.21 40.85 

ETOT M€ 504.07 475.36 449.35 
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Table 17: Required increment of electricity sale price for maintaining a fixed value of IRR=0.1 

  Total Investment Cost (M€) Eincr ( M€/year)  Electricity price (c€/kWh) 

Without Carbon Tax  

200 23.5 1.967 

300 35.2 2.947 

400 47 3.934 

500 58.8 4.922 

Carbon Tax 20 

€/tonCO2 

200 0 0 

300 11.6 0.971 

400 23.4 1.959 

500 35.2 2.947 

Carbon Tax 

40€/tonCO2 

200 0 0 

300 0 0 

400 0 0 

500 11.5 0.963 

 

 

 

 

 

 


