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Abstract. Audio identification consist in the ability to pair audio sig-
nals of the same perceptual nature. In other words, the aim is to be
able to compare an audio signal with a modified versions perceptually
equivalent. To accomplish that, an audio fingerprint is extracted from
the signals and only the fingerprints are compared to asses the simi-
larity. Some guarantee have to be given about the equivalence between
comparing audio fingerprints and perceptually comparing the signals.
In designing AFPs, a dense representation is more robust than a sparse
one. A dense representation also imply more compute cycles and hence
a slower processing speed.
To speedup the computing of a very dense audio fingerprint, able to stand
stable under noise, re-recording, low-pass filtering, etc., we propose the
use of a massive parallel architecture based on the Graphics Processing
Unit (GPU) with the CUDA programming kit. We prove experimentally
that even with a relatively small GPU and using a single core in the
GPU, we are able to obtain a notable speedup per core in a GPU/CPU
model. We compared our FFT implementation against state of the art
CUFFT obtaining impressive results, hence our FFT implementation can
help other areas of application.

1 Introduction

Audio-Fingerprints (AFPs) are essential characteristics of digital audio streams

used to score the perceptual similarity between audio signals. Among other tasks,

AFPs are used in broadcast monitoring, [25], automatic metadata labeling from

a central database and querying by example, where an excerpt of an unknown

song (possibly captured in a noisy environment, such as a bar or pub) is used to

identify it [9, 30] and for automatic score following [4]. AFP’s are mature tech-

nologies used as software commodities by a very large number of applications of

economic importance.

In designing AFPs for such uses there is a tension between two competing

goals. On the one hand a robust feature generally implies a dense representation

of the audio, and correspondingly a robust fingerprint generally implies a denser

representations of a song. On the other hand, a dense AFP imply more computer

cycles to obtain the representation. In some applications an audio collection,

represented by their AFP, is queried against an unknown audio sample. To avoid
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comparing with all the audio sample in the collection it is possible to build a

metric index to satisfy proximity queries.

There are some applications where the situation is reversed and the audio

collection is given on-line and it need to be compared against a single audio

sample. An example application with this behavior is the monitoring of radio

broadcasting. The goal is to listen to a large set of audio streams (the broadcast-

ing stations in a city) and wait for the appearance of a particular audio stream,

such as a commercial advertising, in any one of the streams. In this case it is not

even possible to obtain all the AFP of all the audio streams in real time, using

a single CPU. In this paper the goal is to obtain a better throughput for online

processing of a multi-stream source.

1.1 High Performance Computing

A side effect of the gaming technology is the existence of portable, afford-

able, massive parallel devices conceived to speed up online rendering[3, 20]. The

Graphics Processing Unit (GPU) can provide up to 50 times the processing

power, compared to the host computer[18].

Since its inception, the GPU was used as a dedicated device for speeding up

graphics processing applications, 3D video gaming, rendering, etc. The progress

of the GPU was faster than for CPU, probably due to a smaller instruction set

and single precision arithmetic[16, 20]. The GPU is in many senses a portable

super computer. Certain type of tasks can be solved using a massive parallel

model, with a multi-core processor, shared memory and hyper threading support.

The GPU programming evolved from hacking graphics specific settings and

programs to a more structured C-like programming environment. The most suc-

cessful model is provided by the Nvidia graphics card, with a driver hiding the

low-level details and differences between different graphics card models. This

model is dubbed Compute Unified Device Architecture (CUDA) with a GPU-

CPU interface, thread synchronization data types, etc. [14, 6, 19].

2 Characteristics of an AFP

To accomplish the tasks enlisted above, in the introduction, an AFP should

be robust to signal degradations such as noise mixing, equalization, cropping

and time shifting. An AFP should also be compact and determined with as little

computational effort as possible. An AFP system should also be scalable, that

is, it should be able to operate with very large databases, conditioned by a good

indexing technique.

2.1 Feature extraction

The first thing an audio-fingerprinting system has to do is to extract features

from the signal. Some AFP systems extract signal features directly in time do-

main as in [15] where the sign of the time derivative of the signal was found to
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be robust to lossy compression and low-pass filtering. In [13] the entropy of the

audio signal is computed every second and from that the sign of its derivative

with respect to time is coded in an extremely compact AFP which was found to

be robust to lossy compression and low-pass filtering and scaling, but not equal-

ization. Most AFP systems however, extract signal features in the frequency

domain using a variety of linear transforms such as the Discrete Cosine Trans-

form, the Discrete Fourier Transform, the Modulation Frequency Transform [28]

and some Discrete Wavelet Transforms like Haar’s and Walsh-Hadamard’s [27].

Looking for more relevant features of audio signals a variety of perceptual fea-

tures have been assessed such as the Mel-frequency Cepstral coefficients (MFCC)

[26]; Loudness [31]; the Joint Acoustic and Modulation Frequency (JAMF) [28,

29]; the Spectral Flatness Measure (SFM) [12]; the Spectral Crest Factor (SCF)

[12]; tonality [10] and chroma values [21] among others [5]. In [24] it was shown

that Normalized SSC can be more robust than MFCC and tonality for lossy com-

pression and equalization. In [28] it was reported that the Normalized JAMF had

superior robustness than a spectral estimate for compression and equalization.

In [12] it was reported that SFM had superior robustness than Loudness and

SCF as well.

2.2 Audio-fingerprint modeling

Some AFP systems model the songs in a way that best serves the purpose of

the application for which it has been designed. For example, Trajectories, also
known as traces, are sequences of feature vectors extracted at equally spaced

instants and stored in a list of vectors or in a table; Statistics represent an audio

signal using computed properties such as mean, variance, minimum and maxi-

mum values of the feature vectors [11]; Codebooks store a small number of rep-

resentative code vectors disregarding the temporal evolution of the audio signal;

Strings are basically trajectories turned into long strings of integers through vec-

tor quantization enabling the use of flexible string matching techniques; Hidden
Markov Models (HMM) model non-stationary stochastic processes (e.g., songs).

The HMMmodel of a specific song reports the probability that the query matches

the candidate song [1, 2]; Gaussian Mixture Models (GMM) work on the premise

that songs are the result of a combination of Gaussian components [22, 17]. The

technique described here differs to these approaches in that it does not reply on

specific domain knowledge, and is therefore more widely applicable.

3 Entropy of a signal as a relevant perceptual feature

The entropy of a signal is a measure of the amount of information the sig-

nal carries. If X is a random variable representing the signal, and we want a

unique value to identify it, then Shannon’s entropy is a good candidate. Small

perturbations on the sample values of X produce smaller perturbations on the

measured entropy. If the sample values of X are denoted by {xi} then entropy
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is defined as

H(X) = −

∑

i

p(xi)ln(p(xi)),

where p(xi) is the probability for the signal to take value xi.

Over the time the audio signal contains different amount of entropy, dis-

tinguishing between melodic, vocal, noise, etcetera. Since the audio signal is

additive we will fix our attention to the modulation (the change) of the entropy

over time. If we compute the entropy values in a sliding window of the signal

the sequence of values encode the changes of the audio entropy over time. If the

volume (the energy) of the audio is increased or decreased the corresponding

entropy curve is also shifted preserving the relative changes. If the signal is lossy

compressed or low pass filtered the corresponding entropy curve is also shifted

and the relative changes are preserved as illustrated in figure 1. A horizontal

shift to the right is also observed due to the mp3 compression.
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Fig. 1. Entropy curves of a excerpt of a song and a scaled (with clipping) and a

lossy compressed (mp3@32Kbps) versions of it

Adjusting shifts to match signals is an easy task, the vertical shift disappears

if we take the derivative of the signal, or even more if only the sign of the deriva-

tive is retained. Unfortunately, other interesting distortions, like re-recording,

are not profile invariant, as observed in figure 2. Similar effect is observed when

the signal is equalized.

The Time-domain Entropy Signature (TES) is a sequence of binary values,

one per each frame, indicating the sign of the derivative of the entropy profile.

This AFP was compared with Haitsma et al AFP [9] in [13] obtaining good

results for low pass filtering, lossy compression and volume changes. For re-

recording or equalization the results were not encouraging. Pursued in the work
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Fig. 2. Entropy curves of an excerpt of a song and a re-recorded versions of it

presented here, the entropy calculation is undertaken in the frequency domain,

with logarithmic bands used to offset the effect of equalization.

4 The Multiband Spectral Entropy Signature

The distortion observed in the time domain for re-recording or equalization

can be reverted if we divide the signal in subbands using for example the loga-

rithmic Bark scale of 24 critical bands. After the band division, if we compute

the entropy profile of each suband separately the corresponding bands will have

vertical shifts only, even for distortions like equalization or re-recording. This

is illustrated in figure 3 where only some of the 24 bands are shown to avoid

overcrowding the figure.

The subbands can be obtained with a standard filter bank tuned with the

corresponding frequencies of the bark scale [8].

4.1 Binary Encoding the Signature

For each frame we keep only an indication of whether the spectral entropy is

increasing or not for each band. Equation (1) states how the bit corresponding

to band b and frame n of the AFP is determined using the entropy values of

frames n and n− 1. The same property of compactness noted in TES is retained

in the spectral version. Only 3 bytes (i.e., 24 bits) are needed for each frame of

audio signal.

F (n, b) =

{

1 if [hb(n)− hb(n− 1)] > 0

0 Otherwise
(1)
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Fig. 3. Entropy profiles for individual bands in the Bark scale.

5 Comparing Songs

So far we have a binary array for each song or audio in the collection. The

Hamming distance between two same sized excerpts accounts for the percep-

tual similarity between them. The smaller the Hamming distance the higher the

perceptual similarity, as it was discussed above. If we want to know if an ex-

cerpt occur in some song in the collection we need to scan, in principle, all the

collection to find the alignment with the smaller Hamming distance.

The sequential scan with the MBSES does not scale well. As a formative

experiment, we used off-the-shelf desktop hardware to scan a database of pre-

computed MBSES. The database comprised of approximately ten thousand

songs from a wide range of genres (from country to classic). With these sig-

natures pre-loaded into memory, we are able to scan roughly 17 hours of audio

per second when using audio excerpt of 5 seconds, and 10 hours of audio per

second with a 10 second excerpt. Nevertheless, to scale to collections with mil-

lions of songs—as is the case with iTunes for instance, with an ever growing set

of users—a more efficient indexing method is needed. This motivates the use of

a general index to speed up searches.

5.1 Probabilistic Pairing Pseudo Metric

Lets assume we have a base distance d(x, y) to compare similar sized audio

samples x and y of sizes m and n respectively with m ∼ n. It can be the case

the base distance require m = n, as for example the Hamming distance. If the

case of the edit distance, sizes m and n need to be just comparable.

The probabilistic pairing pseudo metric (PPPM) D(x, y) is a generalization

of the base distance d(x, y) defined as follows: If n < m:
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Fig. 4. An illustration of the probabilistic pairing pseudo metric. The smaller

song/excerpt is shifted to search for the best match, and this match is reported

as the “distance”. In the figure, an actual fingerprint of a song is presented

D(x, y) = min
d(x[i,i+n]

y[1, n]] ∀ 1 ≤ i ≤ m− n (2)

Otherwise:

D(x, y) = D(y, x)

In other words we use a sliding window of the smaller object over the larger

one and use the minimum as the value of the distance. Figure 4 shows how

probabilistic pairing is used to shift the query (excerpt) to find the best match.

The function defined in Equation 2 does not strictly satisfy the triangle

inequality, although it does satisfy it with high probability since the case where

it is not satisfied is rarely found.

6 GPU and CPU Processing

A single PC with one or multiple cores cannot be compared in performance

with CUDA, because hundreds of thousands of threads can be attended simul-

taneously. Our proposal is to used CUDA to boost the throughput in audio

processing. One possible application is to monitor simultaneously, with a single

PC the hundreds of radio broadcastings in a large city, or to listen for hundreds

of simultaneous queries for query by content in audio databases. Audio databases

and audio monitoring are specially suited for the massive parallel model provided

by CUDA.

A GPU can be considered as a multicore processor allowing a large number of

fine grained threads [23]. The GPU is different from other parallel architectures in

the flexible local resource assignment, either memory or register, for the threads.

Each stream multiprocessor can execute a variable number of threads, it is a
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programming decision the resource assignement. Performance can be boosted

by optimizing the assignment of resources.

The whole model consist in a traditional CPU based station and one or more

coprocessors, the massive parallel compute devices. Each coprocessor apply the

same model of Simple Instruction Multiple Data (SIMD), All computing units

execute the same code (not necessarily sincronized) over the different set of data.

The threads share the same global memory.

CUDA is a computing environment allowing software developers to create

isolated programming components. Each componentt solve a problem over a

dedicated GPU device applying massive parallel data processing. CUDA provides

a programming model facilitating application development on the GPU.

A CUDA program is a C/C++ extended with a set of instructions. This

instruction specify parallel code and data structures to be executed in the de-

vice. Those computing devices are named kernels. A kernel describe the work

of a single thread and can be executed by hundreds of them. There are some

restrictions on the kernels, they cannot execute recursive calls, static variables

cannot be declared and the number of arguments cannot be variable.

A complete CUDA program have different phases to be executed either on the

CPU or the GPU. When the phase have low or null parallelism it is assigned to

the CPU. If the phase, on the other hand, is massively parallel it is implemented

as a kernel and executed over the GPU.

At the beginning and end of a program the host make a transfer from/to

the global of the data device. Threads are organized in a three level hierarchy:

Grid the top level consisting in a block of threads, Block mid level consisting

in a group of thread stablished by the software developer and the lower level

Threads which can synchronize the task and share data inside the same block.

The number of grids, blocks and threads affect the performance of the tasks,

each application have an optimal selection for these parameters. As a rule of

thumb these parameters are determined by experimentation.

7 Parallel Multi-MBSES

Figure 5 illustrate the parallel architecture for the digital signature dubbed

MBSESp. As said before the problem is particularly well suited for massive

parallel processing.

Multi signal processing is sketched in Multi-MBSESp, where additionally

to parallel processing of a single signal, multiple signals can be processed at

once, each one of them performing the same task with different data. Figure 6

illustrates.

In both MBSESp and Multi-MBSESp schemas the massive parallel archi-

tecture can be applied. Several parameters need to be adjusted. In this work we

discuss two crucial parts of the processing, computing the Hanning window and

computing the fast Fourier transform.
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7.1 Fast Fourier Transform

In the CUDA repository there is a library for parallel computing the FFT,

the CUFFT. We implemented directly the FFT based on the original algorithm

of Cooley and Tukey [7]. The inverse and direct FFT can be computed changing

a single parameter. The sample is divided in two subsets of size half the original

size, using the Danielson Lanczos theorem. This process is repeated recursively

or iteratively until the set is of cardinality two.
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We fixed in 512 threads to be executed in parallel. We first compute the

bit-reverse vector in a first stage in a second stage we properly computed the

FFT. For the bit-reverse, each even index element in the first part of the vector

is swapped with a corresponding even index element in the second part of the

vector. Each swap is computed by a different thread. For a vector of size N we

need
N
4 threads. If N is much larger than the number of available threads T ,

then each thread will swap
N

4

T
elements. This is illustrated in figure 7(a)

1 2 3 70 654

thread 0

thread 1

4 2 6 70 351

thread 0

thread 1

Iteration=1      N=8

Iteration=2

2 4 6 70 531

(a) Bit Reverse

.

1 2 3 70 654

1 2 3 70 654

1 2 3 70 654

1 2 3 70 654

thread 0 thread 1 thread 2 thread 3

thread 0 thread 2

thread 1 thread 3

thread 0 thread 2

thread 1
thread 3

Iteration=1      N=8

Iteration=2

Iteration=3

Final Result

(b) fft

Fig. 7. GPU based FFT computation

The second phase is where the FFT computation takes place properly. Since

it is not possible to apply recursive calls, the solution is iterative. Each thread,

in each iteration, makes the proper computation with the corresponding pair. If

the number of threads is smaller than the vector size each thread will take care

of a fraction of the data. Figure 7(b) the procedure is sketched for each iteration.

7.2 The Hanning Window

Computing the Hanning window is an inner product, and hence is suitable for

massive parallel processing. All the threads will perform the same operation and

the final algorithm is a pure data parallel procedure with no cross-talk between

threads. The usual consideration should be applied, if the number of threads is

smaller than the data size, then each thread will take care of a subset of the

vector.

8 Experimental Results

For a comparative analysis we selected a sequential CPU implementation of

the algorithms, the fastest machine available for experiments had the following
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characteristics. Intel core 2 Duo E8200, with 2GB of RAM. We used three dif-

ferent GPU models for comparison. The 8500 GT, 9500 GT and 9500 GS. They

had the following common characteristics.

Shared memory per block 16KB

Registers per block 8KB

Maximum number of threads per block 512

Maximum sizes of each dimension of a block 512 x 512 x 64

Maximum sizes of each dimension of a grid 65535 x 65535 x 1

With the following differences.

GeForce 8500 GT 9500 GT 9500M GS

Global Memory 512MB 256MB 512MB

Multiprocessors 2 4 4

Cores 16 32 32

Central Clock 450 MHz 500 MHz 475 MHz

The results shown for the speedup are the average over several runs. Figures

8(a) y 8(b) show the speedup for the Hanning window computation and the

FFT. In all the cases we used the maximum number of available threads.

(a) Hanning (b) fft

Fig. 8. Speedup of Hanning and FFT computations

The overall speedup is not as impressive because our model is mixed, we

used a CPU/GPU model where the data had to be moved from/to the GPU

main memory. It is difficult to measure the isolated speedup but the results are

encouraging. Data transfers impose a severe restriction on the performance. We

are currently solving all the steps of the MBSESp in a pure GPU model.

We compared our implementation with the state GPU based library CUFFT,

available in the CUDA showroom. Our implementation surpass the efficiency of

the state of the art. Figure 9 shows the comparison.
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Fig. 9. FFT vs CUFFT

In all cases our implementation was faster than CUFFT, which is the state

of the art.

9 Conclusions, Remarks and Future Work

We have proved that even using a single core in the GPU, we are able to com-

pute the most challenging parts of the MBSES implementation with a speedup of

about 2. It is possible to assemble a GPU cluster consisting in an array of GPUs

giving extreme speedups. Moreover, modern GPUs will be multicore, increasing

the speedup expectatives.

We are currently working on implementing all the steps in the MBSESp

computation in a pure GPU model to avoid data transfers slowing down the

process. We are also implementing a massively parallel version of a main memory

metric index to support proximity queries.
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