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SUPERCONNECTIVITY OF NETWORKS MODELED

BY THE STRONG PRODUCT OF GRAPHS

R. M. Casablanca, M. Cera, P. Garćıa-Vázquez
J. C. Valenzuela-Tripodoro

Maximal connectivity and superconnectivity in a network are two important
features of its reliability. In this paper, using graph terminology, we first
give a lower bound for the vertex connectivity of the strong product of two
networks and then we prove that the resulting structure is more reliable
than its generators. Namely, sufficient conditions for a strong product of two
networks to be maximally connected and superconnected are given.

1. INTRODUCTION

In a multiprocessor system, processors communicate by exchanging messages
through an interconnection network whose topology is often modeled by an undi-
rected graph G = (V,E), where every node in V corresponds to a processor, and
every edge in E corresponds to a communication link. The properties of the graph
determine the systems working efficiency. When selecting or designing an intercon-
nection network, many of mutually conflicting requirements correspond to measures
in a graph as density, size, average degree, diameter, connectivity, etc. Since it is
almost impossible to design an optimal network for all conditions, the selection cri-
terion must be determined in advance. One of the most desirable criterions for the
design of a large interconnection network joins together the requirements of high
reliability and small maximum transmission delay between nodes of the network.
So, making use of Graph Theory, the primary aim is to get a strong connectivity
joint to a suitable diameter in certain large graphs.
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It is well known that the product of graphs is an important research topic in
Graph Theory (see, e.g. [3, 21, 24]). This graph operation has been extensively
studied in a wide range of subjects, including connectivity [5, 24], geodetic [6],
bandwidth [18] and roman domination [9], among others. A fundamental principle
for network design is extendability. That is to say, the possibility of building larger
versions of a network preserving certain desirable properties. For designing large-
scale interconnection networks, the strong product is a useful method for obtaining
large graphs from smaller ones whose invariants can be easily calculated.

The problem of computing graph products was applied several years ago in
a theoretical biology context [25]. The authors provided a concept concerning
the topological theory of the relationships between genotypes and phenotypes. A
phenotype space inherits its structure from an underlying sequence space. The
structure of localized subsets turns out to be of particular interest. Gavrilets

and Gravner [8], Grüner et al. [10], and Reidys and Stadler [22], for exam-
ple, describe subgraphs in sequence spaces that correspond to the subset of viable
genomes or to those sequences that give rise to the same phenotype. The structure
of these subgraphs is intimately related to the dynamics of evolutionary processes
[20].

Other applications of graph products can be found in rather different areas
such as computer graphics and theoretical computer science. In [1, 2], the authors
provide a framework, called TopoLayout, to draw undirected graphs based on the
topological features they contain. Topological features are detected recursively, and
their subgraphs are collapsed into single nodes, forming a graph hierarchy. Graph
products have a well understood structure, that can be drawn in an effective way.
Hence, for an extension of this framework approximate graph products are of a
particular interest. Reasons and motivations to study graph products or graphs
that have a product-like structure can be found in many other areas, e.g. for the
formation of finite element models or construction of localized self-equilibrating
systems in computational engineering [15, 16, 17]. Other motivations can be
found in discrete mathematics. A natural question is what can be said about a
graph invariant of a graphs product if one knows the corresponding invariants of
the factors. There are many contributions treating this problem, e.g. [5, 11, 13,
19, 24].

In all applications of practical interest, the graphs product in question needs
to be analyzed in a way that is robust against inaccuracies, noise, and perturbations
in the data. However, these results have to be either obtained from computer
simulations or they need to be estimated from measured data. In both cases,
they are known only approximately. In order to deal with such inaccuracies, exact
solution based on theoretical mathematical reasoning needs to be found.

The network robustness should be analyzed from different perspectives. In
this paper we analyze the connectivity parameter κ, which represents the minimum
number of nodes that must fail to disrupt the communication between at least
one pair of nodes in the network (see [14]). In [24] Špacapan gives the following
lower bound for the connectivity of the strong product G1 ⊠ G2 of two connected
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networks, modeled by two graphs G1 and G2:

κ(G1 ⊠G2) ≥ min{κ(G1)(1 + δ(G2)), κ(G2)(1 + δ(G1))}.

We obtain an improvement of this bound and moreover, we prove sufficient con-
ditions on the girth and the minimum degree of two connected networks to be
superconnected. These conditions show that the strong product is a useful method
to extend a given network to a larger and much more reliable one so that the maxi-
mum communication delay between two nodes of the new network is approximately
the same as that of the original one.

2. GRAPH THEORETICAL PRELIMINARIES

Throughout this paper, all the graphs are simple, that is, with neither loops
nor multiple edges. Notations and terminology not explicitly given here can be
found in the book by Chartrand and Lesniak [7].

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The
cardinalities of these sets are denoted by |V (G)| and |E(G)|. Let u and v be
two distinct vertices of G. A path from u to v, also called an uv-path in G, is
a subgraph P with vertex set V (P ) = {u = x0, x1, . . . , xr = v} and edge set
E(P ) = {x0x1, . . . , xr−1xr}. This path is usually denoted by P : x0x1 · · ·xr and r is
the length of P . A cycle in G of length r is a path Cr : x0x1 · · ·xr such that x0 = xr .
The girth of G, denoted by g(G), is the length of a shortest cycle in G, if any.
Otherwise, we set g(G) = ∞. The set of adjacent vertices to v ∈ V (G) is denoted by
NG(v). The degree of v is dG(v) = |NG(v)|, whereas δ(G) = minv∈V (G) dG(v) and
∆(G) = maxv∈V (G) dG(v) stand for the minimum degree and the maximum degree
of G, respectively. A complete bipartite graph Km,n is a graph whose vertices can
be partitioned into two subsets V1 and V2, with cardinalities m and n, respectively,
such that no edge has both endpoints in the same subset and each vertex in V1 is
adjacent to every vertex of V2.

The diameter of G is written as D(G), which is finite if G is connected. A
graph is said to be connected if for every pair of vertices there is a path connecting
them. A cut set of a connected graph G is a set S of vertices such that G − S
is not connected or is an isolated vertex. Each connected subgraph of G − S is
called a component of G− S. The (vertex)-connectivity of G, denoted by κ(G), is
the minimum cardinality of a cut set, and it is widely known that κ(G) ≤ δ(G).
A connected graph G is called maximally connected if κ(G) = δ(G). A connected
graph G is superconnected if for every minimum cut set S in G, the graph G − S
has an isolated vertex. Observe that every superconnected graph is maximally
connected but the converse is not true. It is easy to see from the cycle graph Cn,
n ≥ 6.

The construction of new graphs from two given ones is not complicated. Basi-
cally, the method consists of joining together several copies of one graph according
to the structure of another one, the latter being usually called the main graph of
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the construction. Since 1960 some relevant graph theory researchers have defined
different types of graph products. The main difference between them comes from
the number of intercopy edges and the connection criterion. One of these products
of graphs is the strong product of two given graphs, and it was defined in [23] by
Sabidussi in the following way.

Definition 1 ([23]). Let G1 = (V (G1), E(G1)) and G2 = (V (G2), E(G2)) be two
graphs. The strong product G1 ⊠ G2 of G1 and G2 has V (G1) × V (G2) as vertex
set, so that two distinct vertices (x1, x2) and (y1, y2) of G1 ⊠ G2 are adjacent if
x1 = y1 and x2y2 ∈ E(G2), or x1y1 ∈ E(G1) and x2 = y2, or x1y1 ∈ E(G1) and
x2y2 ∈ E(G2).

From the definition, it clearly follows
that the strong product of two graphs is com-
mutative. Indeed, G1 ⊠ G2 can be seen as
the graph formed by |V (G1)| copies of G2,
Gx1

2 , . . . , Gxn

2 , corresponding to the set of ver-
tices V (G1) = {x1, . . . , xn}, and moreover,
for every edge xixj ∈ E(G1) and every ver-
tex y ∈ V (G2), vertex (xi, y) is adjacent in
G1 ⊠ G2 to each vertex of

⋃

z∈NG2
[y](xj , z).

This latter way of construction of G1⊠G2 can
be expressed by exchanging G1 and G2 (see,
for instance, Figure 1).

Figure 1. The strong product

of a cycle of length 6 and a

path of length 2.

Some properties regarding the minimum degree, the maximum degree and
the diameter of G1 ⊠G2 can be found in [12].

Lemma 2 ([12]). Let G1 and G2 be two graphs. Then:

(i) δ(G1 ⊠G2) = δ(G1)δ(G2) + δ(G1) + δ(G2).

(ii) ∆(G1 ⊠G2) = ∆(G1)∆(G2) + ∆(G1) + ∆(G2).

(iii) If both G1 and G2 are connected, then G1 ⊠G2 is also connected and

D(G1 ⊠G2) = max{D(G1), D(G2)}.

3. MAIN RESULTS

Let S1 and S2 be cut sets of G1 and G2, respectively. Then S1 × V (G2)
and V (G1)× S2 are called an I-set of G1 ⊠G2. Let us denote by A1, . . . , Ak and
B1, . . . , Bℓ the components of G1 − S1 and G2 − S2, respectively. Then for every
i ∈ {1, . . . , k} and every j ∈ {1, . . . , ℓ}, the set (S1×V (Bj))∪(S1×S2)∪(V (Ai)×S2)
is called an L-set of G1 ⊠ G2. These sets of vertices were introduced in [24] and
the following theorem was proved.

Theorem 3 ([24]). Let G1 and G2 be two connected graphs. Then every cut set
in G1 ⊠G2 of minimum cardinality is either an I-set or an L-set in G1 ⊠G2.
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The cardinality of an I-set in G1 ⊠ G2 can be easily lower bounded. In-
deed, if S is a cut set of G1 ⊠ G2 of minimum cardinality and S is an I-set, then
κ(G1⊠G2) = |S| = min{κ(G1)|V (G2)|, |V (G1)|κ(G2)}. Nevertheless, this does not
happen when S is an L-set.

First we obtain a lower bound of the index of connectivity of the strong
product G1 ⊠G2 of two connected graphs G1 and G2.

Theorem 4. Let G1 and G2 be two connected graphs and G = G1 ⊠ G2. If
g(G1) ≥ 4 then

min{|V (G1)|κ(G2), κ(G1)|V (G2)|, δ(G1)κ(G2) + δ(G1) + κ(G2)} ≤ κ (G) ≤ δ(G).

Proof. Clearly, κ(G) ≤ δ(G) holds, so we must only prove the other inequality.
Denote by

M(G1, G2) = min{|V (G1)|κ(G2), κ(G1)|V (G2)|, δ(G1)κ(G2) + δ(G1) + κ(G2)}.

Let S ⊂ V (G) be a cut set of G with |S| = κ(G). From Theorem 3 it follows that
S is either an I-set or an L-set. If S is an I-set then

|S| = min{|V (G1)|κ(G2), κ(G1)|V (G2)|} ≥ M(G1, G2).

Then suppose that S = (S1 × V (Bj)) ∪ (S1 × S2) ∪ (V (Ai) × S2) is an L-set,
for some i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ}, being A1, . . . , Ak and B1, . . . , Bℓ the
components of G1 − S1 and G2 − S2, respectively. If |S1| ≥ δ(G1) then |S| ≥
|S1| + |S1||S2| + |S2| ≥ δ(G1) + δ(G1)κ(G2) + κ(G2) ≥ M(G1, G2) and we are
done. Thus, assume that |S1| < δ(G1). In this case, there are at least two adjacent
vertices u, v ∈ V (Ai), since G1 is connected. As G1 has girth at least 4, we
have NG1

(u) ∩ NG1
(v) = ∅. Moreover, NG1

(u) ∪ NG1
(v) ⊆ V (Ai) ∪ S1. Hence,

|V (Ai) ∪ S1| ≥ dG1
(u) + dG1

(v) ≥ 2δ(G1) and therefore,

|S| = |(S1 × V (Bj)) ∪ (S1 × S2) ∪ (V (Ai)× S2)|

= |(S1 × V (Bj)) ∪ ((S1 ∪ V (Ai))× S2) |

≥ 1 + |S1 ∪ V (Ai)||S2| ≥ 1 + 2δ(G1)κ(G2)

≥ δ(G1)κ(G2) + δ(G1) + κ(G2) ≥ M(G1, G2),

which completes the proof.

From Theorem 4 and the commutativity of the strong product of two graphs,
it follows this theorem whose proof is straightforward.

Theorem 5. Let G1 and G2 be two connected graphs of order ni, minimum degree
δi, connectivity κi, i = 1, 2, and girth at least 4. Then

min
{

n1κ2, κ1n2,max{δ1κ2 + δ1 + κ2, κ1δ2 + κ1 + δ2}
}

≤ κ (G1 ⊠G2) ≤ δ(G1 ⊠G2).
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Next we establish sufficient conditions for the strong product of two maxi-
mally connected graphs, G1 and G2, to be maximally connected. These conditions
are addressed in terms of the minimum degree and the girth of both G1 and G2.

To do that we use the well-known Moore bound (see [4] p. 105) which says
that every graph with girth g ≥ 3 and minimum degree δ ≥ 2 has at least n0(δ, g)
vertices, where

(1) n0(δ, g) =



















1 + δ
(g−3)/2∑

i=0

(δ − 1)i, if g is odd

2
g/2−1∑

i=0

(δ − 1)i, if g is even.

Theorem 6. Let G1 and G2 be two connected graphs with at least 3 vertices and
girth at least 4. Then G1 ⊠ G2 is maximally connected if both G1 and G2 are
maximally connected and one of the following assertions holds:

(i) One graph has minimum degree 1 and the other graph has girth at least 5.

(ii) δ(Gi) ≥ 2, i = 1, 2.

Proof. (i) If δ(G1) = 1 and δ(G2) = 1, then δ(G1 ⊠ G2) = 3. Thus,
|V (G1)|δ(G2) ≥ 3 = δ(G1⊠G2) and, analogously, δ(G1)|V (G2)| ≥ 3 = δ(G1⊠G2).
Hence, by Theorem 4 we have

κ (G1 ⊠G2) = 3 = δ(G1)δ(G2) + δ(G1) + δ(G2).

If δ(G1) = 1 and δ(G2) ≥ 2 (the proof is analogous if δ(G1) ≥ 2 and
δ(G2) = 1), since by hypothesis, g(G2) ≥ 5, from the Moore bound (1) it follows
that |V (G2)| ≥ 1 + δ(G2)

2. Thus,

|V (G1)|δ(G2) ≥ δ(G1)δ(G2) + δ(G1) + δ(G2) + (|V (G1)| − 3) δ(G2)

≥ δ(G1)δ(G2) + δ(G1) + δ(G2)

and

δ(G1)|V (G2)| = |V (G2)| ≥ 1 + δ(G2)
2 = δ(G1)δ(G2) + δ(G1) + δ(G2)(δ(G2)− 1)

≥ δ(G1)δ(G2) + δ(G1) + δ(G2).

Therefore, by Theorem 4 we deduce that

κ (G1 ⊠G2) = δ(G1)δ(G2) + δ(G1) + δ(G2).

(ii) If δ(G1) ≥ 2 and δ(G2) ≥ 2, then |V (Gi)| ≥ 2δ(Gi), i = 1, 2, due to the
Moore Bound (1). Using that ab ≥ a+ b for all a ≥ 2, b ≥ 2, we have

|V (G1)|δ(G2) ≥ 2δ(G1)δ(G2) = δ(G1)δ(G2) + δ(G1)δ(G2)

≥ δ(G1)δ(G2) + δ(G1) + δ(G2).

Analogously, δ(G1)|V (G2)| ≥ δ(G1)δ(G2) + δ(G1) + δ(G2). Hence, κ (G1 ⊠G2) =
δ(G1)δ(G2) + δ(G1) + δ(G2), and the result follows.
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Theorem 6 is best possible in the sense that the hypothesis cannot be relaxed.
Indeed, observe, for instance, what happens in the strong product of any cycle Cg
of length g ≥ 4 and the complete graph Kn, n ≥ 2. We can disconnect Cg ⊠ Kn

by removing two copies of Kn corresponding to two nonadjacent vertices of Cg.
Hence, κ(Cg ⊠ Kn) ≤ 2n < 2(n − 1) + n − 1 + 2 = δ(Cg ⊠ Kn). Analogously,
we check that the hypothesis of points (i) and (ii) of Theorem 6 also cannot be
relaxed. It suffices to consider the strong product Pr ⊠ Cg of a path of length
r ≥ 2 and a cycle of length g ≤ 4. In this case, by removing one copy of Cg
corresponding to any vertex of degree 2 in Pr, the resulting graph is disconnected.
Thus, κ(Pr ⊠ Cg) ≤ g ≤ 4 < 5 = δ(Pr ⊠ Cg).

The following lemma will be the key to improve Theorem 6 in the sense that
the strong product of two non necessarily maximally connected graphs may be
maximally connected or even superconnected.

Lemma 7. Let G1 and G2 be two graphs of minimum degree at least 2 and let
δ = min{δ(G1), δ(G2)}. If |V (G1)| ≥ 2δ(G1) and κ(G2) ≥ δ(G2) − ⌊δ/2⌋+ 1 then
|V (G1)|κ(G2) ≥ δ(G1 ⊠G2) with equality holds if and only if δ is even, δ(Gi) = δ,
i = 1, 2, |V (G1)| = 2δ and κ(G2) = δ/2 + 1.

Proof. Denote by G = G1 ⊠G2. Then

|V (G1)|κ(G2) ≥ 2δ(G1) (δ(G2)− ⌊δ/2⌋+ 1) ≥ δ(G1) (2δ(G2)− δ + 2)

= δ(G) + δ(G1) (δ(G2)− δ + 1)− δ(G2)

≥ δ(G) + δ(G1) + δ(G2)− δ − δ(G2)

= δ(G) + δ(G1)− δ ≥ δ(G).

Hence, |V (G1)|κ(G2) ≥ δ(G) where equality holds iff all the previous inequalities
become equalities, that is, |V (G1)| = 2δ(G1), ⌊δ/2⌋ = δ/2, δ(G2) − δ + 1 = 1 and
δ(G1)− δ = 0, which completes the proof.

As a consequence of Lemma 7 and making use of the Moore bound (1), we
prove that it is possible to construct a superconnected graph by the strong product
of two non necessarily maximally connected factors.

Theorem 8. Let G1 and G2 be two graphs of minimum degree at least 2 and girth
at least 4. Let δ = min{δ(G1), δ(G2)}. If κ(Gi) ≥ δ(Gi) − ⌊δ/2⌋ + 1, i = 1, 2,
then G1 ⊠ G2 is maximally connected. Furthermore, G1 ⊠ G2 is superconnected
unless δ is even, Kδ,δ is one factor and the other factor has minimum degree δ and
connectivity exactly δ/2 + 1.

Proof. Denote by G = G1 ⊠ G2. Let S ⊂ V (G) be a minimum cut set of G. By
applying Theorem 3, the set S must be either an I-set or an L-set. If S is an I-set
then we have |S| = min{|V (G1)|κ(G2), κ(G1)|V (G2)|}. Without loss of generality
we may suppose that |V (G1)|κ(G2) = min{|V (G1)|κ(G2), κ(G1)|V (G2)|}, due to
the commutativity of the strong product of two graphs. As g(G1) ≥ 4, by the
Moore bound (1), we have |V (G1)| ≥ 2δ(G1). Then both G1 and G2 satisfy the
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hypothesis of Lemma 7 and therefore, |V (G1)|κ(G2) ≥ δ(G) with equality holds
iff δ is even, δ(Gi) = δ, i = 1, 2, |V (G1)| = 2δ and κ(G2) = δ/2 + 1. Using the
notation of the Moore bound (1), we have |V (G1)| = n0(δ, 4) and it is well known
that the only graph of order n0(δ, 4) and girth at least 4 is the complete bipartite
Kδ,δ. Hence, the I-set S is a minimum cut set of G iff δ is even, G1 = Kδ,δ,
δ(G2) = δ and κ(G2) = δ/2 + 1.

Now suppose that S = (S1 × V (Bj)) ∪ (S1 × S2) ∪ (V (Ai)× S2) is an L-set,
for some i ∈ {1, . . . , k} and j ∈ {1, . . . , ℓ}, being A1, . . . , Ak and B1, . . . , Bℓ the
components of G1 − S1 and G2 − S2, respectively. Reasoning as in the proof of
Theorem 4, if |S1| < δ(G1) then |V (Ai) ∪ S1| ≥ 2δ(G1) and if |S2| < δ(G2) then
|V (Bj) ∪ S2| ≥ 2δ(G2). If |S1| < δ(G1) then

|S| = |(S1 × V (Bj)) ∪ ((S1 ∪ V (Ai))× S2) |

≥ 1 + 2δ(G1)κ(G2) ≥ 1 + 2δ(G1) (δ(G2)− δ/2 + 1)

= δ(G) + δ(G1) (δ(G2)− δ + 1)− δ(G2) + 1

≥ δ(G) + δ(G1) + δ(G2)− δ − δ(G2) + 1 > δ(G),

which contradicts that S is a minimum cut set of G. Analogously, we get a contra-
diction if |S2| < δ(G2). Thus, |Si| ≥ δ(Gi) for i = 1, 2. Observe that Ai ⊠ Bj is a
component of G−S. Our aim is to prove that |V (Ai)| = |V (Bi)| = 1 and therefore,
Ai⊠Bj is an isolated vertex. Otherwise, |S| ≥ |S1||V (Bj)|+|S1||S2|+|S2||V (Ai)| >
|S1|+|S1||S2|+|S2| = δ(G1)+δ(G1)δ(G2)+δ(G2) = δ(G), which is a contradiction.
Thus, if the L-set S is a minimum cut set then Ai ⊠ Bj is a trivial component of
G− S, yielding that G is superconnected. This completes the proof.

Theorem 8 is best possible in the sense that the hypothesis cannot be relaxed.
First of all, the minimum degree of each factor graph at least 2 must be assumed.
Otherwise, the strong product Pr ⊠ C5 of a path of length r ≥ 2 and a cycle of
length 5 is a counterexample. In this case, both Pr and C5 are maximally connected
graphs and κ(Pr ⊠ C5) = 5 = δ(Pr ⊠ C5). However, the deletion of one copy of
C5 corresponding to any vertex of degree 2 in Pr, produces a disconnected graph
and no component of this graph is an isolated vertex. Therefore, Pr ⊠ C5 is not
superconnected. In addition, the hypothesis on the connectivity of the factors also
must be assumed. If not, observe what happens if G1 is formed by two copies ofK3,3

which share one edge and G2 = K3,3. Obviously, κ(G1) = 2 because we can break
G1 by removing the vertices of the common edge which share the two copies ofK3,3.
Therefore, if we remove in G1⊠G2 the copies of G2 corresponding to the minimum
cut set of G1, we disconnect G1 ⊠G2 and therefore, κ(G1 ⊠G2) ≤ 2|V (G2)| = 12.
However, δ(G1⊠G2) = 15, which means that G1⊠G2 is not maximally connected.
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10. W. Grüener, R. Giegerich, D. Strothmann, C. Reidys, J. Weber, I. L. Ho-

facker, P. F. Stadler, P. Schuster: Analysis of RNA sequence structure maps by
exhaustive enumeration. I. neutral networks. Monatsh. Chem., 127 (1996), 355-374.

11. R. Hammack: On direct product cancellation of graphs. Discrete Math., 309 (8)
(2009), 2538-2543.
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Departamento de Matemática Aplicada I, (Received December 20, 2014)
Universidad de Sevilla, E.T.S. de Arquitectura, (Revised August 11, 2015)
Avda. Reina Mercedes, 2,
41012 Sevilla
Spain

E-mail: rociomc@us.es

Departamento de Matemática Aplicada I,
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