-

P
brought to you by .. CORE

View metadata, citation and similar papers at core.ac.uk

provided by idUS. Depésito de Investigacion Universidad de Sevilla

A Domain Specific Visual Language for Modeling
Power-Aware Reliability in Wireless Sensor Networks

Javier Troya
Universidad de Malaga
Dept. Lenguajes y Ciencias de la Computacién
Bulevar Louis Pasteu, 35, 29071
Malaga, Spain
javiertc@lcc.uma.es

ABSTRACT

Reliability is an attribute that appears in all quality models,
so it is important to take it into account when developing any
kind of system. Its evaluation at latter stages of the software
development may force the re-engineering of im-portant
parts of the system, something very costly. This is why it
should be raised to the system design phase. Among the
systems where reliability is a crucial issue, some wireless
sensor network (WSN) protocols aim to extend the networks
lifetime as much as possible, so a more reliable network will
live longer. Following a model-driven engineering (MDE)
approach, we propose the use of domain specific visual lan-
guages (DSVLs) to model the reliability of systems based on
components by means of in-place behavioral rules and by
modeling how the state of the components changes. We have
developed as well a DSVL for modeling and analyzing
reliability properties of a WSN protocol based on local in-
formation, namely directional source-aware routing protocol
(DSAP).

Keywords
Reliability, DSVLs, WSNs

1. INTRODUCTION

The modeling and analysis of non-functional properties
is very important when developing different kinds of sys-
tems. Software quality assessment is often applied at sys-
tem implementation time, which is normally too late because
the problems arisen during implementation can force the re-
engineering of important parts of the system, which is very
costly. This is why it should be raised to the system design

Antonio Vallecillo
Universidad de Malaga
Dept. Lenguajes y Ciencias de la Computacién
Bulevar Louis Pasteu, 35, 29071
Malaga, Spain
av@Icc.uma.es

phase. In this paper we focus on a non-functional property of
systems known as reliability, and we try to measure it at de-
sign time. Concretely, we analyze reliability when modeling
systems based on components by means of domain specific
visual languages (DSVLs), key parts in Model-Driven Engi-
neering (MDE) for representing models and metamodels. In
this way, we pursue the correct and complete specification
of a system by including the specification and analysis of
its reliability properties at design time. Specifically, in this
work we will focus on system reliability in the context of
wireless sensor networks (WSNs) and energy consumption.

A WSN is made up of spatially distributed sensor nodes
deployed over a certain area to monitor physical or environ-
mental conditions, such as sound, pressure, temperature,
vibration, humidity, and to cooperatively pass their data
among the nodes. The range of applications of WSNs is
large, and it includes military operations, habitat and envi-
ronmental monitoring, area surveillance or remote sensing.
Reliability is a crucial aspect in WSN applications, especially
those deployed for real-time communication, since data de-
livery should be guaranteed. For this reason, it is very im-
portant the routing protocol chosen in each circumstance.
There are many already studied [4], which can be classified
in broad terms as fault-tolerant routing, geographic routing
and energy aware routing [11]. Here we focus in the last
group, and concretely in the Directional Source Aware rout-
ing Protocol (DSAP) [5] to study its reliability, at design
time, in the original implementation and some variants.

The DSAP and its variants aim to extend the life of the
network as much as possible. In this sense, we are going
to model and monitor reliability in terms of the network’s
lifetime. Throughout this paper, we will be presenting the
DSAP and some variations for its routing. We model the
DSAP and its reliability in the domain of MDE and in-
place rules based on DSVLs. For the implementation and
simulation, we use e-Motions [8], a graphical framework and
tool for defining timed behavioral specifications of models.
We show as well how different kinds of reliability analysis
can be carried out with our approach.

After this introduction, in Section 2 we present an ap-
proach for modeling reliability of systems based on compo-
nents in design phases. In Section 3 we present a DSVL to
model the DSAP, some variants of it, and to monitor and
analyze its reliability. Sections 4 and 5 present some related
work and conclusions, respectively.

https://core.ac.uk/display/157757773?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. MODELING RELIABILITY IN DSVLS
2.1 Modeling Behavior

As presented in [14], we specify the dynamic behavior of
a DSVL by describing the evolution of the modeled arti-
facts along some time model. Following an MDE approach,
we achieve this by applying model transformations support-
ing in-place update. In this way, a system starts executing
in a particular state, and it evolves over time by the non-
deterministic firing of the behavioral rules.

Semantics are precisely specified by a set of behavioral
rules, each of which represents a possible action of the sys-
tem. These rules are of the form [: [NAC]* x LHS — RHS,
where [is the rule’s label (its name); and LHS (left-hand
side), RHS (right-hand side), and NAC (negative application
conditions) are model patterns that represent certain (sub-)
states of the system. The LHS and NAC patterns express
the precondition for the rule to be applied, whereas the RHS
one represents its postcondition, i.e., the effect of the corre-
sponding action. Thus, a rule can be applied, i.e., triggered,
if an occurrence (or match) of the LHS is found in the model
and none of its NAC patterns occurs. Generally, if several
matches are found, one of them is non-deterministically se-
lected and applied, producing a new model where the match
is substituted by the appropriate instantiation of its RHS
pattern (the rule’s realization). The model transformation
proceeds by applying the rules in a non-deterministic order,
until none is applicable.

2.2 Probabilistic Rules

In many kinds of systems, state machines are good for
defining the state of their components. If these state ma-
chines only have two states, the transition from one state
always brings to the other one. However, in the case of
components with more than one state, their state machines
can transit from one state to more than one other state. Our
in-place rules are triggered when there is a match of their
LHS in the system. We want to model that the triggering of
a rule can make the system evolve to more than one possi-
ble state, as happens in state machines, according to a given
probability for each transition. This is specially useful when
we are interested in modeling the reliability of systems.

Let us first introduce the concepts of mean time to fail-
ure (MTTF) and mean time to repair (MTTR). The former
represents the average from the time that a component of
the system is put into service until it first experiences fail-
ure, while the latter is the average time that the component
is out of service before it is repaired. As explained in [7],
both times are normally modeled with exponential distri-
butions. We already presented in [12] how we are able to
apply many probabilistic distributions to our in-place rules’
internal variables and durations. In this way, to model the
MTTF of every component in our system, we only need a
very simple rule where there is a component in its LHS which
changes its state in the RHS. The duration of the rule will
follow an exponential distribution whose parameter is the
mean time to failure of the component. Figure 1 shows this
rule in a system where the components are chips. A similar
rule would be needed for modeling the MTTR.

Since we want to find a way of modeling systems whose
components can have more than two states, we introduce
in-place rules with more than one RHS. Imagine we have a
system made up of chips, where each one can be in one of

:} ChipFailure
T in [mittf mtt]

[HS REEE

status = working status = down

|V mttf : Int = eMotions.expDistr(1 / c.mttf) |

Figure 1: ChipFailure Rule

three states: fully working (fw), partially working (pw) or down
(d). Chips can transit from one state to any of the other two
with a given probability (see Figure 2 for an example).

o.1i To}
O

Figure 2: Transitions and probabilities

Now, to model the failure of a chip, we have to consider
that it can evolve from the fully working state to either partially
working or down states. Thus, the rule modeling this has two
RHSs, and it evolves to one of them according to a proba-
bility. As before, the duration of the rule is exponentially
distributed. Consequently, the rule is “twice” probabilistic:
(1) due to the probability of transitions and (2) to the expo-
nential duration. Such rule is shown in Figure 3. It is very
simple, and since the only difference among its two RHSs
is the value of the status attribute of the chip, it could be
modeled with only a RHS and an OCL if condition in that
attribute. However, this same approach can be used to cre-
ate rules whose several RHSs differ completely.

ChipProbabilisticFailure
T in [mitf, mitf]

LHS | REEE CEAP | BEEGH 0.19)54

c C c

status = fullyWorking status = down

status = partiallyWorking

| _mitf : Int = eMotions.expDistr(1 / c.mitf) |

Figure 3: Rule with two RHSs

2.3 Observers

In [14] we presented the use of observers in order to spec-
ify and calculate the value of non-functional properties of
systems. An observer is an object whose purpose is to mon-
itor the execution of the system: the state of the objects, of
the actions, or both. Observers are defined by means of a
metamodel which is then merged together with the system
metamodel in a non-intrusive way. This allows to intro-

duce observers in the behavioral rules. Many non-functional
properties can be specified and monitored, such as through-
put, delays, cycle times, busy times, etc. In this work we
focus on reliability in terms of energy consumption in system
components. We go into this in next section.

3. RELIABILITY IN WSNS

In this section we apply our approach for specifying and
measuring the reliability of systems modeled with DSVLs.
Concretely, we model the structure and behavior of a routing
protocol for WSNs named DSAP.

3.1 The DSAP

The Directional Source Aware routing Protocol (DSAP) [10]
was designed for low-power fixed wireless topologies and
based on local information where each node only knows
about its neighbors information. It has several advantages
over other routing protocols, including incorporating power
considerations and having no routing table [10]. Each node
has a unique ID, which gives how far, in terms of number
of nodes, the node is from the network perimeter in each
direction. For example, the ID of the node numbered 43 in
the WSN in Figure 4 is (3, 3,4,4,6,5,5,3). This means that
there are three nodes (42, 41, 40) to the edge in direction 0
(left), three nodes (32, 21, 10) in direction 1 (up-left), etc.
Consequently, the ID is a vector with as many components
as neighbors have the nodes in the network — 8 in our case.

X
G

\
-0
©)

®©-O

®-O

@-6-O
X1 X]

®O-6-6

®-O

O O

X?X |
©

XIX]

®-6-0

I X1 géx\

xxixw
®
®
P

494
43
—®
6

®

©)

®-0

®
agut

64
Xé><|
®
X\%|

®
X]
XTI X]
Xax@w

®

% |

2
®-©
|
@-6®-0

©
©®

x|%|
X
XXX
QX|%|

®
®
®
®
7

®

®

®

®

®4
XIX]

?4
—®©-©

X

@-®

i(%)w X]
X7

@

©)

S)

®

X1
\X|}|X|

X]
X
Z<|

®
©
®
o
®
o

©-©-0-0
45
“0
48
X
X
X
X
X
X

©
o
o
©
o
©
o
o
o

Figure 4: 100 nodes WSN net

When transmitting a packet, each node contains infor-
mation about its neighbors’ IDs and the ID of the packet’s
target node. In order to choose which neighbor a packet is
forwarded to, the Directional Value (DV) is used. The DV
of each neighbor is calculated by taking their IDs and sub-
tracting them from the destination node’s ID. Let us imagine
that node 22 wants to send a packet to node 77. The original
DSAP can be seen as a two-step routing protocol.

First, the source’s and target’s IDs are subtracted. The
result in our case is (2,2,2,2,7,7,7,2)—(7,7,7,2,2,2,2,2) =
(=5,-5,-5,0,5,5,5,0). This obtained vector indicates which
neighbors the packet can be forwarded to: those with a non-
positive number are discarded. In this way, the packet will
not be sent to nodes in directions 0 (left — 21), 1 (up-left
—11), 2 (up — 12) and 3 (up-right — 13). Second, the ID
of those candidate neighbors to receive the packet is sub-
tracted from the destination node’s ID. The absolute values

of the components in each resulting vector are added, which
gives us the DV, and the neighbor with the smallest result
is chosen. If there are more than one with the same value,
one of them is randomly selected. In our case, the DVs for
the nodes numbered 23, 33, 32 and 31 are, respectively, 28,
26, 28 and 32. As it was obvious, node 33 is closer to the
destination and is the one chosen.

Variants. There have been some new routing methods pro-
posed for improving the DSAP in order to extend the sensor
network lifetime, such as the power aware routing [9]. How-
ever, in every proposed routing, the neighbor node which
has the most power and shortest path is chosen most of the
time. This causes the energy in the same nodes to be de-
pleted, and creates an unbalanced power dissipation in the
network. Besides, since the protocol always tries to forward
the packet to a neighbor closer to the destination, some of
the nodes in the network will stay untouched, whereas they
could be chosen as an alternative path to prolong the overall
network lifetime.

In this paper we select some protocols already proposed
and consider a variant of the power-aware DSAP. Further-
more, we consider all possible directions from a given node.
In this way we try to consider all possible paths and extend
the network’s lifetime as much as possible.

3.2 Modeling the DSAP and its Variants

In this section we present how to model the DSAP and its
variants and their reliability in terms of energy consumption,
and explain how they could be extended and made more
realistic with the approach presented in Section 2. We follow
an MDE approach and propose the specification of a DSVL
for the high-level modeling and analysis of the protocols, in
terms of behavioral rules, in the design phases. We show
how once we model the original DSAP, modeling each of its
variants is trivial.

3.2.1 Defining the Metamodels

The first step is to define a metamodel for the DSAP in
WSNs, which describes their static structure. Our proposed
metamodel is the simple one shown in Figure 5(a). Accord-
ing to it, a WSN is composed of a set of Nodes. Each Node
has an identifier given by an integer (id — 0, 1, 2 and so on).
Another identifier, which gives the position of the node in
the network according to what was explained in Section 3.1,
is kept in the edges attribute. It is a sequence with n com-
ponents in a n-neighbors network. The remaining energy is
kept in eng. The attribute named target contains the edges of
the target(s) node(s) and pckts contains the number of pack-
ets that a node currently contains. These two attributes
work like this: if there are no packets in a node, target is
an empty sequence; if there is one packet, target contains
a sequence with n components (in a n-neighbors network);
if there are more than one packet, target contains a vector
with n * pckts components, where the first n components
represent the edges of the target node of the packet that
arrived first, and so on. Attributes incoming and outgoing
contain the total number of incoming and outgoing packets
in the node, and alive is a boolean stating if the energy of the
node is above 0 (alive=true) or not (alive=false). If a node is
not alive, it can neither receive messages nor forward them.
As for the references, every node has a link (nghbs) to each
neighbor and another link only to the neighbors which are
alive (posNghbs).

(a) WSN Metamodel. (b) Obs Metamodel.

Figure 5: Metamodels

With the metamodel described we can already define be-
havioral rules for the functional behavior of the DSAP. Nev-
ertheless, let us first introduce the Observers metamodel in
order to be able to introduce observers in the rules and mon-
itor reliability properties. It is presented in Figure 5(b).
There are two observers, named RelOb and RndmOb. The for-
mer keeps the number of packets that arrive to the network
(incoming) and those that reach their target node (completed).
It also contains two sequences, death and time, that store the
identifier of the nodes which die and the time they die. The
latter observer is used to randomly select nodes from and to
which packets are sent.

3.2.2 Defining the Behavior

Here we define the behavior of the DSAP for 8-neighbors
WSNs as that presented in Figure 4. Modeling the behavior
for a m-neighbors WSNs is trivial. We want to carry out
two different analysis, one modeling the reality and another
one for a more specific study. In the former, packets arrive
at nodes randomly selected and their target node is also
random. In the latter, packets are always sent from node 22
to node 77 (Figure 4).

To take into account the energy of the nodes and the size of
the packets, we use a simple radio model described in [5]. To
simplify the explanation, every node dissipates 25612.8 n.J
in the transmission of a packet and 25600 nJ in its reception.
For a more detailed explanation, the reader can have a look
at [5, 10, 9]. We suppose that every packet starts with an
energy of 1000000 n.J. Our initial model is the network
composed of 100 nodes shown in Figure 4. There are also
a RelOb and a RndmOb observers. We have a rule named
CalculateRandom where it is decided the source and target
nodes for the next incoming packet. Their ids are kept in the
observer’s attributes rl and r2. Rule PacketArrival (Figure 6)
uses the values in such attributes to model the arrival of
the packet. It arrives to node n0, while its target is node
nl (LHS). Notice the corresponding update of the necessary
attributes in the rule’s RHS.

Rule PacketForwarding (Figure 7) models the forwarding of
a packet to the alive neighbor with the lowest DV. The OCL
condition in the LHS checks that node n0 has a packet and nl
is a neighbor with positive energy and the lowest DV. That
expression uses a helper, named dv, which deals with the
calculation of the DV and is: context Sequence::dv(sl : Se-
quence, s2 : Sequence): Integer body: self -> iterate(i ; acc :
Sequence = Sequence{} | acc->append(i.abs()))->sum(). In

PacketArrival
O TinpL1
|LIGH [T RHS

n0

id = rObrl

id = rOb.r2

Ol
relOb rndCh incoming = n0.incoming+1

g?;l %‘n s, relOb

P 09
:
r

1
r2

target = n0.target->unicninl.edges)
pckis = n0.pckis+1

j incoming = ob.incoming=1

Figure 6: PacketArrival Rule

the rule’s RHS, the attributes of the nodes are modified with
the updating of the energy, the number of packets contained,
incoming and outgoing packets, etc. The RelOb observer up-
dates its completed attribute when nl is the target node of
the packet being forwarded.

PacketForwarding
(D Tin[1.1]

LHS

posMghbs

WM n.pckts =0 and n.posMghbs- >forAll(i| Sequence(l,2,3,4,5,6,7 8B}.dvinl.edges n.target- >
subSequence(l.8)) <=Sequencefl.2 3.4.5.6,7 8).dv(i.edges, n.target- > subSequence{1 8)))
31 RHS

n

nl

posMghbs

pckts = if n.target- »subSequence(1.8) =
nl.edges then nl.pckts else nl.pckts =1

target = if n.target->subSequence(l,8) = nl.edges
then nl.target else nl.target-»
unicnin.target- »subSequence(l,8)

eng = nl.eng-25600.0

time = clk.time

relOb incoming = nl.inceming + 1

PxR

completed = if n.target - > subSequence(1.8) = nl.edges then ob.completed + 1 else ob.completed

pckts = npckts -1

target = if n.pckis>1 then n.target - >
subSequence(9, n.target-»sizef))
else Sequence(]

eng = n.eng-25612.8

outgoing = n.outgoing+1

Figure 7: PacketForwarding Rule

To model some of the variants of the DSAP, we only need
to change the OCL condition in the PacketForwarding rule’s
LHS. For example, we can model the Power-DSAP with
power-aware routing [10]. It selects the paths according to
the ratio of the directional value and the power available at
the neighboring nodes. The OCL condition would be this:
n.pckts > 0 and n.posNghbs -> forAll(i | Sequence{1,2,3,4,5,
6,7,8}.dv(nl. edges, n.target -> subSequence (1,8)) / nl.eng
<= Sequence{ 1,2,8,4,5,6,7,8}.dv(i.edges, n.target -> sub-
Sequence(1,8)) / i.eng). We have developed another vari-
ant, where the routing selects the path according to the ra-
tio of the DV, the power remaining at the neighboring nodes
and it also takes into account the packets contained at the
neighboring nodes and the power they will spend in forward-

ing them. The OCL condition of the PacketForwarding rule’s
LHS would be the following: n.pckts > 0 and n.posNghbs ->
forAll(i | Sequence{1,2,3,4,5,6,7,8}.dv(nl.edges, n.target ->
subSequence (1,8)) / (nl.eng - nl.pckts* 25612.8) <= Se-
quence{1,2,8,4,5, 6,7,8}.dv(i.edges, n.target -> subSequence
(1,8)) / (i.eng - i.pckts*25612.8)).

Regarding the rules’ duration, notice that we have es-
tablished that a new packet arrives every time unit and
nodes forward packets (as long as they have any) every time
unit too. To make the model more realistic, these times
should have followed some probabilistic distribution, some-
thing that we are able to model as we already presented
in [12]. However, to make the simulations the least random
possible, we decided to set these times as 1 in order to com-
pare the different protocols in the different simulations in a
fair way.

The complete specification of the DSAP can be consulted
at [2]. It contains for example a rule to keep in the RelOb a
list with the death nodes and the time they die.

Extensions to the DSAP. In order to make the modeling
and simulations more realistic and according to real-life sit-
uations, we can add a few rules for that purpose. In real-life
WSNs, nodes consume energy in stand-by. We have not had
this into account, nor have the works presented in [5, 10, 9].
We can add a simple rule, similar to that in Figure 1, to
model this energy consumption. We can also model the fail-
ure of nodes, with rules similar to those in Figures 1 and 3.
Consequently, we can even consider that the nodes have dif-
ferent states which dictate how accurately they are working,
and depending on such states they could for example send
packets faster or slower. Likewise, we can model the repair
of nodes which run out of energy or failed due to other cir-
cumstances. These extensions are out of the scope of this
paper, mainly due to space limitations, but are trivial to
implement in e-Motions. Some of them are described, mod-
eled and analyzed for the case of the DSAP in our extended
paper available at [13].

3.3 Reliability Analysis

Once we have the specifications of the protocols modeled
in e-Motions, we are able to simulate them and analyze their
results. As we mentioned in Section 3.2.2, we want to carry
out two different analysis. In one of them, the source and
target nodes of packets are chosen randomly, while in the
other packets always go from node 22 to node 77. The first
one models more accurately the reality, while the second one
allows us to focus on nodes 22 and 77 and their neighbors.
For both kinds of analyses, we have run three protocols: (1)
the original DSAP [5], (2) the power-aware DSAP [9] and (3)
a new variant that takes into account the packets that still
need to be processed in each node apart from the remaining
energy (we call it power-aware DSAP v2).

3.3.1 Random Arrivals

In these simulations, the RndmOb observer deals with the
random selection of the source and target nodes for every
packet. We are interested in knowing the lifetime of the
network in each protocol. For that, we consider that the
network dies when a node consumes all its energy. So we
will measure the reliability in terms of the time the network
has been alive and the number of packets completed (those
that reached their destination) within that time.

As we already knew from other works [10, 9], and as we

Figure 8: Results with random arrivals

can see in the simulation results shown in Figure 8, the
power-aware DSAP is more reliable than the original DSAP.
Besides, it turns out that it is also more reliable than the new
developed protocol that also takes into account the packets
that still need to be processed in the nodes.

3.3.2 Fixed Arrivals

We have made these simulations stop when all the energy
in the nodes around 22 or 77 is consumed, so that no packet
can reach its destination (77). We have made node 22 not
to consume any energy when forwarding packets and node
77 when it receives packets. Otherwise, the energy in these
nodes would be consumed soon.

H DSAP
M Power-aware DSAP
M Power-aware DSAP v2

[
N A o ®
S & © o

40
20

TIME WHEN THE NODES' ENERGY IS CONSUMED
@
S

33 23 13 32 31 12 21 11
NODES WHOSE ENERGY IS CONSUMED

Figure 9: Results with fixed arrivals

In Figure 9 we can see the time at which the energy in each
node around node 22 is consumed for each protocol. Let
us focus first in the original DSAP. Since it does not take
into account the remaining energy in the nodes, it always
follows the shortest path to the destination. This is why
it always uses node 33 from 22 to send packets to node 77
at the beginning. This makes the energy in node 33 to be
consumed quickly, in time 22. Then, the protocol forwards
packets to nodes 23 and 32 from 22 because they are at the
same distance from the destination. The energy at both
nodes is consumed almost at the same time, at times 61 and
63, respectively. The same happens then with nodes 13 and
31, and later with nodes 12 and 21. The last node to run
out of energy is the 11. The number of packets that reach
node 77 are 87.

In the other two protocols, the energy consumption in the
nodes is much more uniform, since they take into account
the remaining energy at nodes. In the power-aware DSAP,
the energy consumption is slightly more uniform than in the
power-aware DSAP v2, and the packets completed are 128,
while in the latter protocol they are 123.

From the three analyzed protocols, the power-aware DSAP
already presented in [10, 9] is the most reliable both with
random and fixed arrivals.

4. RELATED WORK

As we do, the work in [6] presents by means of an MDE
approach a DSVL to model WSNs. According to their ap-
proach, the WSN models described are then to be trans-
lated to WSNs domain specific textual languages by means
of model-to-model and model-to-text transformations, in or-
der to later simulate them. In this way, they only describe
the static structure for WSNs, but not its dynamics. In
fact, they add behavioral elements in the static models. In
our approach we include the simulation and reliability anal-
ysis of the networks. As far as we are concerned, our work
is the first that proposes an approach to model and simu-
late WSNs using high-level DSVLs. Furthermore, no other
work has previously presented the use of several RHSs based
on probabilities in transformation rules, which allows us to
model systems in a more realistic way.

The works in [5, 10, 9] present and describe the DSAP
and also compare some of its variants in terms of network
lifetime. However, in none of these works it is mentioned
the way the protocols are implemented, although we believe
it is in a lower level than ours, nor the platform or program
used to simulate them. Some other works have also studied
the reliability in WSNs, such as the one presented in [1],
where they consider the failure probability of each sensor.
Their algorithm considers different types of topologies for
the network, while the DSAP and variants only consider
local information, and is implemented using dynamic pro-
gramming to compute reliability. The RPAR protocol [3]
is also a power-aware routing protocol for WSNs that tries
to maximize the network lifetime by dynamically adapting
packets forwarding.

5. CONCLUSIONS

In this paper we have presented an MDE approach to per-
form a high-level modeling of the reliability in systems based
on components by describing how the state of their compo-
nents can vary. We have introduced the use of several RHSs
in transformation rules for describing the behavior of com-
ponents in terms of their reliability. We have also presented
how we can easily model the DSAP for WSNs and some vari-
ants by simply realizing small changes in the rules. By using
observers we have been able to monitor and analyze the re-
liability of the protocols in terms of energy consumption in
nodes. Furthermore, we have described how the modeling
of the protocols could be extended by including some be-
havioral rules that would allow more precise and realistic
simulations by modeling energy consumption in nodes in
stand-by or considering the mean time to failure of nodes.
Experiments with both cases have been carried out and are
explained in our extended paper [13].

6. ACKNOWLEDGMENTS

This work has been supported by Spanish Research Project
TIN2011-23795.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

REFERENCES

H. AboElFotoh, E. EIMallah, and H. Hassanein. On
The Reliability of Wireless Sensor Networks. In ICC
’06, volume 8, pages 3455 —3460, june 2006.

Atenea. DSAP and its Reliability in e-Motions, 2012.
http://atenea.lcc.uma.es/index.php/Main_Page/
Resources/E-motions/DSAP.

O. Chipara, Z. He, G. Xing, Q. Chen, X. Wang,

C. Lu, J. Stankovic, and T. Abdelzaher. Real-time
Power-Aware Routing in Sensor Networks. In ITWQoS
06, pages 83 —92, june 2006.

D. Goyal and M. R. Tripathy. Routing Protocols in
Wireless Sensor Networks: A Survey. ACCT12,
0:474-480, 2012.

K. Jalil and M. Nategh. A Composed Energy Aware
Metric for WSNs. In ICCDA, volume 2, june 2010.

F. Losilla, C. Vicente-Chicote, B. Alvarez, A. Tborra,
and P. Sadnchez. Wireless Sensor Network Application
Development: An Architecture-Centric MDE
Approach. In F. Oquendo, editor, ECSA, volume 4758
of LNCS, pages 179-194. Springer, 2007.

L. B. Page. Probability for Engineering With
Applications to Reliability. Computer Science Press,
Inc., USA, 1989.

J. E. Rivera, F. Durdn, and A. Vallecillo. A graphical
approach for modeling time-dependent behavior of
DSLs. In Proc. of VL/HCC’09, Oregon (US), 20009.
A. Salhieh and L. Schwiebert. Power-Aware Metrics
for Wireless Sensor Networks. International Journal of
Computers and Applications, 26(4), 2004.

A. Salhieh, J. Weinmann, M. Kochhal, and

L. Schwiebert. Power Efficient Topologies for Wireless
Sensor Networks. In International Conference on
Parallel Processing, pages 156-163, 2001.

R. C. Shah and J. M. Rabaey. Energy Aware Routing
for Low Energy Ad Hoc Sensor Networks. In
WCNC’12, March 2002.

J. Troya and A. Vallecillo. A Domain-Specific
Language to Specify and Simulate Queuing Network
Models. Submitted, Dec. 2011.

J. Troya and A. Vallecillo. A Domain Specific Visual
Language for Modeling Power-Aware Reliability in
Wireless Sensor Networks (Extended version).
http://atenea.lcc.uma.es/Descargas/
NFPinDSML12ExtendedVersion.pdf, 2012.

J. Troya, A. Vallecillo, F. Durdn, and S. Zschaler.
Model-driven performance analysis of rule-based
domain specific visual models. Information and
Software Technology, 55(1):88-110, Jan. 2013.

