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a b s t r a c t

Several examples of the efficiency of cell-like P systems regarding the solution of NP-
complete problems in polynomial time can be found in the literature(obviously, trading
space for time). Recently, different newmodels of tissue-like P systems have receivedmuch
attention from the scientific community. In this paper we present a linear-time solution
to an NP-complete problem from graph theory, the 3-coloring problem, and we discuss
the suitability of tissue-like P systems as a framework to address the efficient solution to
intractable problems.

1. Introduction

This paper is within the Natural Computing framework and, more precisely, in the study of the structure and functioning
of cells as living organisms able to process and generate information. We focus on membranes, which are involved in many
reactions taking place inside various compartments of a cell, and they act as selective channels of communication between
different compartments as well as between the cell and its environment [1]. Assuming this starting point, two different
disciplines within Natural Computing can be found in the literature:Membrane Computing and Brane Calculi.

Brane Calculi were recently introduced in [6], under the assumption that in living cells membranes are not merely
containers, but they are actually highly dynamic and participate actively in the cell life. In this way, “computation” happens
on the membranes, and not inside them.

On the other hand, Membrane Computing starts from the assumption that the processes taking place within the
compartmental structure of a living cell can be interpreted as computations [18].

This emergent cross-disciplinary branch of Natural Computing was introduced by Păun in [17]. It has received important
attention from the scientific community since then, with contributions from computer scientists, biologists, formal linguists
and complexity theoreticians, enriching each other with results, open problems and promising new research lines. In fact,
Membrane Computing was selected by the Institute for Scientific Information, USA, as a fast Emerging Research Front in
Computer Science, and [19] was mentioned in [29] as a highly cited paper in October 2003.

The computational devices in Membrane Computing are called P systems. Roughly speaking, a P system consists of a
membrane structure, in the compartments of which one places multisets of objects which evolve according to given rules
in a synchronous non-deterministic maximally parallel manner.1

In recent years, many different models of P systems have been proposed. The most studied variants are characterized by
a cell-like membrane structure, where the communication happens between a membrane and the surrounding one. In this
model we have a set of nested membranes, in such a way that the graph of neighborhood relation is a tree.
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1 A layman-oriented introduction can be found in [20] and further bibliography at [30].
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One of the topics in the field is the study of the computational power and efficiency of P systems. In particular,
different models of these cell-like P systems have been successfully used in order to design solutions to NP-complete
problems in polynomial time (see [9] and the references therein). These solutions are obtained by generating an exponential
amount of workspace in polynomial time and using parallelism to check simultaneously all the candidate solutions.
Inspired by living cells, cell-like P systems abstract the way of obtaining new membranes, mainly from two biological
processes: mitosis (membrane division) and autopoiesis, see [13] (membrane creation). Both ways of generating new
membranes have given rise to the corresponding P systems model: P systems with active membranes, where the new
workspace is generated bymembrane division and P systemswithmembrane creation, where the newmembranes are created
from objects.

Both models are universal from a computational point of view, but technically, they are quite different. In fact, there are
no theoretical results which prove that these models can simulate each other in polynomial time.

Under the hypothesis P 6= NP, Zandron et al. [28] established the limitations of P systems that do not use membrane
division concerning the efficient solution of NP-complete problems. This result was generalized by Pérez-Jiménez et al. [24]
obtaining a characterization of the P 6= NP conjecture by the polynomial time unsolvability of an NP-complete problem
by language accepting P systems (without using rules that allow to construct an exponential number of membranes in
polynomial time).

We shall focus here on another type of P systems, the so-called Tissue P Systems(because of their membrane structure).
Instead of considering a hierarchical arrangement, membranes are placed in the nodes of a graph. This variant has
two biological inspirations (see [16]): intercellular communication and cooperation between neurons. The common
mathematicalmodel of these twomechanisms is a net of processors dealingwith symbols and communicating these symbols
along channels specified in advance. The communication among cells is based on symport/antiport rules.2 Symport rules
move objects across a membrane together in one direction, whereas antiport rules move objects across a membrane in
opposite directions.

From the seminal definition of Tissue P systems [15,16], several research lines have been developed and other variants
have arisen (see, for example, [2,5,7,11,12,26]). One of the most interesting variants of Tissue P systems was presented in
[21]. In that paper, the definition of Tissue P systems is combinedwith the one of P systemswith activemembranes, yielding
Tissue P systems with cell division.

One of the main features of such Tissue P systems with cell division is related to their computational efficiency. In [21], a
polynomial-time solution to the NP-complete problem SAT is shown. In this paper we go on with the research in this model
and present a linear-time solution to another well-known NP-complete problem: the 3-coloring problem.

The paper is organized as follows: first we recall some preliminaries and the definition of Tissue P systems with cell
division. Next, recognizer Tissue P systems are briefly described. A linear–time solution to the 3-coloring problem is
presented in the following section, including a short overview of the computation and of the necessary resources. We also
include the formal verification of the solution. Finally, the main results, some conclusions and new open research lines are
presented.

2. Preliminaries

In this section we briefly recall some of the concepts used later on in the paper.
An alphabet, Σ , is a non-empty set, whose elements are called symbols. An ordered sequence of symbols is a string. The

number of symbols in a string u is the length of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted byλ. The set of strings of length n built with symbols from the alphabetΣ is denoted byΣ n andΣ∗

= ∪n≥0Σ
n.

A language over Σ is a subset from Σ∗.
Amultisetm over a set A is a pair (A, f )where f : A → N is a mapping. Ifm = (A, f ) is a multiset then its support is defined

as supp(m) = {x ∈ A | f (x) > 0} and its size is defined as
∑

x∈A f (x). A multiset is empty (resp. finite) if its support is the empty
set (resp. finite).

If m = (A, f ) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then it will be denoted as m = {{af (a1)1 , . . . , af (ak)k }}.
That is, superscripts indicate the multiplicity of each element, and if f (x) = 0 for any x ∈ A, then this element is omitted.

A graph G is a pair G = (V, E) where V is the set of vertices and E is the set of edges, each one of which is a (unordered)
pair of (different) vertices. If {u, v} ∈ E, we say that u is adjacent to v (and also v is adjacent to u). The degree of v ∈ V is the
number of adjacent vertices to v.

Inwhat followsweassume the reader is already familiarwith the basic notions and the terminologyunderlying P systems.
For details, see [18].

3. Tissue P systems with cell division

In the first definition of the model of tissue P systems [15,16] the membrane structure did not change along the
computation. Based on the cell-like model of P systems with active membranes, Păun et al. presented in [21] a new model

2 This way of communication for P systems was introduced in [19].



of tissue P systemswith cell division. The biological inspiration is clear: alive tissues are not static network of cells, since cells
are duplicated via mitosis in a natural way.

Themain features of thismodel, from the computational point of view, are that cells are not polarized (the contrary holds
in the cell-like model of P systems with active membranes, see [18]); the cells obtained by division have the same labels as
the original cell and if a cell is divided, its interaction with other cells or with the environment is blocked during the mitosis
process. In some sense, this means that while a cell is dividing, it closes its communication channels.

Formally, a tissue P system with cell division of degree q ≥ 1 is a tuple of the form

Π = (Γ ,w1, . . . ,wq, E,R, i0),

where:

(1) Γ is a finite alphabet, whose symbols will be called objects.
(2) w1, . . . ,wq are strings over Γ .
(3) E ⊆ Γ is the alphabet of the environment.
(4) R is a finite set of rules of the following form:

(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗.
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q} and a, b, c ∈ Γ .

(5) i0 ∈ {0, 1, 2, . . . , q}.

A tissue P system with cell division of degree q ≥ 1 can be seen as a set of q cells (each one consisting of an elementary
membrane) labelled by 1, 2, . . . , q. We shall use 0 as the label of the environment, and i0 denotes the output region (which
can be a region inside a membrane or the environment).

The communication rules determine an implicit net of channels, where the nodes are the cells and the edges indicate
if it is possible for pairs of cells to communicate directly. This is a dynamical graph, as new nodes can appear produced by
the application of division rules. Note also that the connections depend only on the label of the cell, and thus when a cell is
divided, the two new cells will have identical connections. Nevertheless, this graph is just an intuition, we shall not handle
it explicitly along the computations.

The strings w1, . . . ,wq describe the multisets of objects placed in the q cells of the system. We interpret that E ⊆ Γ is
the set of objects placed in the environment, each one of them in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells i and j such that u is contained in cell i and v is contained
in cell j. The application of this rule means that the objects of themultisets represented by u and v are interchanged between
the two cells.

The division rule [a]i → [b]i[c]i can be applied over a cell i containing object a. The application of this rule divides this cell
into two new cells with the same label. All the objects in the original cell are replicated and copied in each of the new cells,
with the exception of the object a, which is replaced by the object b in the first new cell and by c in the second one.

Rules are used as usual in the framework of membrane computing, that is, in a maximally parallel way. In one step, each
object in a membrane can only be used for one rule (non-deterministically chosen when there are several possibilities), but
any object which can participate in a rule of any form must do it, i.e in each step we apply a maximal set of rules. This way
of applying rules has only one restriction when a cell is divided, the division rule is the only one which is applied for that
cell in that step; the objects inside that cell do not evolve in that step.

4. Recognizer tissue P systems with cell division

NP-completeness has been usually studied in the framework of decision problems. Let us recall that a decision problem
is a pair (IX, θX) where IX is a language over a finite alphabet (whose elements are called instances) and θX is a total boolean
function over IX .

In order to study the computing efficiency for solving NP-complete decision problems, a special class of tissue P systems
with cell division is introduced in [21]: recognizer tissue P systems. The key idea of such recognizer system is the same one
as from recognizer P systems with cell-like structure.

Recognizer cell-like P systems were introduced in [25] and they are the natural framework to study and solve decision
problems within Membrane Computing, since deciding whether an instance has an affirmative or negative answer is
equivalent to deciding whether or not a string belongs to the language associated with the problem.

In the literature, recognizer cell-like P systems are associated in a natural waywith P systemswith input. The data related
to an instance of the decision problem has to be provided to the P system in order to compute the appropriate answer. This
is done by encoding each instance as a multiset placed in an input membrane. The output of the computation (yes or no) is
sent to the environment. In this way, cell-like P systems with input and external output are devices which can be seen as
black boxes, in the sense that the user provides the data before the computation starts, and then waits outside the P system
until it sends to the environment the output in the last step of the computation (see [23] for details).

A recognizer tissue P system with cell division of degree q ≥ 1 is a tuple

Π = (Γ ,Σ,w1, . . . ,wq, E,R, iin, i0)

where



• (Γ ,w1, . . . ,wq, E,R, io) is a tissue P system with cell division of degree q ≥ 1 (as defined in the previous section).
• The working alphabet Γ has two distinguished objects yes and no, present in at least one copy in some initial multisets

w1, . . . , wq, but not present in E .
• Σ is an (input) alphabet strictly contained in Γ .
• iin ∈ {1, . . . , q} is the input cell.
• The output region i0 is the environment.
• All computations halt.
• If C is a computation of Π , then either the object yes or the object no (but not both) must have been released into the

environment, and only in the last step of the computation.

The computations of the system Π with input w ∈ Σ∗ start from a configuration of the form (w1,w2, . . . ,wiinw, . . . ,wq; E),
that is, after adding themultisetw to the contents of the input cell iin.We say that themultisetw is recognized byΠ if and only
if the object yes is sent to the environment, in the last step of the corresponding computation.We say thatC is an accepting
computation or rejecting computation if the object yes or no), respectively, appears in the environment associated with
the corresponding halting configuration of C.

Definition 1. We say that a decision problem X = (IX, θX) is solvable in polynomial time by a family555 = {Π (n) : n ∈ N} of
recognizer tissue P systems with cell division if the following holds:

• The family555 is polynomially uniform by Turing machines, that is, there exists a deterministic Turing machine working in
polynomial time which constructs the system Π (n) from n ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over IX such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input multiset of the system Π (s(u));
– the family555 is polynomially boundedwith regard to (X, cod, s), that is, there exists a polynomial function p, such that

for each u ∈ IX every computation of Π (s(u)) with input cod(u) is halting and, moreover, it performs at most p(|u|)
steps;

– the family 555 is sound with regard to (X, cod, s), that is, for each u ∈ IX , if there exists an accepting computation of
Π (s(u)) with input cod(u), then θX(u) = 1;

– the family 555 is complete with regard to (X, cod, s), that is, for each u ∈ IX , if θX(u) = 1, then every computation of
Π (s(u)) with input cod(u) is an accepting one.

In the above definitionwe assume every P systemΠ (n) to be confluent, in the following sense: every computation of a system
with the same input multiset must always give the same answer.

We denote by PMCTD the set of all decision problems which can be solved by means of recognizer tissue P systems with
cell division in polynomial time.

5. A solution for the 3-coloring problem

A k-coloring (k ≥ 1) of an undirected graphG = (V, E) is a function f : V → {1, . . . , k}, where the numbers are interpreted
as colors. We say that G is k-colorable if there exists a k-coloring, f , such that f (u) 6= f (v) for every edge {u, v} ∈ E (such a
k-coloring f is said to be valid).

The 3-coloring problem is the following: given an undirected graphG, decide whether or notG is 3-colorable; that is, if there
exists a valid 3-coloring of G. For the sake of readability, we shall use {R,G, B} instead of {1, 2, 3} to represent the colors (R,
G and B standing for red, green and blue, respectively).

This problem is related to the famous Four Color Conjecture (proved by Appel and Haken [3,4]). It is a particular case of
the colorability problem: Given an undirected graph G and a number k, decide whether G is k-colorable. The NP-completeness
of the 3-coloring problem was proved by Stockmeyer [27] (see [8]).

Next, we shall prove that the 3-coloring problem can be solved in a linear time by a family of recognizer tissue P systems
with cell division. We shall address the resolution via a brute force algorithm, which consists in the following stages:

• Generation stage: The initial cell labelled by 2 is divided into two new cells; and the divisions are iterated until a cell has
been produced for each possible candidate solution. Simultaneously, in the cell labelled by 1 there is a counter that will
determine the moment in which the checking stage starts.

• Pre–checking stage: After obtaining all possible 3-colorings encoded in cells labelled by 2, this stage provides objects
Rij,Gij, Bij in such cells, for every edge Aij.

• Checking stage: Objects Rij,Gij, Bij will be used in cells labelled by 2 to check if there exists a pair of adjacent vertices with
the same color in the corresponding candidate solution (Rij checks if nodes vi and vj are both red, and analogously Gij and
Bij for green and blue colors).

• Output stage: The system sends to the environment the right answer according to the results of the previous stage.



Let us recall that the function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is a primitive recursive bijection between N2 and N.
Moreover, its inverse function is also polynomial. Next, we shall define a family 555 = {Π (i) : i ∈ N} such that each system
Π (i) will solve all instances of graphs with n vertices and m edges, where i = 〈n,m〉, provided that the appropriate input
multiset is provided.

For each n,m ∈ N, we shall consider the system

Π (〈n,m〉) = (Γ(〈n,m〉),Σ(n),w1,w2(n),R(〈n,m〉), E(〈n,m〉), iin, i0)

where:

• Γ(〈n,m〉) is the set

{Ai, Ri,Gi, Bi, Ti, Ri,Gi Bi, : 1 ≤ i ≤ n} ∪ {ai : 1 ≤ i ≤ 2n + m + dlogme + 11} ∪ {ci : 1 ≤ i ≤ 2n + 1}

∪ {di : 1 ≤ i ≤ dlogme + 1} ∪ {zi : 2 ≤ i ≤ m + dlogme + 6}

∪ {Aij, Pij, Pij, Rij,Gij, Bij : 1 ≤ i < j ≤ n} ∪ {b,D,D, e, T, S,N, [, yes, no}.

• Σ(n) = {Aij : 1 ≤ i < j ≤ n}
• w1 = {{a1, b, c1, yes, no}}

• w2(n) = {{D, A1, . . . , An}}

• R(〈n,m〉) is the set of rules:
(1) Division rules:

r1,i ≡ [Ai]2 → [Ri]2[Ti]2 for i = 1, . . . , n
r2,i ≡ [Ti]2 → [Gi]2[Bi]2 for i = 1, . . . , n

(2) Communication rules:
r3,i ≡ (1, ai/ai+1, 0) for i = 1, . . . , 2n + m + dlogme + 10
r4,i ≡ (1, ci/c2i+1, 0) for i = 1, . . . , 2n
r5 ≡ (1, c2n+1/D, 2)
r6 ≡ (2, c2n+1/d1D, 0)
r7,i ≡ (2, di/d

2
i+1, 0) for i = 1, . . . , dlogme

r8 ≡ (2,D/e z2, 0)
r9,i ≡ (2, zi/zi+1, 0) for i = 2, . . . ,m + dlogme + 5
r10,ij ≡ (2, ddlogme+1Aij/Pij, 0) for 1 ≤ i < j ≤ n
r11,ij ≡ (2, Pij/RijPij, 0) for 1 ≤ i < j ≤ n
r12,ij ≡ (2, Pij/BijGij, 0) for 1 ≤ i < j ≤ n
r13,ij ≡ (2, RiRij/RiRj, 0) for 1 ≤ i < j ≤ n
r14,ij ≡ (2, BiBij/BiBj, 0) for 1 ≤ i < j ≤ n
r15,ij ≡ (2,GiGij/GiGj, 0) for 1 ≤ i < j ≤ n
r16,j ≡ (2, RjRj/[, 0) for 1 ≤ j ≤ n
r17,j ≡ (2, BjBj/[, 0) for 1 ≤ j ≤ n
r18,j ≡ (2,GjGj/[, 0) for 1 ≤ j ≤ n
r19 ≡ (2, e [/λ, 0)
r20 ≡ (2, e zm+dlogme+6/T, 0)
r21 ≡ (2, T/λ, 1)
r22 ≡ (1, b T/S, 0)
r23 ≡ (1, S yes/λ, 0)
r24 ≡ (1, b a2n+m+dlogme+11/N, 0)
r25 ≡ (1,N no/λ, 0)

• E(〈n,m〉) = Γ(〈n,m〉) − {yes, no}

• iin = 2 is the input cell.
• i0 = 0 is the output region.

5.1. An overview of the computation

First of all we define a polynomial encoding of the 3-coloring problem in the family555 constructed in the previous section.
Let u = (V, E) be an instance of the problem, with n vertices and m edges. Then we consider a size mapping on the set of in-
stances defined as s(u) = 〈n,m〉. The encoding of the instancewill be themultiset cod(u) = {{Aij : {Ai, Aj} ∈ E∧1 ≤ i < j ≤ n}}.

Next we informally describe how the recognizer tissue P system with cell division Π (s(u)) with input cod(u) works.
Let us start with the generation stage. In this stage we have two parallel processes.

• On the one hand, in the cell labelled by 1 we have two counters: ai, which will be used in the output stage, and ci, which
will be multiplied until step 2n, where 4n copies of c2n+1 are obtained.



• On the other hand, in the cell labelled by 2, the division rules are applied. For each object Ai (which encodes the i-th vertex
of the graph) we get (in two steps) three cells labelled by 2, each of them encoding one of the three colors (red, green or
blue) for this node by means of the objects Ri,Gi, Bi.
After the appropriate divisions, in the step 2n we get exactly 3n cells encoding all the possible 3-colorings of the graph.

In this way, after the 2n-th step the generation stage is finished and the checking stage starts. At this moment, the content
of the cell labelled by 1 is {{a2n+1, c

4n
2n+1, b, yes, no}}, and there are 3n cells labelled by 2, each of them containing the object

D, the objects Aij, and encoding a different coloring function from V to {R,G, B}.
In the step 2n + 1, 3n copies of c2n+1 in the cell 1 are traded against 3n objects D, one from each cell labelled by 2. Notice

that 4n
− 3n spare copies of the counter c will remain in cell 1. When the object c2n+1 arrives to a cell labelled by 2, the

communication process starts in that cell.
At the beginning of the process, we pay attention to the counters d and z. The first one will be multiplied until at least

m copies are obtained, so that they can cooperate with the m input symbols Aij that represent the edges. This is achieved in
the (2n+ dlogme + 2)-th step (for the sake of simplicity, we shall denote γ = 2n+ dlogme + 2). The object zwill be used to
send an object T to the cell 1 at the end of this stage.

When the m copies of the object d are obtained, each of them is sent together with an object Aij to the environment, and
the corresponding objects Pij are brought in. Then they are interchanged by Rij,Gij, Bij from the environment (this is done in
two steps by applying rules r11,ij and r12,ij).

In order to know if a 3-coloring is valid we must check for each cell labelled by 2 (encoding a 3-coloring of the graph) if
there exist two adjacent vertices with the same color. Let us reason with a color, say red (for green and blue, the process is
the same):

• If node i has red color by a 3-coloring encoded in a cell labelled by 2, then the object Ri is present in that cell. Then in the
step γ+3 the objects Ri and Rij produce RiRj (the object Rj is brought from the environment). Simultaneously, in that step
the objects Pij produce objects Bij and Gij applying the rules r12,ij.

• If the vertex j is also of color red, then the objects RjRj are traded against an object [ from the environment. This object
will be sent out in the next step, together with object e.

• In this way, as soon as the cell finds two adjacent vertices with the same color, it “rejects” its associated coloring by
sending out the object e. Conversely, if there is a cell whose coloring is valid, then at the end of the checking stage the
object e will still be present in that cell.

Notice that in the generation stage, the processes are carried out in parallel, but in the checking stage, the red color starts to
be checked one step before the other two colors.

Taking into account that in the worst case there exists a node adjacent with m nodes (m is the number of edges), then
after γ + m + 3 steps no more rules of the types r13,ij, r14,ij, and r15,ij can be applied for any 1 ≤ i < j ≤ n. The checking stage
will finish at the step γ + m + 5, when we can ensure that no more rules of the types r16,j, r17,j, and r18,j can be applied.

The output stage starts in the (γ + m + 6)-th step.

• Affirmative answer: If there exists a valid 3-coloring of the graph, then in some cell labelled by 2 from the configuration
Cγ+m+5 we have the object e and the object zdlogme+m+6. By applying the rule r20 we produce an object T in that cell. In
the next step, an object T arrives to the cell 1 by the application of the rule r21. Then, the objects b and T in cell 1 permit
that an object S arrives to cell 1 from the environment (by applying the rule r22). Finally, an object yes is sent out to the
environment by the application of the rule r23 in the step γ+m+ 9 = 2n+dlogme+m+ 11. The obtained configuration
is a halting one.

• Negative answer: If there is no valid 3-coloring of the graph, then the object e does not appear in any cell labelled by 2
from the configuration Cγ+m+5, and actually no rule can be applied anymore in these cells. In the next three steps, only
the rules for counter a in cell 1 are applied, and hence, at configuration Cγ+m+8 we have the objects b and a2n+dlogme+m+11
in cell 1. Next, by applying the rule r24 we get from the environment an object N, and in the following step an object no
is sent out to the environment (recall that object no is present since the beginning of the computation in cell 1). The
computation finishes in the step γ + m + 10 = 2n + dlogme + m + 12.

5.2. Verification

Next, we prove that the family built above solves the 3-COL problem in a linear time, according to Definition 1.
First of all, the Definition requires that the defined family is consistent, in the sense that all systems of the family must

be recognizer tissue P systems with cell division. By construction (type of rules and working alphabet) it is clear that it is
a family of tissue P systems with cell division. In order to show that all members in 555 are recognizer systems it suffices
to check that all the computations halt (this will be deduced from the polynomial boundness), and that either an object
yes or an object no is sent out exactly in the last step of the computation (this will be deduced from the soundness and
completeness).



5.2.1. Polynomial uniformity of the family
Next, we show that the family555 = {Π (〈n,m〉) : n,m ∈ N} defined above is polynomially uniform by Turing machines.

To this aim we are going to prove that it is possible to build Π (〈n,m〉) in polynomial time with respect to the size of u.
It is easy to check that the rules of a system Π (〈n,m〉) of the family are defined recursively from the values n and m.

Besides, the necessary resources to build an element of the family are of a polynomial order, as shown below:

• Size of the alphabet: 3n2 + 9n + 2m + 3dlogme + 28 ∈ θ(n2 + m).
• Initial number of cells: 2 ∈ θ(1).
• Initial number of objects: n + m + 6 ∈ θ(n + m).
• Number of rules: 18n2 − 9n + 2m + 3dlogme + 24 ∈ θ(n2 + m).
• Maximal length of a rule: 4.

Therefore, a deterministic Turing machine can build Π (〈n,m〉) in a polynomial time with respect to n and m. Besides, recall
that m ≤ n2, since m is the number of edges in a graph of n vertices.

It is also interesting to bear inmind that every instance u = (V, E) is introduced in the initial configuration of its associated
cellular system via an input multiset (i.e. an 1-ary representation) and hence, |u| ∈ O(n + m) holds.

Wewould like also to recall that the functions cod and s have been defined above for an instance u = (V, E) of the problem
3-COL as follows: cod(u) = {{Aij : {Ai, Aj} ∈ E∧1 ≤ i < j ≤ n}}, and s(u) = 〈n,m〉, respectively. Both functions are computable
in polynomial time and the pair (cod, s) is a polynomial encoding of I3-COL inΠ , since for each instance u of the problem 3-COL
we have that cod(u) is an input multiset of the system Π (s(u)).

Next, following the indications of Definition 1, we shall prove that the family is polynomially bounded, and also that it is
sound and complete with respect to (3-COL, cod, s).

5.2.2. Polynomial boundness of the family
In order to ensure that the systemΠ (s(u))with input cod(u) is polynomially (indeed, linearly) bounded, it suffices to find

the moment in which the computation halts, or at least, an upper bound for it. As we shall show, the number of steps of the
computations of any system of the family can always be bounded by a linear function. Nonetheless, we would like to stress
that the amount of pre-computed resources for each instance u is polynomial in the size of the instance, since cod(u) needs
to be computed and Π (s(u)) needs to be built.

Proposition 2. The family555 = {Π (〈n,m〉) : n,m ∈ N} is polynomially bounded with respect to (3-COL, cod, s).

Proof (Sketch). We will informally go through the stages of the computation in order to estimate a bound for the number
of steps. The computation will be studied more in detail when addressing the soundness and completeness proof.

Let u = (V, E) be an instance of the problem 3-COL. We shall study what happens during the computation of the system
Π (s(u)) with input cod(u) which processes such instance in order to find the halting step, or at least, an upper bound for it.

First, the generation stage has exactly 2n steps, where all the divisions of the cells of the system are performed. The order
in which the divisions are performed is nondeterministically chosen in each computation, but in all cases the divisions are
carried out in the 2n first steps.

The pre-checking stage starts with the rule r5. After three more steps, objects z2 arrive to all cells 2, and the counter z
starts working until it reaches its last (greatest) index, at the (2n + dlogme + m + 5)-th step, and the checking stage ends.

The last one is the answer stage. The longest case is obtained when the answer is negative. In this case there is one step
where only the counter a is working since no element T has reached the cell 1. In the next step an object N is brought from
the environment and, at last, in the (2n + dlogme + m + 11)-th step, the object no is sent to the environment.

Therefore, there exists a linear bound (with respect to n and m) on the number of steps of the computation. �

5.2.3. Soundness and completeness of the family
In order to prove the soundness and completeness of the family 555 with respect to (3-COL, cod, s), we shall prove that

given an instance u of the problem 3-COL, the system Π (s(u)) with input cod(u) sends out an object yes if and only if the
answer to the problem for the considered instance u is affirmative and the object no is sent out otherwise. In both cases the
answer will be sent to the environment in the last step of the computation.

Proposition 3. The family555 = {Π (〈n,m〉) : n,m ∈ N} is sound and complete with respect to (3-COL, cod, s).

Proof. In order to complete the proof we shall proceed through a number of auxiliary results. �

Remark 4. For the sake of simplicity in the notation, we shall consider a function ψ defined as follows:

(f , i) =


Ri if f (vi) = R
Gi if f (vi) = G
Bi if f (vi) = B

for each 3-coloring f : {v1, . . . , vn} → {R,G, B}, and for i = 1, . . . , n.
Given a computation C we denote the configuration at the i-th step as Ci. Moreover, Ci(1) will denote the multiset

associated to cell 1 in such configuration.



We start with the generation stage (i.e. the first 2n steps of the computation). It has two parallel processes, each of them
in one cell.

Lemma 5. LetC be an arbitrary computation of the system, then for all k such that 0 ≤ k ≤ n,C2k(1) = {{a2k+1, c
4k
2k+1, b, yes, no}}

holds.

Proof. We shall reason by induction on k.
Base Case.We have C0(1) = {{a, c1, b, yes, no}}, and thus the lemma holds for k = 0.
Case k < n → k+1. Let k be such that 1 ≤ k < n andwe have, by inductive hypothesis,C2k(1) = {{a2k+1, c

4k
2k+1, b, yes, no}}. In

this configuration, only the rules r3,k+1 and r4,k+1 can be applied to cell 1, and thereforeC2k+1(1) = {{a2k+2, c
2·4k
2k+2, b, yes, no}}.

In the following step, we can only apply to cell 1 the rules r3,k+2 and r4,k+2, and we thus obtain

C2k+2(1) = {{a2k+3, c
2·2·4k
2k+3 , b, yes, no}} = {{a2k+3, c

4k+1

2k+3, b, yes, no}}. �

Proposition 6. Let C be an arbitrary computation of the system, then:

(1) For each coloring f : {v1, . . . , vn} → {R, B,G} there exists only one cell 2 in C2n whose multiset is {{Aij : {vi, vj} ∈

E}} ∪ {{D,ψ(f , 1), . . . ,ψ(f , n)}}
(2) There exist exactly 3n cells labelled by 2 in configuration C2n.

Proof (Sketch). Let f be a coloring f : {v1, . . . , vn} → {R, B,G}, and let us denote by Rf1 and Rf2 the following sets of rules

Rf1 = {r1,i : f (vi) = R, 1 ≤ i ≤ n}
Rf2 = {r1,i, r2,i : f (vi) = B ∨ f (vi) = G, 1 ≤ i ≤ n}.

Rf = Rf1 ∪Rf2 is the set of rules needed to produce a cell 2 containing the objectsψ(f , 1), . . . ,ψ(f , n) that encode the coloring
f . More precisely, for each 1 ≤ i ≤ n, if f (vi) = R then after applying r1,i ∈ Rf1 we take the cell where Ri occurs, and if f (vi) 6= R,
then after applying r1,i ∈ Rf2 we take the cell where Ti occurs, and after applying r2,i ∈ Rf2 we take the cell where ψ(f , i)
occurs. One can see that |Rf | = q + 2(n − q) where q = |Rf1 |, and it is clear that rules in Rf cannot be applied in parallel over
the same cell, as all of them are division rules. Thus, it takes 2n−q steps to carry them out sequentially (note that 1 ≤ q ≤ n).

Due to the intrinsic non-determinism of the system, a detailed proof falls out of the scope of this paper. Informally, the
idea is that rules from Rf may be applied in different orders within different computations, but it can be shown that in every
computation after 2n steps no more division rules are applied in any cell 2. The design of the rules ensures that each one of
the 3n possible colorings will be represented by some cell in the system. �

Lemma 7. Let C be an arbitrary computation of the system, then for all i such that 1 ≤ i ≤ dlogme + m + 8,
C2n+i(1) = {{a2n+i+1, c

4n−3n
2n+1 ,D3n , b, yes, no}} holds.

Proof. In order to prove the lemma it suffices to observe the following:

• C2n(1) = {{a2n+1, c
4n
2n+1, b, yes, no}} holds from Lemma 5.

• There exist exactly 3n cells labelled by 2 in configuration C2n, each of them containing an object D (follows from previous
result).

• In the next step of the computation, only rules r5 and r3,2n+1 are applicable on cell 1, yielding C2n+1(1) =

{{a2n+1+1, c
4n−3n
2n+1 ,D3n , b, yes, no}}

• During the rest of the checking stage, only rules of type r3,i are applicable on cell 1, and the result follows. �

Proposition 8. Let C be an arbitrary computation of the system. Then:

• For each coloring f : {v1, . . . , vn} → {R, B,G} there exists only one cell 2 in C2n+1 whose associated multiset is

{{Aij : {vi, vj} ∈ E}} ∪ {{c2n+1,ψ(f , 1), . . . ,ψ(f , n)}}.

• There exist exactly 3n cells labelled by 2 in configuration C2n+1

Proof. C2n+1 is obtained from C2n by the application of the rules r5 and r3,n+1 and hence, 3n objects c2n+1 in the cell 1
are traded against 3n objects D from the cells 2 (one from each cell). Then C2n+1(1) = {{a2n+2, c

4n−3n
2n+1 ,D3n , b, yes, no}}

and for every f : {v1, . . . , vn} → {R, B,G} there exists only one cell 2 whose associated multiset is {{Aij : {vi, vj} ∈

E}} ∪ {{c2n+1,ψ(f , 1), . . . ,ψ(f , n)}}.
Since no division rule has been applied in this step (actually, they will not be applied anymore along the computation),

the number of cells 2 remains the same as in the previous configuration. �

Proposition 9. Let C be an arbitrary computation of the system. Then:

• For each f : {v1, . . . , vn} → {R, B,G} there exists only one cell 2 in C2n+2 whose associated multiset is

{{Aij : {vi, vj} ∈ E}} ∪ {{d1,D,ψ(f , 1), . . . ,ψ(f , n)}}.

• There exist exactly 3n cells labelled by 2 in configuration C2n+2.



Proof. It follows from the previous result, taking into account that C2n+2 is obtained from C2n+1 by applying rules r6 and
r3,2n+2. Therefore, in cell 1 only the object a2n+2 is replaced by a2n+3, and each cell 2 trades an object c2n+1 against the objects
d1,D from the environment. �

Proposition 10. Let C be an arbitrary computation of the system. For each i (1 ≤ i ≤ dlogme) and for each f : {v1, . . . , vn} →

{R, B,G} there exists only one cell 2 in C2n+2+i whose associated multiset is

{{Aij : {vi, vj} ∈ E}} ∪ {{d2
i

i+1, e, zi+1,ψ(f , 1), . . . ,ψ(f , n)}}.

Proof. We shall reason by induction on i.
Case i = 1. The result follows from the previous Proposition, as C2n+2+1 is obtained from C2n+2 by applying the rules r3,2n+3,
r7,1 and r8.
Case 1 ≤ i < dlogme → i + 1. Let i be such that 1 ≤ i < dlogme and let us suppose that the result holds for i. The
configuration C2n+2+i+1 is obtained from the configuration C2n+2+i via the application of the rules r3,2n+2+i, r7,i+1 and r9,i. By
applying the rule r3,2n+2+i to C2n+2+i, the object a2n+3+i (used as a counter in the cell 1) evolves by adding 1 to the subscript.
The application of the rule r7,i+1 in all cells 2 replaces each object di+1 by d2i+2. Finally, the rule r9,i is applied in each cell 2
over the object zi+1 (used as a counter). Therefore,

C2n+3+i(1) = {{a2n+3+i, c
4n−3n
2n+1 ,D3n , b, yes, no}}.

Bearing in mind that, by inductive hypothesis, for each f : {v1, . . . , vn} → {R, B,G} there exists only one cell 2 in C2n+2+i with
the multiset

{{Aij : {vi, vj} ∈ E}} ∪ {{d2
i

i+1, e, zi+1,ψ(f , 1), . . . ,ψ(f , n)}},

then the multiset of such cell 2 in C2n+3+i will be

{{Aij : {vi, vj} ∈ E}} ∪ {{d2
i+1

i+2 , e, zi+2,ψ(f , 1), . . . ,ψ(f , n)}}. �

Proposition 11. Let C be an arbitrary computation of the system. For each f : {v1, . . . , vn} → {R, B,G} there exist some unique
cells 2 in the configurations C2n+dlogme+3 and C2n+dlogme+4 with the following corresponding multisets:

{{Pij : {vi, vj} ∈ E}} ∪ {{e, zdlogme+2,ψ(f , 1), . . . ,ψ(f , n)}}

{{Rij, Pij : {vi, vj} ∈ E}} ∪ {{e, zdlogme+3,ψ(f , 1), . . . ,ψ(f , n)}}.

Proof. The configuration C2n+dlogme+3 is obtained from C2n+dlogme+2 by applying the rules r3,2n+dlogme+3, r9,dlogme+1, {r10,ij :

{vi, vj} ∈ E}.

• r3,2n+dlogme+3 allows the evolution of the counter a2n+dlogme+3 in the cell 1.
• r9,dlogme+1 allows the evolution of the counter zdlogme+2 in each cell 2.
• {r10,ij : {vi, vj} ∈ E} allow the replacement of the objects Aij (encoding the edges) by Pij.

By an analogous reasoning, we can check that C2n+dlogme+4 is obtained from the configuration C2n+dlogme+3 by application of
the rules r3,2n+dlogme+4, r9,dlogme+2 and {r11,ij : {vi, vj} ∈ E}. �

Proposition 12. Let C be an arbitrary computation of the system. Then for each f : {v1, . . . , vn} → {R, B,G} there exist only one
cell 2 in C2n+dlogme+5 whose associated multiset is

{{Ri, Rj,Gij, Bij : {vi, vj} ∈ E ∧ f (vi) = R}} ∪ {{Rij,Gij, Bij : {vi, vj} ∈ E ∧ f (vi) 6= R}}

∪ {{ψ(f , j) : 1 ≤ j ≤ n ∧ f (vj) 6= R}} ∪ {{e, zdlogme+4}}.

Proof. The configuration C2n+dlogme+5 is obtained from C2n+dlogme+4 by applying the rules listed below:

• r3,2n+dlogme+5 allows the evolution of the counter a2n+dlogme+5 in the cell 1.
• r9,dlogme+3 allows the evolution of the counter zdlogme+3 in each cell 2.
• {r12,ij : {vi, vj} ∈ E} allow the replacement of the objects {Pij : {vi, vj} ∈ E} by {Bij,Gij : {vi, vj} ∈ E}.
• {r13,ij : {vi, vj} ∈ E ∧ f (i) = R} produce, in each cell 2, pairs of objects Ri, Rj for each {vi, vj} ∈ E such that f (i) = R. Objects

Rij corresponding to edges {vi, vj} ∈ E such that f (i) 6= R will remain unchanged. �

Proposition 13. Let C be an arbitrary computation of the system. Then

• There exist exactly 3n cells labelled by 2 in configuration C2n+dlogme+m+6.
• If f : {v1, . . . , vn} → {R, B,G} is not a valid coloring, then there exists only one cell 2 in C2n+m+dlogme+6 associated with f , and

whose associated multiset is

{{zm+dlogme+5}} ∪ {{[t−1
}}

together with an irrelevant multiset of objects, where t is the number of adjacent pairs of nodes with the same color in f .



• If f : {v1, . . . , vn} → {R, B,G} is a valid coloring, then there exists only one cell 2 inC2n+m+dlogme+6 associated with f , and whose
associated multiset is

{{e, zm+dlogme+5}}

together with an irrelevant multiset of objects (not containing [).

Proof. The check for the validity of the coloring started in the configuration C2n+dlogme+5 for the color R.
From C2n+dlogme+6 on, such a check is simultaneous in each cell 2 with the check of the colors B and G. More precisely, in

C2n+dlogme+5+i(1), with 1 ≤ i ≤ m + 1, only the counter a2n+dlogme+6+i evolves via the application of the rule r3,2n+dlogme+6+i.
The check for the validity of the colorings is performed in each cell 2, and it is carried out by the rules {rl,ij : 13 ≤ l ≤

18 ∧ {vi, vj} ∈ E ∧ i < j}.
Let us consider a coloring f . When the objects Rij, Bij, Gij have been generated for each {vi, vj} ∈ E, (i < j), then at most

m steps will be necessary for all checks to be concluded. Indeed, given a node vi (assume e.g. that f (vi) = R), each edge
{vi, vj} ∈ E, (i < j), will be checked only once by the rule (2, RiRij/RiRj, 0), and analogously if f (vi) ∈ {G, B}.

In order to give enough time for all checks to be accomplished (recall that the edges are checked in a nondeterministic
order), the counter z evolves in that stage from zdlogme+1 till zm+dlogme+5. Notice that we need m + 1 steps, because objects Gij

and Bij appear one step later than Rij.
Besides, by the application of the rules rl,ij and rl+3,ij, (13 ≤ l ≤ 15) in each cell, an object [ is generated for each edge

connecting two nodes with the same color in the corresponding coloring. Thus, this cell in C2n+m+dlogme+6 will not contain
object e because it has been sent out together with an object [ by means of the application of the rule r19. If the object [ does
not appear in the corresponding cell for a given coloring, this will mean that this is a valid coloring. �

Proposition 14. Let C be an arbitrary computation of the system.

(1) For each coloring f which is valid, there exists one cell 2 inC2n+m+dlogme+7 that encodes f and contains the objects e, zm+dlogme+6.
Besides this cell in C2n+m+dlogme+8 contains the object T and does not contain the object e.

(2) For each coloring f which is not valid, there exists one cell 2 in the configuration C2n+m+dlogme+7 that encodes f and contains
the object zm+dlogme+6, but does not contain the object e. Besides, this cell in C2n+m+dlogme+8 still contains the object zm+dlogme+6
but does not contain the object T.

Proof. • If f is valid, then the object [ does not appear in the cell associated with f in C2n+m+dlogme+6, and thus only the
object zm+dlogme+5 evolves in such cell 2. Therefore, the statement (1) follows directly from the previous proposition.

• If f is not valid, then there exists in C2n+m+dlogme+6 a cell 2 associated with it containing t−1 objects [. On the other hand,
the object zm+dlogme+5 is present in every cell 2 fromC2n+m+dlogme+6, and hence the first statement from (2) follows. Finally,
in C2n+m+dlogme+8 this cell will not contain object T, because rule r20 could not be applied in the absence of object e. �

Proposition 15. Let C be an arbitrary computation of the system. Let us suppose that there exists a valid coloring of the graph
with 3 colors. Then

(a) C2n+m+dlogme+9(1) = {{a2n+m+dlogme+10, c
4n−3n
2n+1 ,D3n , b, yes, no, Tα}}

(b) C2n+m+dlogme+10(1) = {{a2n+m+dlogme+11, c
4n−3n
2n+1 ,D3n , b, yes, no, S, Tα−1

}}

(c) C2n+m+dlogme+11(1) = {{a2n+m+dlogme+11, c
4n−3n
2n+1 ,D3n , no, Tα−1

}}

where α is the number of existing valid colorings. Furthermore, the object yes appears in C2n+m+dlogme+11(0).

Proof. The configuration of item (a) is obtained by the application of rules r21 and r3,2n+m+dlogme+9 to the previous
configuration. Analogously, the configurations of items (b) and (c) are obtained by the application of rules r22 and r23
respectively. �

Proposition 16. Let C be an arbitrary computation of the system. Let us suppose that there does not exist a valid coloring of the
graph with 3 colors. Then

(a) C2n+m+dlogme+9(1) = {{a2n+m+dlogme+10, c
4n−3n
2n+1 ,D3n , b, yes, no}}

(b) C2n+m+dlogme+10(1) = {{a2n+m+dlogme+11, c
4n−3n
2n+1 ,D3n , b, yes, no}}

(c) C2n+m+dlogme+11(1) = {{N, c4
n
−3n

2n+1 ,D3n , yes, no}}

(d) C2n+m+dlogme+12(1) = {{c4
n
−3n

2n+1 ,D3n , yes}}.

Furthermore, the object no appears in C2n+m+dlogme+12(0).

Proof. The configuration of item (a) is obtained by the application of rule r3,2n+m+dlogme+9 to the previous configuration. Then,
by applying the rule r3,2n+m+dlogme+10 we obtain

C2n+m+dlogme+10(1) = {{a2n+m+dlogme+11, c
4n−3n
2n+1 ,D3n , b, yes, no}}



by applying the rule r24 we obtain

C2n+m+dlogme+11(1) = {{N, c4
n
−3n

2n+1 ,D3n , yes, no}}

by applying the rule r25 we obtain

C2n+m+dlogme+12(1) = {{c4
n
−3n

2n+1 ,D3n , yes}}

and no ∈ C2n+m+dlogme+12(0). �

5.3. Main results

From the discussion in the previous sections and according to the definition of solvability given in Section 4, we deduce
the following result:

Theorem 17. 3-coloring ∈ PMCTD.

As a consequence of this result we have:

Theorem 18. NP ∪ co − NP ⊆ PMCTD.

Proof. It suffices to make the following observations: the 3-coloring problem is NP-complete, 3-coloring ∈ PMCTD and the
class PMCTD is stable under polynomial-time reduction, and also closed under complement. �

6. Final remarks and future work

The power and efficiency of cell-like P systems for solving NP-complete problems have been widely studied (in the
framework of cell division and membrane creation). Nevertheless, there are very few works studying the case of tissue-like
P systems.

Wewould like to stress that until now there there has been nomethodology for achieving the formal verification of tissue
P systems based cellular solutions to problems. Indeed, it seems that the formal verification process is hard to achieve due
to the massive parallelism and non-determinism of the model.

In this paper we have proposed a new solution to an NP-complete problem, the 3-coloring problem, which can be used
as a scheme for designing solutions to other NP–complete problems from graph theory such as the vertex–cover problem,
the clique problem, the Hamiltonian path problem, etc. Moreover, the structure of the solution described can be also adapted
for solving computationally hard numerical problems.

Recently, a new kind of P system model (called spiking neural P systems) based on the idea of spiking neurons has been
presented (see, for example, [10]). The motivation for this model comes from two directions: the attempt of membrane
computing to pass from cell-like architectures to tissue-like or neural-like architectures (see [22], [18]), and the intriguing
possibility of encoding information in the duration of events, or in the interval of time elapsed between events, as in recent
research in neural computing (of third generation) [14].

Until now, spiking neural P systems have been basically used in the generative mode and the investigations have been
addressed to study the computational completeness of these models. It remains as further work to bridge tissue P systems
and this new model in order to be able to solve NP–complete problems through spiking neural P systems.
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