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Lagrangian translators under mean curvature �ow

Ildefonso Castro • Ana M. Lerma

Abstract.We provide a new construction of Lagrangian surfaces in C2 in terms
of two planar curves. When we take such curves as appropriate solutions of the
curve shortening problem, including self-shrinking and self-expanding curves or
spirals, we will obtain translating solitons which generalize the Joyce, Lee and
Tsui ones in dimension two [6]. Finally, we characterize locally all examples in
terms of an analytical condition on the Hermitian product of the position vector
of the immersion and the translating vector that allows us separation of varia-
bles. As a consequence we get the classi�cation of the Hamiltonian stationary
Lagrangian translating solitons for Lagrangian mean curvature �ow in complex
Euclidean plane. This work is based in [1].

1. Introduction

The mean curvature �ow (in short MCF) is one of the most important geometric
evolution equations of submanifolds in Geometric Analysis. A family of smooth
submanifolds F = F (·, t) evolves under the MCF if the speed dF

dt at each point
of the submanifold is given by the mean curvature vector at that point. Hence,
the MCF is an evolution process under which a submanifold deforms in the
direction of its mean curvature vector.

There are very interesting results on regularity, global existence and con-
vergence of the MCF in several ambient spaces. When the ambient space is
Euclidean, the MCF turns out to be the solution to a system of parabolic equa-
tions which can be considered as the heat equation for submanifolds. We �rst
�x an immersion, which plays the role of the initial condition, and once the
existence and uniqueness of solutions of the MCF are guaranteed in a maximal
time interval [0, T ), the behavior of the MCF is studied by the evolution of the
immersed submanifolds when t → T . Unless the �ow has an eternal solution
(i.e., it is de�ned for all t), the MCF fails to exist after a �nite time, giving rise
to a singularity. This behavior appears, for instance, when the submanifold is
compact in the Euclidean ambient space.
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A natural question is to understand the geometric and analytic nature of
these singularities. As a �rst approximation, the singularities of the MCF are
classi�ed depending on the blow-up rate of the second fundamental form σ (see
[5]). The so-called Type I singularities are those such that the second funda-
mental form blow-up is best controlled; the remaining singularities are known
as Type II singularities. It is interesting to mention that there are many simila-
rities between the Ricci �ow singularities and the MCF singularities. In fact, in
both �ows the singularities are often modelled by soliton solutions.

Until the mid-nineties most authors studying MCF only considered hyper-
surfaces, whereas MCF in higher codimension did not play a fundamental role.
Nevertheless, in the last few years, the MCF in higher codimension has attracted
special attention, mainly when the initial submanifold is Lagrangian in complex
Euclidean space Cn. This is due to the fact that the Lagrangian condition is
preserved by MCF (see [8]).

Wang [9] and Chen and Li [3] proved independently that there is no Type I
singularity along the almost calibrated Lagrangian MCF. Therefore it is of great
interest to understand dilations of the �ow where the point at which we center
the dilation changes with the scale, called Type II dilations, which converge
to an eternal solution with second fundamental form uniformly bounded. One
of the most important examples of Type II singularities is a class of eternal
solutions known as translating solitons, which are surfaces which evolving by
translations with constant velocity.

2. Lagrangian translating solitons

An immersion φ : M → R4 is called a translating soliton for MCF if

H = e⊥,

where e is a �xed nonzero vector which indicates the direction of the translation,
e⊥ denotes the normal projection of the vector e, and H is the mean curvature
vector of φ. By scaling and choosing a suitable coordinate system in R4 ≡ C2,
we can assume that e = (1, 0) ∈ C2 without loss of generality.

The simplest examples of Lagrangian surfaces in C2 are usually found as
product of planar curves. If we look for translating solitons for MCF in this
family, we obtain the product of a grim-reaper curve and a straight line and
the product of two grim-reaper curves. Recall that the grim-reaper curve is the
graph of − log cos y.

The �rst results in this direction are due to Neves and Tian [7], who ga-
ve conditions that exclude the existence of nontrivial translating solitons to
Lagrangian MCF. More precisely, they proved that translating solitons with a
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L2-bound on the mean curvature vector are planes, and almost calibrated trans-
lating solitons which are static are also planes. Nevertheless, Joyce, Lee and Tsui
found out in [6] new surprising translating solitons for Lagrangian MCF with
oscillation of the Lagrangian angle arbitrarily small. They play the same role as
the cigar solitons in Ricci �ow and are important in the study of the regularity
of Lagrangian MCF.

2.1. New examples of Lagrangian translating solitons

Let α = α(t) ⊂ C \ {0}, t ∈ I1, and ω = ω(s) ⊂ C \ {0}, s ∈ I2, be regular
planar curves, where I1 and I2 are intervals of R. For any t0 ∈ I1 and s0 ∈ I2,
let us de�ne

Φ = α ∗ ω : I1 × I2 ⊂ R2 → C2 = C× C,

Φ(t, s) =

(∫ s

s0

ω̇(y)ω(y)dy −
∫ t

t0

α′(x)α(x)dx , α(t)ω(s)

)
, (1)

where ′ and ˙ denote the derivatives respect to t and s, respectively. Then, Φ
is a Lagrangian immersion (more information about this construction can be
found in [2]).

Lemma 2.1. Let α be a unit speed planar curve. Assume there exist a, b ∈ R,
not vanishing simultaneously, such that the curvature function κα of α satis�es

κα = a〈α, Jα′〉+ b〈α, α′〉

where ′ denotes derivative with respect to the arc parameter of α. Then the
family of curves αt =

√
2at+ 1 ei

b
2a log(2at+1) α, with 2at + 1 > 0, is a solution

to the curve shortening �ow (CSF)(
∂

∂t
αt

)⊥
= −→καt

such that α0 = α.

In the limit cases, b = 0 and a → 0 we recover the well-known solutions to the
CSF. If b = 0, we obtain that−→κα = aα⊥, that is, α is a self-similar solution to the
CSF, self-shrinking or self-expanding according to a < 0 or a > 0, respectively.
In particular, the �ow αt =

√
2at+ 1α is given by dilations of α. When a→ 0,

we get that −→κα = b (Jα)
⊥ so α is a spiral solution to the CSF with velocity |b|,

under the �ow αt = ei btα is given by rotations of α in this case. The properties
of these curves have been studied in [4].

Taking the curves as in Lemma 2.1 with a = ∓ cosϕ and b = ± sinϕ for a
given ϕ ∈ [0, π) in (1), we obtain that α∗ω is a Lagrangian translating soliton for
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mean curvature �ow with translating vector (1, 0) ∈ C2, whose induced metric
is (|α|2 + |ω|2)(dt2 +ds2) and its Lagrangian angle map is argα′+arg ω̇+π+ϕ.

If we focus on the case ϕ = 0, we obtain the following result:

Corollary 2.1. Let α and ω be self-similar solutions for the CSF satisfying
−→κα = −α⊥ and −→κω = ω⊥. Then α ∗ ω : I1 × I2 ⊂ R2 → C2 given by

(α ∗ ω)(t, s) =

(
|ω(s)|2 − |α(t)|2

2
− i(argα′(t) + arg ω̇(s)), α(t)ω(s)

)
(2)

is a Lagrangian translating soliton for the MCF with translating vector (1, 0) ∈
C2. By considering the straight lines α0(t) = t and ω0(s) = s, the circle α1(t) =
eit, self-shrinking curves αS and self-expanding curves ωE , we obtain up the
following particular examples:

(i)

(α0 ∗ ωE)(t, s) =

(
|ωE(s)|2

2
− i arg ω̇E(s)−

t2

2
, t ωE(s)

)
,

which correspond to the Joyce, Lee and Tsui examples (see [6]);

(ii)

(α1 ∗ ωE)(t, s) =

(
|ωE(s)|2

2
− i arg ω̇E(s)− it, eitωE(s)

)
,

for which ∂t is a Killing vector �eld;

(iii)

(αS ∗ ω0)(t, s) =

(
s2

2
− |αS(t)|2

2
− i argα′S(t), αS(t)s

)
,

which satis�es that its Lagrangian angle map is the angle that the tangent
vector α′S(t) makes with a �xed direction.

2.2. Classi�cation of Separable Lagrangian Translating So-

litons

In this section, we characterize locally all examples in terms of an analytical con-
dition on the Hermitian product of the position vector of the immersion and the
translating vector that allows us separation of variables (see [1, Theorem 4.1]).

Theorem 2.1. Let φ : M2 → C2 be a Lagrangian translating soliton to the MCF
with translating vector e. Assume that there exists a local isothermal coordinate

z = x+i y such that the smooth complex function (φ, e) satis�es ∂2

∂x∂y (φ, e) = 0.
Then φ is �up to dilations� locally congruent to some of the following:
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(i) the product of a grim-reaper curve and a straight line;

(ii) the product of two grim-reaper curves;

(iii) the example α1 ∗ α2 for some ϕ ∈ [0, π).

As a consequence, we get that if φ : M → C2 is a Hamiltonian stationary
(non totally geodesic) Lagrangian translating soliton for mean curvature �ow
(note that Hamiltonian stationary Lagrangian means that φ is a critical point
of the area functional among all Hamiltonian deformations), then φ(M) is �up
to dilations� an open subset of the Lagrangian

M :=
{

(z, w) ∈ C2 : w2 = 2 re z e−2 i im z, re z ≥ 0
}
.

It corresponds to the simplest nontrivial choice election of α1 (the circle α1(t) =
eit) and α2 (the line α2(s) = s) in the particular case ϕ = 0.
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