
Performance Metamorphic Testing:
A Proof of Concept

Sergio Segura, Javier Troya, Amador Durán and Antonio Ruiz-Cortés

Departamento de Lenguajes y Sistemas Informáticos
Universidad de Sevilla, Spain

Abstract

Context. Performance testing is a challenging task mainly due to the lack of test oracles, i.e. mechanisms to decide
whether the performance of a program is acceptable or not because of a bug. Metamorphic testing enables the gener-
ation of test cases in the absence of an oracle by exploiting the so–called metamorphic relations between the inputs
and outputs of multiple executions of the program under test. In the last two decades, metamorphic testing has been
successfully used to detect functional faults in different domains. However, its applicability to performance testing
remains unexplored.
Objective. We propose the application of metamorphic testing to reveal performance failures.
Method. We define Performance Metamorphic Relations (PMRs) as expected relations between performance meas-
urements of multiple executions of the program under test. These relations can be turned into assertions for the
automated detection of performance bugs, removing the need for complex benchmarks and domain experts guidance.
As a further benefit, PMRs can be turned into fitness functions to guide search–based techniques on the generation of
test data.
Results. The feasibility of the approach is illustrated through an experimental proof of concept in the context of the
automated analysis of feature models.
Conclusion. The results confirm the potential of metamorphic testing, in combination with search-based techniques,
to automate the detection of performance bugs.

Keywords: Metamorphic testing, performance testing, search–based testing

1. Introduction

Performance testing [1] aims to reveal errors that
cause significant performance degradation in the pro-
gram under test (PuT). Performance defects are very
common in released software programs. For example,
Mozilla developers fix between 5 and 60 user–reported
performance bugs every month [2]. Similarly, mobile
applications bring new challenges like detecting energy
leaks or memory bloats [3, 4].

In contrast to functional bugs, performance bugs do
not produce wrong results or crashes in the PuT and
therefore cannot be detected by simply inspecting the
program output. Therefore, they are significantly harder
to detect and require more time and effort to be fixed [1].
This is mainly due to the lack of test oracles, i.e. mech-
anisms to decide whether the performance of a program
under a certain workload is acceptable or not. Typical
oracles in performance testing are human judgement

or comparisons among different programs with similar
functionality [1, 2, 3], which are far from trivial.

Metamorphic testing alleviates the oracle problem by
checking whether multiple executions of the PuT ful-
fil certain necessary properties called metamorphic rela-
tions. For instance, consider the program merge(L1, L2)
that merges two ordered lists into a single ordered
list. The parameter order should not influence the res-
ult, which can be expressed as the following meta-
morphic relation: merge(L1, L2) = merge(L2, L1). A
metamorphic relation comprises of one source test case
(L1, L2) and one or more follow–up test cases (L2, L1).
Each metamorphic relation can be instantiated into one
or more metamorphic tests by using specific inputs, e.g.
merge([2, 3], [1, 5]) = merge([1, 5], [2, 3]). If the out-
puts of the source test cases and the follow–up test cases
violate the relation (equality in this example), the test is
said to have failed, indicating that the PuT contains a

Preprint submitted to Information and Software Technology 22nd January 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157757352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


bug.
Recent surveys have reviewed the large body of pa-

pers on metamorphic testing and identified successful
applications of the technique in a variety of domains,
ranging from web services to compilers [5, 6]. Interest-
ingly, however, it has been found that all the reviewed
papers focused on the detection of functional faults,
with remarkable applications to areas such as proving,
validation and quality assessment. Therefore, the poten-
tial application of metamorphic testing for the detection
of performance bugs remains unexplored.

In a previous paper [7], we proposed the application
of metamorphic testing to reveal performance failures,
and we presented some of the many challenges related
to it. In this short paper, we go a step further by confirm-
ing the feasibility of the approach in a realistic scenario.

2. Performance metamorphic testing

Let us suppose that merge(l1, l2) takes 300ms to
provide an output, with l1 and l2 being two specific
lists. Is this correct? Hard to say. Intuitively, the ex-
ecution time required to merge the lists should be equal
or greater if more elements are added to both lists. This
can be expressed as the following Performance Meta-
morphic Relation (PMR):

T ( merge(L1, L2) ) ≤ T ( merge(L1 ∪ L3, L2 ∪ L4) )

where T represents the execution time, and L3 and
L4 are two nonempty lists containing k random
items. Based on this, metamorphic tests such as
T (merge(l1, l2)) ≤ T (merge(l1 ∪ l3, l2 ∪ l4)) could be
applied. A key benefit of PMRs is their independence
of the selected inputs, i.e. the previous one should be
satisfied for any list. Thus, PMRs may be turned into
assertions for the automated detection of performance
bugs, removing the need for complex benchmarks and
human judgement.

Real performance bugs can also inspire PMRs [7].
For example, some users of the Chrome browser re-
ported unexpected levels of memory usage when load-
ing images of different sizes1. Rendering large images
was expected to consume more memory than render-
ing small images. However—due to problems with the
garbage collector—if a small image was loaded after a
bigger one, the memory usage increased. Inspired by
this bug, the following PMR could be defined:

M( loadImg(img1) ) ≥ M( loadImg(img2) ) (PMR1)

1https://bugs.chromium.org/p/chromium/issues/

detail?id=337425

where M represents the memory consumed, and img2 is
an image derived from img1 but with a smaller size, for
instance cropping it or decreasing its quality.

2.1. Defining performance metamorphic relations
The rationale behind metamorphic testing is that bugs

can be exhibited when observing the differences among
two or more program executions with different inputs.
However, it is unclear to what extent performance bugs
can be exposed with certain input values and remain un-
detected with others.

Recent works have drawn conclusions that make us
foresee the usefulness of applying metamorphic testing
in this context. In particular, Jin et al. found out that two
thirds of the performance bugs need inputs with special
features to manifest [2], and Liu et al. [3] discovered
that one third of the bugs required special user interac-
tions in order to be revealed. These findings suggest that
a significant portion of performance bugs are revealed
when exercising the program with certain inputs only.

2.2. Managing false positives and false negatives
In functional metamorphic testing, most meta-

morphic relations are defined for deterministic pro-
grams where, for certain inputs, the relation is either
satisfied or violated, e.g. merge([2, 3], [1, 5]) =

merge([1, 5], [2, 3]). In contrast, the measurement
of non–functional properties such as execution time,
memory consumption or energy usage is inherently
non–deterministic. For instance, the battery power con-
sumed by a mobile application could vary from one ex-
ecution to another due to the device workload, commu-
nication issues or automated updates. In practice, this
means that PMRs could be sometimes violated without
that being an indicator of a performance bug, what res-
ults in a false positive. Analogously, PMRs could also
produce false negatives, i.e. situations where the rela-
tion is satisfied despite the PuT being faulty.

In our previous work, we discussed different altern-
atives to address false positives and false negatives, in-
cluding tolerance thresholds to allow certain differences
in the performance measurements of source and follow–
up test cases [7]. For example, considering PMR1, false
positives could be mitigated by defining the following
PMR using a threshold β:

M( loadImg(img2) ) − M( loadImg(img1) ) ≤ β

which means that the relation will only be marked as
violated when the memory consumed by img2 is greater
than the memory consumed by img1 by an amount of
β or larger. The value of β could be set to an absolute
value (e.g. 100KB) or a relative value (e.g. 10%).

2

https://bugs.chromium.org/p/chromium/issues/detail?id=337425
https://bugs.chromium.org/p/chromium/issues/detail?id=337425


2.3. Test data generation

Detecting performance bugs by means of testing re-
quires finding test inputs that manifest the unexpected
performance behavior in the program under test, what
can be extremely challenging [1, 2, 3, 4]. We envision
that PMRs could help on the search of effective test in-
puts. This is because unlike functional metamorphic re-
lations, where the outcome is Boolean (either satisfied
or violated), PMRs can be translated to a numeric result
that reflects to what extend the relation is satisfied or vi-
olated. In practice, this means that PMRs can be turned
into fitness functions to be used in search–based testing
techniques. For instance, PMR1 can be turned into the
following fitness function (to be maximized):

M( loadImg(img2) ) − M( loadImg(img1) )

This fitness function would guide the search to-
wards input images where the memory consumed by the
source test case (large image) is lower than the memory
consumed by the follow-up test case (small image), i.e.
images that violate the PMR to the maximum possible
extent, revealing potential defects.

3. Proof of concept

In this section, we present a proof of concept by
studying the feasibility of the approach in a realistic
scenario.

3.1. Subject program

We used SPLAR [8], a popular tool for the auto-
mated analysis of feature models, the de-facto stand-
ard for variability modelling in software product lines.
A feature model is a tree-like structure that represents
software products in terms of features (nodes) and con-
straints among those features (edges) [9]. SPLAR takes
a feature model as input, translates it into a Boolean for-
mula represented by a Binary Decision Diagram (BDD),
and uses an off-the-shelf BDD solver to extract inform-
ation from the model, e.g. check model consistency.

3.2. Seeded fault

A key property of BDDs is that they provide fast ana-
lysis times, but at the cost of memory usage and prepro-
cessing time. SPLAR provides two key parameters to
control how the BDD is built, namely the initial size of
the table to store BDD nodes and the cache size, both set
to 10K by default. The size of the actual BDD strongly
depends on the size of the input feature model. Setting

too high or too low values for these parameters could
result in a waste of memory or in an increase of build-
ing time because the table of nodes needs to be resized
repeatedly. Hence, as warned by SPLAR developers,
“Tuning these parameters can be tricky at times and
may require playing a bit”.

In our proof of concept study, we introduced a the-
oretically sensible optimization in the tool (and poten-
tial bug), where the values of the previous parameters
are dynamically set depending on the size of the input
feature models. Following the guidelines of the BDD
solver documentation2, the parameters were set accord-
ing to a simple rule: if the input feature model had less
than 150 features, the table size and cache parameters
were set to 10K and 1K respectively; for feature models
with 150 or more features, the chosen values were 100K
and 10K.

3.3. Random testing

We then performed a standard performance assess-
ment by using randomly generated feature models with
100, 150, and 200 features. For each size range, we
ran the tool with 10K random models, and calculated
minimum, average and maximum execution times (ms),
shown in Table 1. As illustrated, the average and max-
imum execution times are low, but they increase almost
exponentially with the number of features, as expec-
ted [9]. Note, however, that it would be up to the tester
to perform a subjective and heavyweight evaluation of
the results, along with further tests if needed, until de-
termining whether the observed performance is really
acceptable or not.

Features Min Avg Max

100 0 1 21
150 0 4 2,690
200 0 30 22,463

Table 1: Execution times (ms) with random feature models

3.4. Metamorphic testing

Next, we assessed the performance of the tool ap-
plying performance metamorphic testing as follows.
A common preprocessing technique in feature models
consists in removing the so-called mandatory features
from the model, since they have no impact in most ana-
lysis operations [9]. The model obtained is smaller but

2http://buddy.sourceforge.net/manual/main.html

3

http://buddy.sourceforge.net/manual/main.html


Features Random Search–based

False positives Violations Max(T (FMM) − T (FM)) False positives Violations Max(T (FMM) − T (FM))

100 1,364 0 20 2,680 0 807
150 2,674 1 2,335 4,890 2,920 279,101
200 2,466 45 15,781 4,373 2,040 1,197,227

Table 2: Metamorphic testing results (time in milliseconds)

equivalent to the original model, and it keeps the same
structure (except for the absence of mandatory features).
Based on this, we propose the following PMR:

T ( FM ) ≥ T ( FMM )

in which FM and FMM are a feature model and its equi-
valent version without mandatory features, respectively,
and T is the time taken to analyze a feature model. The
relation expresses that the execution time when analyz-
ing a feature model should be greater than or equal to
the execution time when analyzing its equivalent ver-
sion without mandatory features.

As explained before, and in our previous paper [7],
false positives can occur due to external factors (e.g.,
device workload). To avoid them, we used a threshold
of one second for the PMR to be considered as violated,
refining it as follows:

T ( FMM ) − T ( FM ) ≤ 1000

Next, we checked for violations in the PMR us-
ing three groups of 10K random feature models with
100, 150, and 200 features. For each generated model
(source input), we used as follow-up input its equival-
ent version without mandatory features. Each couple
of source and follow-up input models were then ex-
ecuted with SPLAR, measuring the execution time, and
checking whether the PMR was satisfied or violated.
Table 2 (columns 2-4) depicts the number of false pos-
itives assuming the 1000ms threshold, PMR violations
and maximum difference between the execution time of
the follow-up and source test cases, on each size range.
As illustrated, 1 violation was detected in the range
of 150 features and 45 violations in the range of 200
features, with a maximum difference in the execution
time of the follow-up and source test cases of up to 16
seconds. This shows that the program is not working as
expected, revealing a performance issue.

3.5. Combining metamorphic and search-based testing

Finally, we translated the PMR into the following fit-
ness function (to be maximized):

T ( FMM ) − T ( FM )

It guides the search toward input feature models that
violate the PMR to the maximum possible extent. This
fitness function was integrated into ETHOM, an evolu-
tionary algorithm for the generation of optimal feature
models [10]. The results are shown in the fifth, sixth and
seventh columns of Table 2. As illustrated, the num-
ber of violations was significantly high, with 2,920 vi-
olations in the range of 150 features, and a maximum
fitness value of 1,197,227ms (20 minutes) in the range
of 200 features. This means that the algorithm found a
feature model that requires 20 minutes more to be an-
alized when removing mandatory features from it. This
clearly reveals a performance issue, showing the poten-
tial of the combined use of metamorphic and search-
based testing to reveal performance bugs.

4. Conclusions

In this paper, we have proposed the application of
metamorphic testing to detect performance bugs, and
we have presented an experimental proof of concept to
study the feasibility of the idea. The preliminary results
confirm the potential of the approach, in combination
with search-based techniques, to automate the detection
of performance faults. Many challenges remain for fu-
ture work, including guidelines for the identification of
PMRs, larger experimental evaluations, and empirical
studies with developers.

Acknowledgment

This work has been supported by the Spanish Govern-
ment under CICYT project BELI (TIN2015-70560-R),
the Excellence Network SEBASENet (TIN2015-71841-
RED), and the Andalusian Government project COPAS
(P12-TIC-1867).

4



References

[1] A. Nistor, T. Jiang, L. Tan, Discovering, reporting, and fixing
performance bugs, in: Proc. of MSR 2013, IEEE Press, pp. 237–
246.

[2] G. Jin, L. Song, X. Shi, J. Scherpelz, S. Lu, Understanding
and Detecting Real-world Performance Bugs, in: Proc. of PLDI
2012, ACM, pp. 77–88.

[3] Y. Liu, C. Xu, S.-C. Cheung, Characterizing and detecting per-
formance bugs for smartphone applications, in: Proc. of ICSE
2014, ACM, pp. 1013–1024.

[4] A. Banerjee, L. K. Chong, S. Chattopadhyay, A. Roychoudhury,
Detecting energy bugs and hotspots in mobile apps, in: Proc. of
FSE 2014, ACM, pp. 588–598.

[5] S. Segura, G. Fraser, A. Sanchez, A. Ruiz-Cortes, A survey on
metamorphic testing, IEEE Transactions on Software Engineer-
ing 42 (9) (2016) 805–824.

[6] T. Y. Chen, F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse,
Z. Q. Zhou, Metamorphic testing: A review of challenges and
opportunities, ACM Comput. Surveys 51 (1) (2018) 4:1–4:27.
doi:10.1145/3143561.

[7] S. Segura, J. Troya, A. Durán, A. Ruiz-Cortés, Performance
Metamorphic Testing: Motivation and Challenges, in: Proc. of
ICSE-NIER 2017, IEEE Press, pp. 7–10.

[8] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: Software
Product Lines Online Tools, in: Int. Conference on Object-
Oriented Programming, Systems, Languages, and Applications
(OOPSLA), ACM, Orlando, Florida, USA, 2009, pp. 761–762.

[9] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of
feature models 20 years later: A literature review, Information
Systems 35 (6) (2010) 615 – 636. doi:10.1016/j.is.2010.
01.001.

[10] S. Segura, J. A. Parejo, R. M. Hierons, D. Benavides, A. Ruiz-
Cortés, Automated generation of computationally hard feature
models using evolutionary algorithms, Expert Systems with Ap-
plications 41 (8) (2014) 3975 – 3992.

5

http://doi.acm.org/10.1145/3143561
http://doi.acm.org/10.1145/3143561
http://dx.doi.org/10.1145/3143561
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001

	Introduction
	Performance metamorphic testing
	Defining performance metamorphic relations
	Managing false positives and false negatives
	Test data generation

	Proof of concept
	Subject program
	Seeded fault
	Random testing
	Metamorphic testing
	Combining metamorphic and search-based testing

	Conclusions

