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Abstract.   

It has been observed that the partially or totally dehydroxylated pyrophyllite suffers a 

partial reversible rehydroxylation when cooled down at room temperature. This 

rehydroxylation was substantiated by thermogravimetric measurements by a mass increase, 

while IR spectroscopic studies have shown that during the rehydroxylation the intensity of 

some OH bands increase as two new bands appear. This rehydroxylation process is also very 

much influenced by the particle size of the pyrophyllite.  
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1. INTRODUCTION 

 

Pyrophyllite is a 2:1 aluminosilicate [Al2Si4O10 (OH)2] clay that in nature appears in beds 

with different proportions of pure pyrophyllite, maximum about 90%, accompanied by other 

minerals such as kaolinite, quartz, mica, etc. Pyrophyllite has a dioctahedral layer structure 

with an octahedrally coordinate Al ions sheets in-between two sheets of SiO4 tetrahedra.1-3 

Pyrophyllite has many industrial applications, mostly due to its good technological properties 

produced by thermal treatment. Thus, it has been mainly used as a raw material in glass, 

ceramic and refractory industries, for applications such as insulating firebrick or foundry 

specialities and also in various white-ware bodies.4,5 New applications, such as its use in 

geopolymers, have been also recently reported.6 The technological application of pyrophyllite, 

demands their proper workability, which may be improved by a decrease in particle size.7-19 

Due to its interest, the thermal dehydroxylation of pyrophyllite has received significant 

attention in literature.17,20-36 Wardle and Brindley3 have suggested that the dehydroxylated 

pyrophyllite consists of 5-coordinate, distorted, trigonal bipyramidal AlO5 structural units in 

the aluminium oxide layer sandwiched between two distorted tetrahedral silica layers. 27Al 

NMR-MAS studies have shown the 6-coordinated Al in pyrophyllite change their structural 

arrangement to 5-coordinate Al in dehydroxylated pyrophyllite.21,22,37 It has been reported that 

grinding of pyrophyllite favours the formation of pentacoordinated Al 32. 29Si MAS-NMR 

data have confirmed that the tetrahedral SiO4 sheets remain unchanged, indicating that 

dehydroxylated pyrophyllite maintains the 2:1 layer structure.22 The formation of 5-coordinate 

aluminium sites in dehydroxylated pyrophyllite is consistent with a homogeneous reaction of 

the adjacent OH groups to liberate water and the formation of a bridging oxide midway 

between adjacent aluminium atoms.27  
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The dehydroxilated pyrophyllite may suffer a rehydroxylation process. Heller et al. 38 have 

shown that infrared spectrum of rehydroxylated pyrophyllite provides evidence for the 

formation of layers that may be composed of regions with pyrophyllite-like structure 

associated with dehydroxylated materials. Rehydroxilation of pyrophyllite appears to be a 

function of particle size, since coarsely crystalline dehydroxylated samples showed little or 

not rehydroxylation after steam treatment whereas dehydroxylated 100-mesh material ground 

under a vibratory mill was rehydroxylated to the extent of 48 per cent. The grinding of the 

pyrophyllite produces structural alteration30,39 that may affect the rehydroxilation. The 

rehydroxylation of pyrophyllite involved heating samples in water vapour or left at room 

temperature for several months.20,38,40-42 The structural transformation of other clay minerals 

such as illite, montmorillonite, glauconite and celadonite during dehydroxylation-

rehydroxylation reaction has been also studied by Muller et al.29 

 Nevertheless, Wang et al.33 have recently found, using infrared spectroscopy, that the 

dehydroxylation of pyrophyllite in the temperature range 550-900 ºC is characterized by a 

decrease in the intensity of the OH signals and phonon bands of pyrophyllite as well as the 

appearance of extra signals at 3690 and 3702 cm-1, that they attribute to an intermediate 

partially dehydroxylated phase. Thus, these authors suggested that the dehydroxylation of 

pyrophyllite is a two-stage process with a defined intermediate stage. Based on these 

observations, it has been theoretically proposed the presence of different possible 

intermediates.43,44 Nevertheless, it has not been considered that pyrophyllite samples after 

annealing were cooled down, ground and dried at 110ºC during 12 h. Thus, the contact with 

laboratory  atmosphere may produce rehydration of the samples and be responsible of the 

intermediates phases that cannot be necessarily attributed to the heating process. 
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The thermally-induced dehydroxylation and later rehydroxylation of pyrophyllite 

remains only partially understood. The aim of this study is to investigate the thermally-

induced dehydroxylation and rehydroxilation of pyrophyllite paying special attention to the 

effect of particle size. 

 

II. Experimental Procedure 

(1) Materials 

 The studied sample was a phyrophyllite from Zalamea la Real, Spain, that is a mixture of 

pyrophyllite, kaolinite, mixed layer illite-smectite and illite, and a small content of rutile and 

quartz. This pyrophyllite was purified following a procedure previously described in 

literature.45,46 After this treatment the sample was constituted by pure pyrophyllite 

accompanied by a small proportion of rutile. This sample was selected because it has already 

different particles sizes, while the mechanical treatment required by other natural pyrophyllite 

samples to obtain different particle sizes may produce structural alterations7,11,12,14,15,18,19,47 

and, therefore, are not suitable for the present study. The different fractions were separated 

using an aqueous gravity sedimentation procedure for separation of the coarser fractions and a 

centrifugation procedure for collecting the smallest ones.48 Thus, several fractions with 

different particle sizes, i.e. 20-40 µm, 10-20 µm, 5-10 µm, 2-5 µm and <1 µm were obtained.  

(2) Thermal heating 

Thermal treatments of pyrophyllite samples with different particle sizes were carried out 

between 500 and 1000ºC for periods of 1 hour and 5 days in a tubular furnace (carbolite 

furnaces type RHF 1600, Hope Valley, UK).  
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(3) Thermogravimetric study 

Thermogravimetric analyses (TG) were carried out with an automatic thermal analyser system 

(model TG/DTA 6300, SII Nanotechnology, Japan). Experiments were performed in static air 

at a heating rate of 10 ºC min-1. Samples were maintained in an oven at 110 ºC overnight 

before the thermal analysis experiments to remove any hydration water.   

Dehydroxylation-rehydroxylation cycles in a water saturated air flow were performed in a 

simultaneous thermal analysis instrument (model Q600, TA instruments, New Castle, DE). 

(4) Kinetic analysis 

The activation energy of the dehydroxylation was obtained by means of the isoconversional 

method.49,50 The method is based in the following equation: 

α

α
α

α

α

RT

E
C

dt

d
−=







ln           (1). 

being α the reacted fraction (a parameter that changes with the reaction from 0 before the 

process has started to 1 when it is totally finished), (dα/dt)α the reaction rate at a particular 

value of α, R the gas constant and Cα,  Eα and Tα  the values of a constant, activation energy 

and temperature for each value of α. Thus, the values of the activation energy can be 

determined from a set of thermogravimetric curves obtained under different linear heating 

rates. The procedure implies of plotting the values of ln(dα/dt)α as a function of 1/Tα, in such a 

way that the activation energy is obtained directly from the slope of the resulting line. This 

method allows determining the activation energy of the process as a function of the reacted 

fraction from a series of experimental curves obtained under different linear heating rate 

conditions, without any assumption or previous knowledge about the kinetic model obeyed by 

the solid-state reaction. 
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(5) X-ray diffraction analysis 

Diffraction patterns were obtained using a diffractometer (model, X’PERT PRO, PANalytical, 

Almelo, The Netherlands) at 40 kV and 40 mA with CuKα1 radiation, with a HTK 1200 high 

temperature chamber and Philips X’Celerator detector. 

(6) IR spectroscopy study 

Two different IR spectroscopy measurements were performed in the samples. Thus, 

temperature-programmed diffuse reflectance infrared Fourier transform spectroscopy (model 

Nexus FT-IR, Thermo-Nicolet, Newington, NH) was used for collecting spectra under in-situ 

conditions of heating. Only a few of milligrams of these samples were used for these 

measurements, and heating was performed in static air. No KBr was used for the preparation 

of the sample. Additionally, for room temperature IR measurements, samples of 3 mg of fine 

samples powders after heating at different temperatures were thoroughly mixed with 900 mg 

of dry KBr powder; 200 mg of the sample/matrix mixtures were pressed into disc shaped 

pellets at room temperature under vacuum. After this, pellets were heated for 24 hours at 

110ºC to remove adsorbed water. Measurements were performed between 400 and 4000 cm-1 

with a spectrometer with a DTGS detector coupled with a KBr beam splitter (model Nicolet 

510, Thermo-Nicolet, Newington, NH). A total of 200 scans with an instrumental resolution 

of 4 cm-1 were collected for each spectrum. Commercial software OMNIC and PEAK FIT 

were used for data analysis. Integrated absorbance was obtained by curve-fitting, using the 

secondary derivative method with Gaussian functions and linear baselines. 
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III. Results and Discussion 

 

Pyrophyllite minerals are classically identified as trans-vacant with a dehydroxylation 

maximum between 550 and 680ºC.3,17,29,30,51,52 However, some authors identified up to three 

kinds of pyrophyllite populations.34,53,54 The first one identified as a trans-vacant structure 

showed a DTG dehydroxylation peak with a maximum temperature near 650ºC. The second 

one identified as a cis-vacant structure showed a DTG dehydroxylation peak at about 880ºC. 

The third one attributed to cis- and trans- mixture or interestratification of pyrophyllite phases 

showed two dehydroxylation effects.  

Figure 1 displays the thermogravimetric curves in the temperature range 250-950 ºC as 

obtained for the purified pyrophyllite sample at different heating rates. The curves show only 

one step with a resulting mass loss percentage (4.95%) corresponding to the release of 

structural OH (dehydroxylation) of an ideal pyrophyllite  with a DTG dehydroxylation peak 

with a maximum temperature about 650ºC. These results are in agreement with only a vacant 

type in the structure of the sample selected for this work. It is quite clear from Fig. 1 that the 

thermal dehydroxylation of pyrophyllite is very much affected by the heating rate. Thus, 

thermal dehydroxylation temperature increases upon increasing heating rate. This behaviour is 

characteristic of a kinetically driven process. Kinetic analysis of curves in Fig. 1 has been 

conducted by means of the differential isoconversional method. The resulting values for the 

activation energy are displayed in Fig. 2 versus the reacted fraction. Results in Fig. 2 shows 

that the activation energy values are independent of the reacted fraction and, therefore, an 

unique activation energy of 224 ± 16 kJ mol-1 describes the entire dehydroxylation process.  

In order to substantiate the effect that particle size may have in the thermal dehydroxylation of 

pyrophyllite, thermal analysis has been performed on samples of different particle size 
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separated from the same pyrophyllite sample. Fig. 3 shows the thermogravimetric traces 

obtained for different fractions (< 1 µm; 5-10 µm; 10-20 µm; 20-40 µm). It is quite clear from 

this figure that the particle size has an important influence on the temperature of the 

dehydroxylation. Thus, smaller particles dehydroxylate at considerable lower temperatures 

than larger ones.  

High-temperature X-ray diffraction is also a suitable method for studying the thermal 

dehydroxylation of pyrophyllite. Thus, Fig. 4a displays the diffraction pattern at room 

temperature for the <1 µm pyrophyllite sample in the range 27.5º-29.75º of 2θ. In this range, 

only a single diffraction peak is recorded at 28.5º (d=3.13Å) that corresponds to the 003 peak 

of the pyrophyllite. As temperature increases, the intensity of this peak decreases, while a new 

peak corresponding to dehydroxylate pyrophyllite is recorded at 29º (d=3.08Å), eventually, at 

640ºC, the peak corresponding to pyrophyllite disappears and only that of dehydroxylated 

pyrophyllite is detected (Fig. 4b). In any case no other diffraction peaks were observed during 

the dehydroxylation that could be attributed to intermediate phases. The reacted fraction of 

the dehydroxylation can be determined from the ratio of intensities of the two diffraction 

peaks. Thus, Fig. 5 includes the plots of the reaction fraction as a function of temperature for 

the <1 µm and 20-40 µm fractions under linear heating rate conditions. As it can be seen from 

this figure, the behaviour is quite similar to that reported by thermogravimetric method. Thus, 

smaller particles dehydroxylate at much lower temperature than larger ones. Fig. 6 displays 

the evolution of the reaction fraction with time for the same two fractions of Fig. 5 but under 

isothermal conditions (T= 520ºC). In this latter case, the smaller particles are totally 

dehydroxylated in less than 1 hour while the larger ones, even after 40 h, are not totally 

dehydroxylated.  
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Figure 7 displays the temperature-programmed diffuse reflectance infrared spectroscopy 

measurements for the <1 µm fraction at different temperatures in the spectral range of 

wavenumbers from 3725 to 3600 cm-1. For the spectrum recorded at room temperature (Fig 

7a) only a band at 3675 cm-1 is observed in this spectral range, assigned to Al2OH stretching 

mode due to the interaction between OH and Al.55 The presence of a single band in this 

spectral range could be attributed to a trans-vacant structure unlike the partially cis- and trans-

vacant structure that shows two OH-stretching bands (3674 and 3668 cm-1).26 At 550ºC (Fig. 

7b), the band at 3675 is broadened and shifted at 3660 cm-1. As the sample is cooled down at 

room temperature and maintained at room conditions during twelve hours, the spectra (Fig. 

7c) shows not only the typical band of pyrophyllite at 3675 cm-1, but two extra bands at 3690 

cm-1 and at 3702 cm-1 that were not observed in the original pyrophyllite neither at 550 ºC. 

Therefore, these two new bands that appear after cooling and maintaining the sample a room 

temperature for several hours, and were not present in the IR spectra of the sample registered 

a 550ºC, could be attributed to a rehydroxylation process and not to a dehydroxylation process 

as was assigned by Wang et al.33  

In order to study the effect of particle size and dehydroxylation temperature in the 

rehydroxylation of pyrophyllite, a set of samples with different particle sizes (<1 µm, 2-5 µm, 

5-10 µm, 10-20 µm and 20-40 µm) were at first heated for one hour at different temperatures, 

then cooled at room temperature and maintained at room conditions during twelve hours, and 

finally the FTIR spectra were recorded at room temperature.  The intensity of the OH 

absorption bands at 3675, 3690 and at 3702 cm-1 for the different particle sizes and 

dehydroxylation temperatures are shown in Figs. 8, 9 and 10, respectively. These figures 

show a decrease in the intensity of the three absorption bands in the range of temperature 

below 600 ºC for the <1 µm fraction and below 700ºC for the other fractions. This decrease in 
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band intensity is followed of an increase in the range up to 750 ºC and again of a decrease in 

the range 750-900 ºC. At 900 ºC rehydroxylation is hindered.  

In order to follow the dehydroxylation-rehydroxylation process under in situ 

conditions of heating, thermogravimetric experiments were performed in water saturated air 

flow. Thus, temperature was increased from room temperature to 750ºC at 10 ºC min-1, then 

cooled down at room temperature at 10 ºC min-1, and finally maintained at this temperature 

for five hours while the sample was maintained under a flow of water saturated air. The entire 

cycle was repeated several times. Fig. 11a shows the resulting curves for the <1 µm sample 

and Fig. 11b shows a detail of one of the cycles. In the first heating cycle, the dehydroxylation 

of the material takes place in the temperature range from about 450 ºC to 645 ºC with a 5.95% 

mass loss, while in the range from 645 ºC to 750 ºC, no further mass loss is observed. As 

temperature decreases from 750ºC to room temperature, a mass increase is recorded; this 

mass increase continues at room temperature but at a smaller rate. The total amount of mass 

gain of the dehydroxylated sample is about 1.6 %. When the sample is again heated, water is 

released in two steps clearly discriminated in the DTG signal, one from room temperature to 

370 ºC  and another from 370 ºC to 750 ºC, that correspond to 1.01 % and 0.59 % mass loss, 

respectively. The low temperature mass loss could be attributed to the release of hydration 

water, while the one at higher temperature could be assigned to the dehydroxylation of the 

rehydroxylated pyrophyllite. Thus, the dehydroxylated pyrophyllite suffers hydration and a 

partial rehydroxylation. This partial rehydroxylation is reversible, as observed in the different 

cycles of Fig. 11a. A similar behaviour was observed in terms of dehydroxilation-

rehydroxylation for other pyrophyllite fractions, although the amount of rehydration and 

rehydroxylation were affected by the particle size. Thus, for the larger fraction, i.e. 20-40 µm, 

the total amount of mass gain of the dehydroxylated sample is about 0.4%, in such a way that 
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the rehydration correspond to 0.32% and the rehydroxylation to 0.08%. The maximum 

temperature used for the dehydroxylation cycles also plays an important role in the amount of 

water gained during the cooling (Fig. 12). Thus, the maximum mass gain is obtained for 750 

ºC, similarly to the IR study that showed the highest intensity of the OH bands for the sample 

previously heated at such temperature (Figs. 8-10).  

 

IV. Conclusions 

 

It has been observed that the dehydroxylation of pyrophyllite is a kinetically driven process 

with an activation energy of  224 ± 16 kJ mol-1. The process is very much affected by the 

particle size of the original pyrophyllite. Thus, smaller particles dehydroxylate at much lower 

temperature than larger particles. It has been also observed that the totally or partially 

dehydroxylated pyrophyllite suffers hydration and partial rehydroxylation when cooled down 

at room temperature. This dehydroxylation-rehydroxylation process is reversible as observed 

when the sample is heated and cooled in cycles. The particle size also plays an important role 

in the rehydroxylation process, in such a way that the rehydroxylation is more important in 

smaller particles than in the larger ones.  
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FIGURE CAPTIONS 

Fig.1.- TG (a) and DTG (b) traces for the purified pyrophyllite sample at different heating 

rates. 

Fig.2.- Values of the activation energy of the process as a function of the reacted fraction (α) 

for the thermal dehydroxylation of the purified pyrophyllite sample. 

Fig.3.- TG (a) and DTG (b) traces for different particle size fractions of pyrophyllite. 

Fig.4.- 003 diffraction of <1µm fraction in the original pyrophyllite (a) and after heating at 

600 ΊC during 30 minutes (b). 

Fig.5.- Reaction fraction (α) as a function of temperature for the <1 µm (a) and 20-40 µm (b) 

fractions under linear heating rate conditions. 

Fig.6.- Reaction fraction as a function of time for the <1 µm (a) and 20-40 µm (b) fractions 

under isothermal conditions (T= 520ºC) 

Fig.7.- Diffuse reflectance infrared spectra for the <1µm fraction recorded at different 

temperatures: a) room temperature, b) during the dehydroxylation at 550 ºC, and c) 

after heating and cooling down at room temperature and maintained at room 

conditions during twelve hours 

Fig.8.- Intensity of OH absorption band at 3675 cm-1 for samples of different particle size 

previously heated for one hour at different temperatures, then cooled at room 

temperature and maintained at room conditions during twelve hours. (■) < 1 µm; (Χ) 

2-5 µm; (▲) 5-10 µm; (●) 10-20 µm; (┼) 20-40 µm.  

Fig.9.- Intensity of OH absorption band at 3690 cm-1 for samples of different particle size 

previously heated for one hour at different temperatures, then cooled at room 

temperature and maintained at room conditions during twelve hours. (■) < 1 µm; (Χ) 

2-5 µm; (▲) 5-10 µm; (●) 10-20 µm; (┼) 20-40 µm.  

Page 19 of 32

Journal of the American Ceramic Society

Journal of the American Ceramic Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 20 

Fig.10.- Intensity of OH absorption band at 3702 cm-1 for samples of different particle size 

previously heated for one hour at different temperatures, then cooled at room 

temperature and maintained at room conditions during twelve hours. (■) < 1 µm; (Χ) 

2-5 µm; (▲) 5-10 µm; (●) 10-20 µm; (┼) 20-40 µm.  

Fig.11.- Cyclic thermogravimetric experiment in water saturated air flow for the <1 µm 

fraction. Figure (a) shows the entire experiment, while figure (b) shows a detail of one 

of the cycles. T: temperature, TG: %mass, DTG: differential mass loss. 

Fig.12.- Mass loss of fraction <1µm previously heated at different temperatures during 1 hour 

and cooled down at room temperature for 12 h. 
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