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UNIQUENESS FOR SQG PATCH SOLUTIONS

ANTONIO CORDOBA, DIEGO CORDOBA, AND FRANCISCO GANCEDO

ABSTRACT. This paper is about the evolution of a temperature front governed
by the surface quasi-geostrophic equation. The existence part of that program
within the scale of Sobolev spaces was obtained by the third author (2008).
Here we revisit that proof introducing some new tools and points of view which
allow us to conclude the also needed uniqueness result.

1. INTRODUCTION

Among the more important partial differential equations of fluid dynamics we
have the three dimensional Euler equation, modelling the evolution of an incom-
pressible inviscid fluid, and the surface quasi-geostrophic (SQG) which describes
the dynamics of atmospheric temperature [19]. SQG also has the extra mathemat-
ical interest of capturing the complexity of the 3D Euler equation but in a two
dimensional scenario, as was described in the classical work [g].

This model reads

gt —+u - V0 = 0,
u = (—R297R19)7

where 0(z,t) is the temperature of the 2D fluid with (z,t) € R? x [0, +00). The
velocity u is related to the temperature through the Riezs transforms R; given by

1 Yj
RyO)) = 1 [ Lo —ypay

Within the equation there is an underlying particle dynamic which preserves the
value of 6, implying that the norms ||6|z»(t), 1 < p < oo, remain constants under
the evolution.

In this paper we consider the patch problem, on which the temperature takes
two constant values in two complementary domains and the solution of SQG has
to be understood in a weak sense, namely:

. /Ooo /R2 Oz, t)(pe(x, t) + u(z,t) - Vo(x,t))dedt = / 0o (z)(x,0)dz,

R2
u = (—R29,R19),
for every p € C2°([0,00) x R?). That is, the temperature reads
_ [0, zeD'(),
(2) 0(z,t) = { 02, x € D%(t)=R2\ D'(t),

Received by the editors May 21, 2016 and, in revised form, February 7, 2017, May 30, 2017,
July 14, 2017, and August 2, 2017.
2010 Mathematics Subject Classification. Primary 35Q35.

(©2018 by the authors under [Creative Commons Attribution-Noncommercial 3.0 Licensel (CC BY NC 3.0)

1


https://core.ac.uk/display/157757266?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ams.org/btran/
http://www.ams.org/btran/
http://dx.doi.org/10.1090/btran/20
http://creativecommons.org/licenses/by-nc/3.0/

2 ANTONIO CORDOBA, DIEGO CORDOBA, AND FRANCISCO GANCEDO

where D!(t) is a simply connected domain. It gives rise to a contour equation for
the free boundary

(3) oD’ (t) = {z(7,t) = (z1(7,1), 22(7, 1)) : v € T},

which is moving with the fluid and whose exact formulation can be found in [I0]. It
is then clear that the evolution of the patch is equivalent to that of its free boundary
0D’ (t). Therefore an important question for this problem is the propagation in time
of the regularity of the interface dD’(t) or to the contrary the existence of finite
time blow-up phenomena.

This problem was first considered by Resnick in his thesis [20]. Local-in-time
existence and uniqueness was proven by Rodrigo [21] for C*° initial data using the
Nash-Moser inverse function theorem. In [I0] the third author proves local-in-time
existence for the problem in Sobolev spaces, using energy estimates and properties
of a particular parameterization of the contour. Namely, one such that the modulus
of the tangent vector to the curve does not depend on the space variable, depending
only on time [I6] and giving us extra cancellations which allows to integrate the
system.

In the distributional sense, the gradient of the temperature is given by

Vo(z,t) = (0% = 0105 z(y, 8)5(z(7,t) = 2)
for z(v,t) a given parameterization of the contour and
8,#.’1)(’}/, t) - (_8"/1‘2 (’Ya t)a 8"/:1;1(77 t))

Then the Biot-Savart formula helps us to get the velocity field, outside the bound-
ary, in terms of the geometry of the contour, that is,

02 —0' [T dya(y,t)
J— l = — ’Y 7
uat) = B(T0)(wt) = =T [ T,

where [ is the Riesz potential of order 1, which on the Fourier side is multiplication
by [£|~. The above integral diverges when z approaches the boundary but only
on its tangential component, while its normal component is well defined. This fact
is crucial to assign a normal velocity field to the boundary governing its evolution.
Since the contribution of the tangential component amounts to a reparameteriza-
tion of the boundary curve, we are free to add such a component satisfying both
purposes: to be bounded and having a tangent vector with constant length. For
a given parameterization z(v,t), approaching the boundary in both domains we
obtain

62 — 91 /7r dyx(n,t) - Oy a(v,1)

2r Jon fx(y,t) —x(n, 1)
And we get the task of finding a good parameterization x(v,t) and a function A so
that

u(z(v,t),t) - Oy (y,t)
B (02—01 /” Oya(y,t) — Oyz(n,t)
N2 ) fa(nt) —a(n,t)]
and the two purposes mentioned above are achieved.

Having the length of the vector d,z(v,t) as a function in the variable ¢ only
provides the following two identities:

(4) ng(’y, t) - Oyx(y,t) =0 and (93&6(’7,15) - Oyx(7,t) = —\33x(7,t)|2.

w(x(y,t),t) - O a(y,t) = —

dn -+ Ad,2(7,1)) - 0Fa(1,1),



UNIQUENESS FOR SQG PATCH SOLUTIONS 3

The first one gives extra cancellations while the second allows us to perform con-
venient integration by parts.

Although we cannot give justice to the many interesting contributions due to the
different authors quoted in our references, let us say that, at the beginning, there
was a conjecture about the formation of singularities in the evolution of a vortex
patch for Euler equations in dimension two [2]. It was disproved by Chemin in a
remarkable work [7] using paradifferential calculus, and later Bertozzi-Constantin
[1] obtained a different proof taking advantage of an extra cancellation satisfied by
singular integrals having even kernels.

Between the patch problem for 2D Euler and SQG there is a continuous set of
interpolated equations given by

5 0; +u - Vo =0,
) u=(—Ra,R1)([1i-ab), 0<a<l.

The case a = 0 is the most regular, 2D Euler, while for & = 1 one gets SQG.
The patch problem for those equations was first studied in [9], where Cérdoba,
Fontelos, Mancho, and Rodrigo introduced a very interesting scenario for which
they could show numerical evidence of singularity formation: two patches with
different temperature approach each other in such a way that they collide at a
point where the curvature blows-up. Let us mention that recently it has been shown
analytically [IT] that if the curvature is controlled, then pointwise collisions cannot
happen in the patch problem for SQG. In [22/23] a different finite time singularity
scenario is shown where numerics point at a self-similar blow-up behaviour for SQG
patches.

The system above can also be considered in more singular cases than SQG,
replacing the last identity by the following one:

u=(—Ry,R1)(A%0), 0<pB<1,

where here A = (—A)'Y/2, whose Fourier symbol is |¢|. See [6] for results on this
equation with patch solutions.

A classical result in fluid dynamics is the existence for all time of vortex patches
for the Euler equation which are rotating ellipses [2]. The patch problem for the
system (B]) and SQG present a more complex dynamic, as ellipses are not rotational
solutions and some convex interfaces lose this property in finite time [5]. See [12]
for a study of the growth of the patch support. Recently, in a remarkable series of
papers and with an ingenious use of the Crandall-Rabinowitz mountain pass lemma,
the authors have extended those global-in-time existence results to a more general
class of geometrical shapes for the vortex patch problem [14[I5], the a-system (B
[13] and also to the SQG equation [3[4].

There are two articles [I7,[I8] where the patch problem for the a-system is con-
sidered in a half plane with Dirichlet’s condition. The system is proved to be
well-posed for 0 < o < % in the more singular scenario where the patch intersects
the fixed boundary. In this framework, singularity formation is shown when two
patches of different temperature approach each other.
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In this paper we will take advantage of a special parameterization of the bound-
ary in the following terms:
We say that a bounded simply connected domain D € R? is C%9(T) for 0 < § < 1
if there exists a parameterization of the boundary
0D = {z(y) € R? : y € T, 27-periodic}
such that z(y) € C*°(T). Specifically, a domain Q € C29(T) given by
00 = {y(&) € R? : £ € T, 2r-periodic}
is said to be equal to D if there exists a change of variable
@:T—T, biyective, ¢'(y)>0, @(y)—~ 2m-periodic, ¢ € C**(T),
such that 2(y) = y(¢(7)). Furthermore, a time dependent simply connected domain
D(t) belongs to C ([0, T]; C%9(T))NC ([0, T]; C*(T)) if there exist parameterizations
of the boundaries
OD(t) = {z(v,t) €R*: vy € T, t € [0,T], 2n-periodic in v}

such that z(v,t) € C([0,T];C%°(T)) N C([0,T]; C*(T)). Throughout the paper
we shall also deal with time dependent simply connected domains in the space
C([0,T); H*(T)), with H* Sobolev spaces for k € N, meaning that its evolving
boundary z(v,t) belongs to that time dependent space.

Another main character of this play is the so-called arc-chord condition which
help to control the absence of self-intersections of the boundary curve. This is done
through the following quantity:

F@)(rmt) = s Y€ loml,
with )
F(x)(')/’oat) = mv

whose L°° norm has to be controlled in the evolution.

As was mentioned before, patch solutions for the SQG equation are understood
in a weak sense. Any such solution with a free boundary given by a smooth pa-
rameterization z(7,t) has to satisfy the equation below

L
(©) rn ) -yt = - [ DI 0
T |x(77t) - x('y - th)|

where we have taken 05 — 6y = 7 for the sake of simplicity. On the other hand, any
smooth parameterization z(v,t) satisfying (@) provides a weak SQG solution with
the temperature given by ([2IB]) (see [I0] for more details).

It is easy to check that the equation above is a reparameterization invariance
object, and that the following formula, introduced in [20] and [21], has a well-defined
tangential velocity and identical normal component:

. 87:10(7, t) - avx(’y -1 t)
(7) zi(7,t) = /T lz(y,t) — z(y — n, )] a

The local-in-time existence result was given in [I0] for initial data satisfying (@)
and evolving by

_ avx(/%t) - a“/x(’y - 77>t) T T
®  men=( / Pty 4 @) (. 00,2(1.)),

7,
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v+ Opz(n), t) / Oz (1), t) — 877;10(17 —&,1)
Y t) = :
@0nt) =57 | Gimar U e et 1)

7 Oyr(n,t) ' O (n,t) — Opz(n — &, 1)
/—‘n’ |0y (n, 1)[? 8,,(/T [z(n,t) —z(n — &, 1)

We state the result here for completeness.

df)dn
9)

dg)dn.

Theorem 1.1. Let 29(y) € H¥(T) for k > 3 with F(zo)(v,n) < 0o and 0,xo(7) -
d2x0(vy) = 0. Then there exists a time T > 0 so that there is a solution to (&) in
C([0,T); H*(T)) with z(7,0) = xo(7y) and A(7,t) given by [@).

The main purpose of this paper is to show uniqueness for the patch problem for
SQG which was until now an open problem. The following theorem provides this
result:

Theorem 1.2. Consider a solution of ([Il) with 6(x,t) given by a patch @) and
Di(t) time dependent simply connected domains whose moving boundary satisfies
the arc-chord condition for any t € [0,T] and C([0,T]; C%9(T)) N C*([0,T]; C*(T))
regularity. Furthermore, assume that the function 6(z,t) given by

_ 0!, we€ Dl(t)a
9($,t) = { 92’ = D2(t) = R? \ Dl(t)v

satisfies (@) with DI (t) € C([0,T);C*%(T)) n C*([0,T]; CX(T)) and 6(z,0) =

0(x,0). Then 6(z,t) = 0(x,t) for any t € [0,T).

This is an important part of the paper and it is proved in its section 2. In par-
ticular we show that any weak solutions of (Il) identified by a patch (@), for a given
parameterization ([B) with a certain regularity, can be reparameterized satisfying
([@). This property is preserved in time and, together with a new reparameterized
curve, help us to fix the tangential velocity for a contour that evolves by (B0 giving
the patch solution. Then, one just needs to get uniqueness for the system (8.
Next we check the evolution of the H' Sobolev norm of the difference among two
different curves evolving by (8A). We close the estimate revisiting the previous
existence results and introducing new cancellation and tools to find uniqueness by
Gronwall’s lemma. However, in this process several different points of view with
respect to the previous literature are introduced.

In the following we are going to show how it is possible to go from (&) to
equation (7)) through a convenient change of variable. This procedure is also valid
to go from (BA) to an SQG patch contour equation with a different and more
convenient tangential term.

We denote by z(v,t) € C([0,T); H?) a solution of ([B) and let #(£,t) be given
by

#(& 1) = 2(67 (1), 1), =96 1),
or equivalently
z(v,t) = E(d(7,1),1),  £=o(7,1),

where

(10) o(v,t) : RxRT =R, 9,¢(v,t) >0, ¢(v,t) —v 2m-periodic,
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is a reparameterization in  for any positive time. Here ¢ is a solution of the linear
system

) e = [ BETEZ0AD g @) 00,6000

The existence and uniqueness for that system is given in the following proposition,
for whose formulation we introduce the space:

s = 20y, S~ PP e e
Hvi={fel <T>-%10g2(|n|+e)|f<n)| =112 & < oo}

Proposition 1.3. Let ¢o(y) — v € Hos for k > 3 and x(v,t) € C([0,T); H*) b

a solution of ®E) with F(x)(y,n,t) € L> and dyx(v,0) - 82z(y,0) = 0. Then
there exists a unique solution to ([ with ¢(,t) —~ € C([0,T); H %) such that
é(7,0) = ¢o(7y). In particular, if Oypo(y) > 0, then 0,¢(v,t) > 0 holds for any

€ (0, t,] with t, € (0,T].

The proof of the proposition is given in section 3. The space H s is needed
because we can only assume that A\(x) € C([0,T]; Hﬁ) for x € C([0,T]; H*) (see
the proof of Proposition [[3]). Observe that the logarithmic modification of Sobolev
norms is not a problem in the proof of the existence theorem given in [10], because

only control of the H*~1 norm of A(z) is needed, which is far from the H™ norm.
In the energy estimates which provide local existence, one needs to consider the
integral

/ e(y,1) - sy, t)d,

whose most singular term coming form A(z) is given by

/8k t)ok Sz (7y,1) - Oy (7, t)dy.

Integration by parts yields

—— [ & @00, @ - 0,00 ),
and using identity (@) one gets the bound
I <105 A @) ]2 (105 (95 - 85) | 22 < IA@) || e[|zl < Cll ]y

with p and C constants depending on k > 3 (it is easy to observe that this extra
cancellation cannot be used in the ¢ equation).

Next we shall show that #(&,t) is a solution of (). Here we consider ¢ reg-
ular enough (¢(vy,t) — v € C’([O,T];H%ﬁ:) with k& > 3) so that it is a bona fide
reparameterization satisfying (I0).

The chain rule implies

(12) Tt (’Y, t) = i‘t (qs(’y’ t)7 t) + ¢t (77 t)aii'((b(’% t)v t)'
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On the other hand, the equation for the evolution provides

ni.0) = [ IO 4y 1 \@) (002001
— / O (¢(1,1),1)0,0(7, 1) — Oy (1, t) i
|x(77 t) - 55(777 t)‘
+ )\(.’L‘) (77 t)ai‘%(¢(7> t)v t)a’Y(b(’yv t)v

and therefore

x(7,t) = 0:T(d(7, 1), 1) / &y'ig’ g : i’(y;b(:)’t) a

(13) + A@) (7, 1) 0 (d(7, ), 1)y d (7, 1)
655:(¢(7a t)7 t)&/(b(??a t) B 8"/37(7% t) d
«f 2(3.) = 2(n, 0] "
The fact that ¢ is a solution of ([I]) together with identities (T2[I3]) allow us to get
60000 = [ ST 5o 19

Introducing the change of variable ¢(n,t) = ¢ in the integral above and taking
v = ¢~ L&, t) we obtain Z(£,t) as a solution of () replacing x by &, v by £ and n by

Do (n, t)dn.

¢. Therefore, z € C([0,T); H 12—@) as a consequence of the Leibniz rule for derivatives
of composite functions. An interesting feature in this process is the logarithm loss
of derivative which affects the solutions of ([7l); nevertheless, we will show later how
to take care of that.

Once at this point one can see clearly how this reparameterization process helps
to solve the following system:

[ et — (G )
(14) Ty(&,t) = / g‘i(&t) — jg(c’tﬂ

for any fi(£,t) having the same regularity as Z(£,¢). We just have to repeat the
argument but with the equation

(,bt("y, t) — / 87¢(77 t) - 87(25(775 t)
T |$(7>t) _53(77775)|
where the function p acts as a source term, and as long as ¢ and p have the same
regularity, the argument works. We then arrive at ([4) with ji(¢,t) = u(¢=1(€,1),1).
This shows that the systems ([[4]) or (@) come from the system (8fA) by a change of
variable.
Theorem [I1] together with Proposition yield the existence of solutions for
the system (7). Then Theorem implies uniqueness:

d¢ + (&, )0 (&, 1)

dn + M@)(7,£)0,9 (7, t) — (7, t),

Theorem 1.4. Let zo(y) € H¥(T) for k > 3 with F(xo)(v,n) € L. Then there
exists a time T > 0 so that there exists a unique solution to ([T) in C([0,T7; Hos (T))
with x(7y,0) = zo(7).

The uniqueness part of this theorem will be discussed in section 4. Its proof

will not assume property (@) and it will be done controlling the evolution of the L?
norm of the difference between any two given solutions.



8 ANTONIO CORDOBA, DIEGO CORDOBA, AND FRANCISCO GANCEDO

An important linear operator in the study of patch solutions for SQG is given
by
"I - fly=m
(15) R

for f 2m-periodic. Since L is a translations invariance (where we have extended
In|~! periodically), the operator is a Fourier multiplier given by

Ul

(16) L(f)(k) = O(log(2[k])) f(k) for ke Z~{0}, L(f)(0)=0.

Uniqueness for the 2D Euler vortex patch problem was obtained in the clas-
sical Yudovich work [24]. The results presented in that paper hold in a more
general setting but it is also valid for any 2D Euler weak solution with vorticity in
L>(0,T; L>° N L'). For the a-system, weak solutions given by patches have been
shown to be unique in [I8]. The uniqueness result in the present paper corresponds
to the more singular and physically relevant case: a = 1, but the arguments can be
extended for 0 < a < 1. In those cases the equations for the reparameterization are
more regular than (II]) and there is no logarithm derivative loss in the change of
variable process. Solutions for one of the contour evolution equations were shown
to be unique in [10] for 0 < a < 1.

2. UNIQUENESS FOR THE SQG PATCH PROBLEM

This section is devoted to showing the proof of uniqueness of SQG weak solutions
given by patches: Theorem As a consequence of its proof, the solutions found
in [I0] are unique:

Corollary 2.1. Consider a solution of the system [8IQ]) given by Theorem [L1] with
z(vy,t) € C([0,T); H3(T)). Then x(v,t) is unique as a solution of &M with initial
data x(7y,0). Furthermore, it provides the unique weak solution of ([RB) with DI (t)
a time dependent simply connected domain in C([0,T]; C*9(T))NC ([0, T]; C*(T)),
0<d<1/2.

Proof of Theorem [[2. We consider a solution 6(x,t) satisfying the hypothesis in
Theorem Then, it is shown in [I0], the parameterization of the free boundary
has to fulfill equation (@) where, without loss of generality, we can assume that
0> — 61 = 7. The length of the curve is

1) = [ 102l

and we shall consider the following change of variable:

2w (7
6(18): T = T, d%ﬂ—ﬂ*HE/J&MMWn

Consequently, we get the reparameterization

26, t) = 2(67 (& 1), 1), o(y,t) = F((v:1),1),  £=o(n1),
satisfying property @) (|0¢Z(&,t)] = (2m)~'i(t)) and having the same regularity
(#(&,t) € C([0,T),C%*%) N CL([0,T]; CX(T))). As we pointed out before, the curve
Z(&,1) is a solution of (@) with the tilde notation. We mean by this that Z(§,t) is
a solution of (@) replacing by & and ~ by &.
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For this new evolving curve Z, the identity
Dei(Et) DeHEt) | . 0FEED) OEEED)
e peate.0] &Y e 0l e o)
together with () provides
et = e+ | T RE sl e AN A1
where we have defined (€, t) = &,(£,t) - 0:%(€,t)/]0:2(£,t)|. Taking

e [OEEN B0 BEED) g

jte.n = [ Ot —oe ek ac. St 4 @) e Dloce ol
it is easy to find that  satisfies (§]) with the tilde notation:

(&) = 24(&, 1) -

e [ORED 0=t s
t(g’t) - /T |£Z'(§,t) — i‘(f — Cﬂf)l d¢ + /\( )(5,1&)85 (fat)a

where

(5 ~ 85%(5’75)_85‘%(5_@,15) 8§£(§,t)
AMZ)(& ) = (x4(&, 1) — / — — d¢) - — .
@ = (2060~ | TFenTe-co ©) B or

The regularity of Z(, ¢) yields M) (€,t) € C(]0,T]; CY(T)). Then we can find a

function a € C*([0,T];R) as a unique solution of the o.d.e.
a'(t) = AN@)(—m —a(t),t), a(0)=0,

where 0 < T by the Picard-Lindel6f theorem. Since SUp[o, 7] [AE) || Lo (t) < Cpa(2),
for Cy,(x) depending on supjy 7y || F(z)|| L= (t) and supyo 71 ([|2[lc2.5 () + |24 = (1)),
the function a(t) can be extended to [0, T satisfying that |a(t)| < T'C,,(x) for any
te[0,T].

The new curve given by Z(&,t) = Z(£ + a(t), t) satisfies

_ 0aZ(a,t) — 00Z(a—0,t) < _
ZTi(a,t) = /T (ant) = 2(a—B.D)| dB + MZ)(a, t)0a7(a, t)
for o = &€ — a(t) and A(Z)(o,t) = AZ)(a—a(t),t) — A\(&)(— — a(t),t). Since
0u|0aZ(a,t)] = 0 and A(Z)(—m,t) = 0, we proceed as in [10] (see pg. 2585) to
find that Z evolves according to equations (8@) replacing 2 by T and v by «. In
particular it is easy to check that Z(a,t) has the same regularity as Z(£,t¢) and
(&, 0) = z(£,0). _

We consider next another solution 6(z,t), satisfying the hypothesis above with
the free boundary parameterized by y(v,t) € C([0,T]; C%°(T)) N C* ([0, T]; C*(T)).
As 0(,0) = (z,0), we use a function p € C*(T) to define §(7,t) = y(p(y),t) in
such a way that §(v,0) = z(v,0). Therefore, it is easy to see that ¢ has the same
regularity as y and fulfills equation (@), providing the free boundary of the same
patch solution f(z,t). Next, we reparameterize 9(,t) as we did for z(v,t) to get
g(&,t) satisfying 0¢(|0¢g(&,t)]) = 0 and §(£,0) = 2(£,0). Then we obtain y(a,t)
similarly as before providing us a solution of equations (B[] after replacing = by g
and v by a. In particular, all this reparameterization process provides g(a, t) with
the same kind of regularity and satisfying Z(«a, 0) = g(a, 0).

From now on, we will drop the bars for simplicity, using the variables v and
7 instead of o and 3. As before we shall write f = f(v,¢), [/ = f(y — n,t),
f-=f—Ff,and [ = fT, when there is no danger of confusion in the writing
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of our double integrals in variables v and 7. During the time of existence 7' > 0
one has the arc-chord condition F(z) in L°°(0,T; L*>°). In the following C' will
denote a constant which may be different from inequality to inequality but de-

pending only on sup 7 [zl = (t), SUP[o,T) [yl (2), SUPo,1) [ F' ()] Lo (t), and

supo 1) [[F'(y)l == ()-
Let us consider the function z(v,t) = z(y,t) — y(v,t). We have

1d
pallelfe = [ 2 ady=h+ I,

where

8 T_
L= / / - |)d77d% I :/Z‘(/\(x)avx—k(y)avy)d%
Let us split I;:
I —/z/ay(l 1)d77d7
12 = ) Uz 1 Tl ’
T\ e Jy-|

I1,1=/z-/aV27
|z |

Then with an adequate change of variables, we obtain

w= [ x(n?l Dy - -] x(n?f(n))d"d”
thus

1y B SO R

Integration by parts prov1des

b e g f e

The inequality
(17) (z— - Oya-) = Dy - D] < 2| a|as >,
together with the fact that 0,z - 8390 = 0 allows us to get
B < WP@ e lalEna [ [ + 12 P)drdn < Clelf.

For I o one writes

ham [ fou Ll gy, o [ [EIR0E
= 2-ly-]

which yields
|0y |z-|
I < / / 2] F(x)F(y)dydn.
il Inl

Then the identity

1
(18) fo=n / 0y f(y + (s — L)n)ds

allows us to get the bound

L < |F@)l= | F () | 102y ]~ / [ [ 0,20+ (5 = nymlardnds,

which yields the desired control: I1 o < C||z||%.
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Regarding I we split further

Ly — / 2 0y N(@)dy, Tnn = / 2 Ohy(\(@) — A))dy.

It is easy to get
Iy < |12l 22 105 2] L2 A (@) [ o < Clz]l3,
thus we are done with I ;.
For the reminder term we have

Lo < |lzllz2 1079l 1A (@) = A)llz2 < Cllzllz2 M=) — Aw) ]l L2,
let us write A(z) — A(y) = G1 + G2 where

oyt O,z Oyx_ Y
6r="5 [ [ o o) - e oo f Tlan)] v
_ 7 6’Y$(775t) . (775 ) 0 l‘(’l’}—g,t)

G2 = / Bra(m, D) 3"(/ et )
-

T Oyy(n,t) / Ly(n,t) — Oyy(n — &, 1)
+ D9 d€ )dn.
[ e ol [ S = e e
Then we decompose further G; = G1,1 + G112 + G1 3+ G

and

Y+ 042 .
C1="5 ] P W( \ _| )d%
Y+ 1 1 / T
- - : BT 4n)d
G2 = o /(|a 2|2 |87y|2)87y A A ”) i
'y+7T / x_ -0y y— - Oyy
Grs=— : ot i, WY il Ll 199
|awy\2 T T TP )i

and

'y+7r / 32$— _332!7)(1 J
b |awy|2 ER TR

We proceed as before
Gl < CUF@) |7 l1052llos + I1F (@) 10521700 )10y 2] 2
and therefore ||G1 1|2 < C||z||g:. In a similar way we find |Gy 2|2 < C|lz| 5.

To estimate G153 we write G13 = G131 + G132 + G1,3,3 where G131 and G132
are the most singular terms:

AR,
G = Oy 2 ———dnd
1,3,1 |8,Yy|2 / z | _|3 nay,

B ’y + 7 T - Oyz_
G1,3,2 = - |a / v —ded'}/v

because G133 satisfies 0bV10usly the des1red bound: ||Gi33llz2 < Clz||g:. To
control I 1, we use (I7) and the fact that dyx - 92z = 0, that is:

Grsal < HF(Z/)||L°°||F(x)||?i°°||$“%2ﬁ/Wg_l/(‘avd + 102" |)dydn,

1mp1y1ng ||G11371 HL2 S CHZHHl .
Inside the expression of G 32 we observe that

Oyy - Oyy— = Oyy - (Oyy— — nd3y)
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which together with the estimate
(19) [0vy— = n03y| < lyllo=snl*+°,

give us

G13,2] < HF(y)||L°°||F(x)||2L°°||yH%‘2v5/|77‘6_1/(‘8’YZ| +1052"|)dydn,

and [|G132(|r2 < Oz g
Next let us write G14 = G141 + G1,4,2, where

’y+7r 1 1
G |awy|2'/ v (m )

Y —|— ™ ’y _
G174)2 / . d’l]d’}/
|Oyyl? ly-|

Equality (I8)) allows us to obtaln

1
@) | F (@) 2] oo / / gl / 10,2y + (r — 1)) |drdndr,

and hence ||G1 1|2 < C||z||g:. Integration by parts allows us to decompose
further G 42 = Gi 45 + G749, where

7+7f Oz (y- - dyy-)
G142 /|67y2 / ‘ _‘3 dnd%

y4m [ Oy Dz
|0y y[? ly—|
The first term can be estimated as G 3,1:

|G12l < CIEW) < [9l1Eas 2l < Clellan.

We symmetrize G 4 5 as in I ;:

v+ D2y - 0yz
G dnd
142 o,y 2 / / PR

which yields the estimate:
|G a2l < CIF )7~ 105yl 051102l 2 < Clellan,

C"1142

dndry.

implying that
G| < Oz a1

For the sake of simplicity we exchange the variables in G5 so that

¢ oz O x £ 9y Oy
G:—/ AT 5 B i d%L/ Y 5 DY an) dry.
’ —r [0y]? 7( |z ) — |Oyy[? 7( ly-| )
We claim that ||Gz|r2 < C||z||g:. To show that we decompose further Gy =
GQJ + G2 2, where

¢ 9 Dy
G / /ax,* 7$*dd—/ i./ay,y*idd
W|aw|2 e T el ) O e Y
and
¢ o~ T 821‘_ 3 Oy 62y_
G :_/ e L dnd —1—/ [t A 277 dnd~y.
SR S Ry B L BN R ER A
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We deal with G5 1 as with Gy, to obtain |Ga1| < C||z||g:. The identities
Oz Pw_=—0yx- Oa' = —0,w_ - 022

Oyx_ - 82 ! Y -
————dndy — / / 7
/4/ |0y x|?|x —\ =) 1032 Iy |

A new decomposition yields Go 2 = Ga21 + G222 + G223, where

G B 13 8 o . 82 /d d G ,Yy_ 62 /d d
= [ [ Ty Goae /_ﬂ/w ol

and Gg 23 collect the lower order characters, which can be estimated as before:
|G2,2.3] < C||z||g1- One has

allow us to obtain

82 /
G“’lz/ ([ 3,2 |x_\ )‘/ o0 (gt )

which helps us to decompose as follows: G221 = G} 21t G% 01 T G;’ 2,1, Where

o o’ N[ 5 dnd
2’2’1_(/W n)‘v:—w’ Gaan = / /Z_ \3 |f‘ "

and G35, consists of the lower order terms. At this point it is easy to get the
estimate |G3 5 ;| < C|lz]|gr and

_1
G221 SQIIF(iﬂ)H?iWIIZIIC%||33$HL°°/|77| 2dn < Cl|z)|
as a consequence of Sobolev’s embedding. Concerning G3 5, we write
3 2
d5a’ = 005w
and integrate by parts to find

92
221 7/ /z, 82 o 3d77d7 / /8 2 il = dndry.
—r |0y | - —r |0 | ||

Proceeding as before we obtain

1
(@)} 02 / / ]! / 0,20y + (r — 1))\ dydndr

F @) 3 ] oo / |1 / 10, |dvdn < Cllz .

Gathering together the last three estimates we have |G22.1| < C| 2| g1-
Regarding G2 22 identity 82 " = 0,0,z_ and integration by parts yield

2y 0, Oy 0,2 )a_-0a')
o2 = // 0,2l |d”‘”+/ﬂ/ |a e

In the formula above we find two terms analogous to those of G221, so that a
similar argument gives us z||gr. Thereby we have finally obtained
I < Cllz|l3n

A consequence of all those estimates is the differential inequalities:

d
T lzle < Cllzl.
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The next step is to analyze

2dt||(9 Z”Lz /8 z+0 th’}/—13+14,

where

I = /82 /a ‘“—_| |)dnd~y, I4_/3z 8, (M (@)D 7 — A()D,)d7.

We split further I :
82 _ 82 _
R

r_(x—-0yx_)  Oyy—(y—-0yy-)
13’2:/3””/<‘ 7 \x-l37 M L

Then we write Ig 1= .[3 1,1 + I3 1,2, where

13,1,1 /a z - I3’172 = /8 z- / Y- |y| | H | |d17d'y

Replacing in I; 1 2 by 6‘ z we find I5; 1, and

T_ - 8 T_
Lyrs = / / 0y [T = dndy < Oz,

At this stage of the proof we can easily obtaln the estimate

1
Iy1 5 < [F(@)| | F ()|~ 02y s / / 015 [ 18,2010y 2(y-+ (s — L)) |dydnds
0
< )l

and we are done with I3 ;.
For 1372 we Spht further: Ig 2 = I3 2,1 + Ig 2,2 + 13 2,3 + 13,2,45 where

I301 =— /3 / | 38I>dd
I320=— /32/ (| 38 )dnd'y,

Isns = —/872-/87%(% Oy ) (|- = |y-|*)dndy,

I304 = /8 z- / (| |.3872_)d77d*y.

Inequality (7)) yields I35 1 < C|2]|%:. No cancellation is needed to get
La2 < Olzlfn,  Iszs < Cllellip.

On the other hand, we pay special attention to I3 2 4. By identity (I8) we split it
further

I, = / / 0,2 |y ; / (y- — Oyy(y+ (r — V) - 2a(y + (r — Dymndrdndy,

//82

and

el / Oyy(y + (r = D) - 922(y + (r — Vyn)drdnds.
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In I3, , we have 92z(y + (r — 1)n)n = 49, z(’y + (r — 1)n)) and integration by
parts in 7 provides I§2 4= 15’214 + I?} 2.4 —|— 13 54 Where

I3y, = —//f% | _‘3/ 2y(y + (r = 1)m)n* - 9y2(y + (r — L)n)drdndy,
Iy, = —// Oz Oy },(yf — dyyn) - 0yzdndy,
L, = //8 B 7|3 — 0yy'n) - 0,2 dndr.

Proceeding as before, we obtain the estimate I§7’g,4 S CIFWI3<102ylI7 1104217 2
< O| 2|13, for 1 < j < 3. To handle I3, 4 we observe that

(20) Oyy- 022 =0y Bz = —0y2- Ox
to get

Oy 1
Boa= [ [orz D25 [ 0,50+ (= 1) 030+ ¢ = Dapdrdna,

Finally we estimate this term I3, , < C|[F(y)[}~1102yllr~||022]| = [0y2]7. <
C||z||3;1, which completes the control of I .
Next we proceed with a last splitting: Iy = Is1 + Is2 + L4 3 + 14 4, Where

I = [0,22@)edr, Tia= [ 0,2+ (\a) = \w)2Eudy

Iz = / |&,z\267)\(x)d% Ijg= /672 - 0yy(Oy A () — Oy A (y))dy

Integration by parts in Iy yields: Iy < 1[0,2]12:]|05A(2) || < C|l2]|%: using
that
103 M)z < 2| F(@) |2 105205 + 201F (2)l[7 |052] L < C.
We have
Lz < Cl|03yllze 10 2]| 2 |A(x) = Ay)llz2 < Cllzl3

by similar arguments used for Is 5. The control of I3 follows as in I, ;. Finally,
integration by parts

Ia== [0, 8y0@) - Ay [ 82 0,0(0z) - W)
and identity (20) allow us to get the estimate:
Lia < (1959l Lo + 11052 =) 105 2] L2 M) = A(») ]| 22 < Ozl
Therefore we have obtained
d
gzl < Clizlle,
which allows us the use of Gronwall’s inequality to get uniqueness.

Remark. We have proven the equality Z(«,t) = §(«,t). Therefore, undoing the
reparameterization process, the patch ¢ with a moving boundary given by (v, 1)
is the same as the patch 6 described by y(v,t).
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Proof of Corollary 211 Let us consider z(v,t) and y(v,t) two solutions of (S
given by Theorem [Tl in C([0,7]; H3) with y(,0) = z(v,0) and satisfying the
arc-chord condition in [0,T]. Proceeding as in the proof above we get the estimate

d
E”ZHHl < O]l

for z(vy,t) = z(v,t) — y(v,t), and then Gronwall’s inequality provides uniqueness.

We are left with the task of proving that the patch weak solution given by z (7, t)
is unique. In order to obtain that result one just has to check that, for 6(x,t) given
by a patch and D’ (t) parameterized by x(7,t), the regularity needed in Theorem
is achieved. The fact that H®> c C??, 0 < § < 1/2, provides the appropriate
regularity for x(v,t). Next we will show that z:(vy,t) € C(]0, T]Hﬁ) and since
Hus ¢ H34 ¢ C', 0 < 6 < 1/2, the regularity for z;(v,t) follows.

At this point it is easy to check that x;(v,t) € C([0,T]; L?). Next we consider
821',5 G1 + G4, where

(21) Gy = 83(/3' w|_ dn) Gy = 82 (A@wx),

using the notation above.
The term G, is decomposed further G; = G171 + G1,2 + G1,3 + G1 4, where

8333_
Gy — /| ‘

82

G1 = -2 W . awx,dn,
Oyx— 9

G173 = |x_‘3 - a’yl'*dn)

gathering in G1 4 the terms in which only derivatives of order lower than 2 are
involved. As before, the splitting easily yields

[SUP] [Grallzz < V2 Sup [Grallz~ < C,
0,T

and, furthermore,

sup ([[G,2llz2 + [1G1 3] 22)
(0,7]

< [S()U%(3V2WIF(SE)IIQLWII33$ILw|3§$|Ics/l77|15d77) <C.

The most singular term can be decomposed one more time as G1,; = G11,1+G1,1,2,
where
1

Gii1= W
N

3 e (L1
L@, Guaa= [ (= )

It yields
Gral < (IF (@) |3 2] 1)) (20| + / 03! \d),

and, therefore,

sup [|G1,1,2]|z2 < Csup ||z gs.
[0,7] [0,T]
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It remains to deal with G411, which cannot be placed in C([0,T], L?). However,
since less regularity is needed for z;(,t), we have

Grin |£(03)(n)|?
wp 37 St < s (1P 3 ) < € s
[OT]neZ log®( In\+e [0,T = log”(In +¢) [0.7]

where we have used (I6). Hence we are done with G111 and consequently with
G1. Let us observe that we have obtained a better regularity for G5 due to the

fact that A(z) € C([0,T]; Hﬁ) (see (B0) and below in the next section). That is,
Gy € C([0,T); L?) and, therefore, x; € C([0,T7; Hﬁ), as desired.

3. EXISTENCE OF AN APPROPRIATE PARAMETERIZATION
AND COMMUTATOR ESTIMATE

First let us define the operators used within the proofs, namely i and fiog, a
derivative and potential operator, respectively, as the following Fourier multipliers:

(22) oal () = ——— (7)., Tl —

mf(])a Dog f(4) = mf(])
for f € L3(T). Clearly we have that f € L?(T) belongs to Hrs if
Dogdh ' fEL? or hogf € L2
Next we show a commutator estimate needed in the existence and uniqueness proofs.

Lemma 3.1. Let ' be the space of an absolutely convergence series. Then

(23)  [|Bogd(9F) — 9D10sdy fllz < C1059llt |Otosf |2 + 1Orogdrgl L2 || Fllin),

where C' is a universal constant. In particular, Sobolev’s embedding implies that for
any € > 0 there is a constant Cc > 0 such that

(24) (181060 (9f)—9010g0x fllL> < Celllgllma/2+ 0o £l L2+ Orog Oy gll L2 [|.f | rav2+e).-
Proof. We have that

| (Drog O (9.f) — 9O10g 0+ ) ( (G —1)?

|’Z’10gljl+e) log(lj =1 +¢) U ~OIgOL

and the function h(j) = j2/log(|j| + e) satisfies

1 1
h(j)—h(G -1 = /0 d%h((j — ) +rl)dr= Z/O B (rl+ (j —1))dr,

and, therefore,

H+1—1)
h =1) <l/ R (rl+ (5 —1))|dr < 3( .
) =1 =D <1 [ 1+ G =) < e T
It yields
. : 302 3Jl1 =1
h(j)—h(j—1)| < - 5
(A7) = (5 = 1)] log(|l] +e) = log(lj — 1 +e)
and finally

|(Oog Oy (9f) — gAog O ) (4)|
<3 g g 0~ D601+ 3 i g 6~ Dl
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Then Parseval’s theorem gives

2 ; 2\ 1/2
st =000t > < (2 o 6 - o))’

(2 (i 31 ]ﬂe)m]’ DIl

g(l7 —

The Minkowski inequality provides (IZEI) The proof ends by Sobolev’s embedding
in dimension one.

Proof of Proposition [L3l Without loss of generality we may consider the case k =
3, because the extension to k > 3 is just a straightforward exercise once we know
how to handle k£ = 3. Also, in order to be concise we will show only the main part
of the proof. That is, we will deal with the more dangerous terms in the needed
estimates, leaving as an exercise to the reader the treatment to all the other more
benevolent characters. In the main core of the proof are energy estimates; from
them and with recent well-known mollifying arguments one can apply the classical
Picard to conclude existence. The whole strategy can be found in [2] Chapter 3].

Often, in the following we will have to write double integrals in variables, say
v and 7, and differences f(y) — f(y — n). To simplify notation we shall write
f=75(yt), f = f(y—n,t),and f — f' = f_ when there is no danger of confusion.
Furthermore, we shall write [ = [, and denote id as the identity, C(t) will be
a polynomial function in ||F(z)||r~ and ||z| gz so that C(¢t) € C([0,T]). As was
mentioned before, most of the time we will show how to estimate the most singular
terms: those in which the derivative of higher order is involved by the use of
Leibnitz’s derivative rule. The rest of the terms are denoted by l.0.t. standing for
lower order terms. Writing l.o.t. € X means that the lower order terms belong to
the space X.

First we consider the evolution of the L? norm:

3 dtH(b —id||7. = /(¢ —id)pydy = I + I,

where

O d_
h= =it [P0, b= [N id,on
For I; we find

- |220(1.6)~2y0(0.)
n=[fen 20,0l dney

// ﬁgi e

il o~y _ aw¢('7>t)_an¢(7]7t)
2//(¢(%t) 7= (é(n,t) —m)) 20 =20 dndy,

n=1 //(qb—id)—Mdndv

|z
Integration by parts yields

T_ - Oyx_
//\ ¢ —id)_|P——— e dndyy.

hence
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Now we use (@) to rewrite

— Oy - -Ouw —0Oy- d2an?
|z |3 |z |3 ’
and obtain
2)|z)?, , Inf**=
T_ - O0yT_ 2,1 _1
@) ] < e <AP@ el y i

This yields
1 _1 ;
< IF@IE~ ol y [l [ 16~ id)-Pardy

<IF@Ilalay [ 17 [ (16 ial? +1(6 = id) P)ardy
<O F (@) 3l 16 — i35 (1) < C(0) 16— i3 ().
The term I5 can be rewritten as follows:
L= / &) (6 — id)(Dy6 — )y + / A(a)(6 — id)dy

The first term above can be handled by integration by parts. In the second the
Cauchy-Schwarz inequality yields

1
I < C(#)llg —id|72(t) + 5 M@

The bounds for A(z) (below we show that A € H &) finally provide

d _ )
(26) E\I(b—ld\liz(t) < CW))¢ —id|Z=(t) + C(t).
Next, we consider the evolution of the higher order norm
(27)
5 100201 = [ 0020010, 080un

- / Dhog 02 8005 (02 / |”¢ dn) )dy + / Do 0200105 (02 (A(2)0,0) ) dy
—J+K,

to bound the J and K terms.
With J we split further J = J; + Js + J3, where

93
o—
Jl = /810g63¢810g(/ | ‘ d77>d%
FPo_x_ - Oyw_
Jy = —2 / alogaigﬁalog( / %dn) d,

T Oyx
_/aloga»%(balog(/a»yqs8y(|73)d77)d .
The fact that |0yz| does not depend on v gives

_ 1 2 3 _
[oustton( [ 22 i)y = o [ Besd2e @501 =0,

and
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where £ was defined in (I5) and has properties ([I6). Therefore, one obtains

1 1
5= [ Busovn ([ B0 (1 = s Jan) b
soyTee TN x| |9y[n]
This extra cancellation suggests the further splitting J; = Ji1,1 + J1,2, where

T = [ tosto0ns (920 [ (12 = ey JAn)

1 1
D= [ uatotnos( [ 06 (1 = o))
and Jy1 = Jll’1 + J12’1 + Jf”l, where

= / Orog 02 [y (A2 ) — Adogdy (20)) .

72, = / Orog 02 b ABgD (D) Dy, TP, = — / Drog 02 B0 (0, AP D),
with

(28) A= [ (o5 - o)

In J{; we use the commutator estimate ([24) to find
Tix < CllowogdidllLe (Al 2 l1010g 050 L2 + (10105 Al L2 10501 1)
< CllAl 21 010g %5 017
Furthermore, we have

T_ - O0yx_ — Oyx - 83:10172

(29) a’YA = _/ |l’_|3 dn7

and, therefore,

B
8$A:—/x i U S

where |[l.o.t.||p2 < C(¢). Identity ) yields
T_ - 853:, — 0y - 8337772 = (z_ — Oyan) - 833?, +noyx - 833:, — Oy - 8390172
= (x— — Oyan) - O2x_ —ndya_ - D2 + |2x|*n?,
implying
x_ ~6333_ — 0y 8,?;1”772 = (z_ —0yam)- 3,31:_ —n(Oyx— — 83:577) -6333’ +n28§x . 8,333_.
The above configuration provides
1

o 25 — Oz DBan?| < 3llcallell sy 0l

and, therefore,

’ B / (z— —0yxn) - O2w_ — Dy - Dan?
|z [?

implying that 024 € C([0,T], L?) and the estimate
Tix < C0)l|00gd50]17:

dn| < 3llz]lczllz] oy [1F (@)1
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Then, integration by parts yields
Ti <110, All L 1100g030 72 < |Allz2 101060581172 < C(2)[1010g030] 72
In order to estimate J7; we use the following inequalities:
TPy < [1010g0356 12| O1og (05 ADT6) [ 2
< Cl1010g (0 A) | L2 01005 8l17 < Cll Al 12 [|O10g 5 61172
< C(1)1010g 05017

Hence
Ji1 < C)|010g2¢]7 2

It remains to control J; 2. We rewrite Jy 2 = J11,2 + J1272 given by

1 _ 2 34 2 _ 2 3 41
T = [ Bus0200tes( [ 030 udn)ar. T2 = [ 00s020010s( [ 030/ tn)ar,
where [0, 2|7t n| ™t — |z |71 = Q1 + Qs with

’% — 8730’2 (IT’ — 8Vac) - Oy

T ol (0l + Dol oyl (0yal + 15 )|

(30)

Next we will show how to deal with J1272 and since the kernel €25 is more singular
than €, we leave to the reader the analogous details for J1172.
Identity (@) allows us to rewrite

(% —0yx + %33:1:77) <Oy

(31) Qp =2 —
2 ol ] + [ Z )]

and the splitting J7, = J1221 + J12:22, where
J12:21 = /5‘10g5‘5¢310g(/3,3¢’5‘n92dn)d'y,

n=m
n

(32)
J12”22 = _/810g83¢810g (83(;5/92‘ =— >d’y

In the case of J1222 let us observe that the functions Qs(7y, £7) are regular enough
to obtain

n=

n

T2 < 1005020 12100520/ s < Clotas0l3e 3 1010g ., 22
+
< O00g %0172 zi: 105922, 22 < C(t)[1010505|72-
Regarding J1221 , we proceed as follows:
T3 < 100s 12 0v [ 2259, 0200) 1
(33) < 100s2011210, ([ 029,020 1

< 100s20l12 (1| [ 026/0,0,0dnlia +1 [ 0360, a2,
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and two new terms appear that have to be controlled in L?:

(34) B = / 2¢'0,0,0dn, D = / 03¢/ 0, Qadn.
In order to do that first we will prove the bound ||0,0,Qs||z2 < C(t) to obtain
(35) 1Bllz2 < 110561111050y Qllz2 < C(6)[010505 6]l 2

With the help of formula [BI)) we split 0,Qs = 0Q2,1 + 00 2 + Qs 34 0 4, where

_ _ -9 192+n2). 9
D1 = _22(33 H0 + 50521 )0 902
10yl (10y2] + |5 ]) 2|

~2(0y0" -0y + d2an) - Oy
n |0ya|(|0yx] + 15 ) z-|

—2(z_ — Oyan + %833:172) cOyr - Oy

(36) 0y 3 = — — ,
n |Oal(|0ya] + 5 )e- 2 fa—]
and
r_ Oyx'n—x_
2 (x_ — dyan+ 302an?) - Oy 4y n?
Mg = — T\ 2 T_
K |8vx\(|87x\+|7) || |T’

Next we will show how to deal with 0,02 ;1 and since the other kernels are similar
or even easier to handle we will skip the details.
We have
—92(0yz_ — O%an+ 203xn?) - 02
8789271 = —2( il i N 23{/_’1 " ) 7 —|—lOt,
n |0y| (|0 x| + [%-]) [ |

where ||l.o.t.||p2 < C(t). The identity

1 1
(%x_ — 833077 + 5833:172 = 772 / 7“(3395(’7) - &3,95(’7 + (r —1)n))dr
0
allows us to write

(Oyx— — 5‘5:377 + %éﬁmf) -0y
=7’ /01 rd3(y+(r=1)n)) - (yx(y+(r—1)n) — 0yz(7))dr
+1° /01 r(832(7) - 0yx(v) — Bw(y+(r—1)n) - dyx(y+(r—1)n))dr.
The use of equality (@) and integration by parts in r yield
(Oyz— — O2an + %Bicmf) Oy
= [ Pl (1) Oyl 1)) = By )i

1
o /O r202x(y+(r—1)n) - Ba(y-+(r—L)n)dr,

and, therefore,

1 1
|0y = O + 5052n%) - 0y §2|77|3||$Hc2/0 |05 (y+(r=1)n)]dr.
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Hence
1
0,091 < ﬁl\ll*“(l”)lliooHJEIICQ/O |032(y+(r—1)n)|dr + |Lo.t.|.

Finally an integration in v gives the desired property: [|0,09Q21] 2 < C(t). Anal-
ogously we have /0,00 ;|12 < C(t) for j = 2,3,4 and therefore the same bound
holds for 0,0, 2:
(10508222 < C(1).
We achieve the desired estimate ([B3]).
Regarding D, we first integrate by parts and then split

D= /a )0y Qadn = — /a%b D2 Qadn + 02— 392 - :D1+D2.

Then formulas (B6]) show that the functions 0, (v, £m) are regular enough to get
an appropriate bound for Ds:

D22 < C)[050 L2 < C#)|[O10g D5 -

Following the decomposition for 8, in (B8], let us introduce 9,00 1 = 0*Q ; +
%02, + %03, + 0% ,, where

920k | = 4 (x— = Oyan+ 305an%) 0w, s _ —2 (=0yo_ +Pan) - Oyz
St 0yl|(10ya] + 15 ) |- 0P |0ya(|0hx| + 5 ) |- |
82Q3 _ z (LL', B &/xn + %63‘7:772) : a’yx Tr— - &,x’
WP o0l + Dl el
U 737|(| x|+ | 7 )|$f| -
and

r_ Oyx'n—x_
2 (x— — Oyzn+ %6313772) “0yT 02
n2 T_ N\ 2 T_
N |87x\(|87x|—|—|7) |z | |_|

6293,1 =

As was shown before, we have

1 1, [
x_ — Oyxn+ 5(’9,2@772 = 5773/0 rza,?;x('y + (r—1)n)dr

and, therefore,
2 1
0204, < @R~ / 0y + (v — L)n)|dr.

Analogously, we obtain
4

> 10°04|

Jj=2

1
‘—(HF( )| Zoe +[F (@) [ 2l o2 +[1F (@) |7 IIxHCI)/0 |05 (y+(r—1)n)|dr,

implying

0,091 < () [0y + (r = D).
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The same approach for 0,08 ; with j = 2, 3,4 yields
\6292\< / Oy + (r — 1))|dr.

Therefore, we get the estimate

1 1
DU < CNEO ey [ e [ 1a(a+ (= D ldvan,
and consequently
D1z < CO050 .3 11052l 2 < CWONO38Il 35 < C)Or0gd3 012
by Sobolev embedding. Putting all those estimates together we obtain
IDllz2 < C()]|010g 50l 12,

which together with ([BH) allows us to get finally the needed estimate for J1221 in

[B2) using (B3). We are then done with J7,.
For the less singular kernel Q; in (30) a similar analysis yields

T2 < O1)1010g05 0|72
Hence the same estimate is achieved for J; 2 and accordingly for J;:
J1 < O)||Orog2 |7 -
Next we estimate Jo = Jo 1 + Jo 2 given by

T_ - Oyx_
J2,1 = _2/810g8§¢810g<63¢/ﬁd’f])d”y = 2/310g83¢810g (3§¢87A)d7,

and

T Oyx_
Jon =2 / Drog 0 qsalog( / 82¢’|x—|3dn)d'y
= 2/810g8»2y¢alog(/83¢/Q3d77>d77

where 0, A was introduced in ([29) and the kernel Q3 can be rewritten as

_-0yx_ —0yx - &2/:10172
|z |?

xT
Q3 =

Observe that Jo; = 2Ji0’,1 and, therefore, we already know the estimate of that

term. The other J; 5 is similar to J1221 because the kernel 23 is of degree 0 as 0,{2a,
and has the same loss of regularity in the tangential direction. Then, as before we
obtain

10,Q3] < C(t / 032(v+(r—1)n)|dr, |0, Qg|< / |03z (y+ (r—1)n)|dr,

helping to estimate J3 2, and

J2 < C(1)]|010g05 I3
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Finally, to deal with J3, we proceed as follows:

s < 100as02l 0 [ 0,0-0,(“ 2 ) oo

< 1000020l ([ 270-0, (2= ) o

that is,
O,z

O,z
Iy sl (1 [ 0360, (0= )l [ 070-02 (2 Yl )

Next let us observe that the two inequalities

20.0, (25|
1950l

<= e (1F@IE- | e+ =l P @) ).

o0-02 ()|

1
C0|030l10 (93] +10%/ + [ 108+~ Dn)ldr 1),
together with Sobolev embedding yield
I3 < C()[1010g05 ¢l L2 (105l| o1 + 1050 L) < C(1)1010505II72,
giving us the control:
J < C(1)|0h030 17
To finish, it remains to deal with K. First we will show the regularity of

(37) Az) € C([0,T); H®s) for 2 € C([0,T); H?).

To do that we begin observing that A(x) € C([0,T]; L?). Next we continue showing
that Log(92X(z)) € C([0,T]; L?) with i,g given in (22). We use the following
decomposition 93\(z) = Ey + E; + E3, where

O3x Oz 3 x Oy
_ . ol .
b= ([ ) B= i ([ )

O~ Oy
By=——1">.03 / = dn).
57 70, 7< 7] ")
The inequality

By < (|F(@)ll< 1052l .3 + |1 F (@)1 10527 )1052]
gives By € C([0,T); L?). For Ey we consider Fs = Es 1 + E2 9 + Es 3, where
82 83 82 8233_
( |f| \3$|2.( |~T 1

and

By = :
2,1 |8 .’E|2

Ey3 = |8'y ‘2 /32 5|3$ )dn)

) Ey o = Lz 0yx_ dn)

and
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A similar approach provides Es 5 and Es 3 in C([0,7]; L?). As usual we will focus
our attention on the most singular term Ej ;, which can be decomposed as Fa 1 =
E21’1 + E%’l + ES’I, where

82 1 1
E} : /a?’x, — — ——_)dp),
2= 2 p (& (|x_\ |aw||n|> )
2 O2x_ 031
E2 — / Y Y d77 ,
|am3< ] )
and
-2 (02x - O0,2%)_ -2
38 E3. = / g d a0
(38) 217 5P w0 faep )

As before one finds
_1
|E3q |+ B3] < C(llF(x)l\‘ioo\|$||202,% +1)(|03] +/|77| 2|03 |dn),

and consequently Ej,E3, € C([0,T];L?). It remains then to deal with E3 |,

which is the most singular term not belonging to C([0,T]; L?). Nevertheless, one
has

1 0g(B3.1) |22 < 2|1 F (@) |70 | Ti0g (£(D52 - 852)) || 2 < Ol F (@) [[7 |05 - 05| 2
as a consequence of properties ([I0]), from where we reach the desired estimate
1 og (B3.1) |22 < ClIF (@) |7 1052l 2= 1052 2 < C(2).

In the following, we show that all the remaining terms (except one) are integrable
in C([0,T]; L?). This singular term is a constant times E3 ;. We are done with Ej
and consequently with Fs.

Regarding Es3, we introduce the splitting Es = E3 1 4+ F3 2 + E3 3 + Fs3 4, where

Oyx 84x, 8 T 83x,

Esq = Tdn, Es 2 = |8 x|2' |ac ‘3

[ . a .deT],
’ 052> ) x| !

and

L, Oy 9 T Oyx_
E373 = 3—33 . /8,@87(W>dn,

|0ya[?
O,z 9 -0y _
E374 ‘a 1‘|2 /6 X _ (9 ‘CE |3 )d?]

Using (25), Es 2 has the following estimate:
_1
[Baal < 6P (@)~ ol (03] + [ 1nl 103" \dn),

proving that E35 € C([0,T]; L?). The lower order term Es33 can be estimated
similarly and it is also in the same space. Next we continue rewriting

Oyx 9 9 Oyx
B34 = |57—37P : /(awx, - 37$ﬂ)5w<ﬁ)dn,
from where we obtain with the same methods the bound

1
Baal <2 F @)l oy (03] + [ ol 105" \dn) + C(0).
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It remains to estimate E'3; which can be rewritten as follows:

1 Oyx_ - 032’ 1 (Oyx - Odx)_
Esq = / T—dn — / T,
|0y [ || |0y [ |z
suggesting the splitting Fs 1 = F3, + E3, + E3, + E3 |, where
1 O~ 0%x n 02x n
El = / ( T 7 —) 0xdny, FE3 = — -/84x’—dn,
0] [z |8yl [nl/ 7 0l Tl
and
-1 1 1
B} =—— /(8 x- 84:5),(— - —)dn,
S R N U N
-1 (Oyx - Oz _
Ef, = / .
[0yl 1]
We have the kernel:
0 = Oyx_ Ol g _ Oy — d2an +52$77( I )
[z [0y [n| |z TNz | [0y n]
and .
_ n=m
1 3 3
E3,1 = |8,Y—1‘|2 /67794 . a,y.’l,'ld’]’] + 94(9,\/1'/ —

Dealing with 0,24 in a similar manner as we did before, we get the estimate
10, S0| < C(t)|n|~2, implying that E3, € C([0,T); L?).
A convenient integration yields

02w
Y

from where the appropriate estimate for Eg’l follows. Identity (@) allows us to

obtain 3 . .
E3 =_—"—— /(32:1: S03x)_ (— - 7)dn,
e A N N PRI
and, therefore,
B3] < C|F(2)| 1 1052 2 /(|33x| + 052" [)dn.
Finally, using (@) one more time we get

3 (82 - 03x) -2 4
|6’y.’lf|3 / d77 = _E2,1a

EY =
1 In| 3

where Eg,l is given in (38). Then, Eg{l can also be estimated as before. We are
done with F3 4 and, therefore, with Es. It gives A(x) € C([0,T; Hﬁ)7 as desired.

Regarding K in 7)), we have K = K; + K5 + K3, where
K, = / B1og 02 $rog (02N(2)Dyd)dy, Ks = / Diog02 pB1og (0 A ()02 0) dr,
and
Ko = [ 010602601050, (\()226)d.
At this point it is easy to get
K1 < O)|9105056| 121|005 3 ()| 12| Ghog O Bll 12 < C'(2)[[D10505 0172
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and
Ky < C‘|610g83¢||2L2||810gav)‘($)”L2 < C(t)||310g53¢||2m-
For K5 the commutator estimate (24)) allows us to get
Ky = (004080001050, (N2)020) ~ 01010501 026)d1+ [ A0)0h 2200, rg 201
< C010g 058l 2 (I (@) | 12 | Ohog 5 ¢l 2
1
1000 M) 210200 5) = 5 [ M) a0y
to obtain finally
K3 < ClA@)[l12 10105050172 < C(1)]|010g 05 ¢][72-
Having such good estimates for K and J we can go back to (27) and obtain

d
T 100s03¢1172 < C()l1010g03 672,
which together with (26]) yields

d . .
E'W - Zd||;ﬁ <C@)l¢ - Zd||2& + C(t),

and then the Gronwall lemma gives existence so long as / C(s)ds < oo.

Uniqueness then follows similarly because we have

d
le* =o'l < COlg” — ¢'IZ2,

where ¢? and ¢! are two solutions of the equation and ¢?(z,0) = ¢*(z,0), and
because the above inequality can be obtained with the method described before.

It remains to show that d,¢(y,t) > 0 for some positive time. This is done with
the observation

Dab(.t) = Dr(7,0 / 0,617, 5)ds = min,6(7,0 / 10,61 (v, 5)ds.

The fact that |0,¢:(7v,s)| < C(t )||¢)HH13 implies that ¢ remains as a legitimate

change of variable so long as
mind00,0) > [ OO0l ()05

4. UNIQUENESS FOR THE SYSTEM (7))

This section is devoted to showing uniqueness for the system (7). The argument
shown below is straight, dealing with the system (] without any change of param-
eterization. As before, to simplify notation we shall write f = f(v,¢), f' = f(v—n)
and f — f' = f_ when there is no danger of confusion.

We consider two solutions for the system ([):

0 t)— 0 —n,t
xt(’y,t) _ / ’Y"E(/Y7 ) "/x(,y 7, )d
T |J"(77t) _w(’Y—??at)‘
given by z(7,t) and y(, t) in the space C([0, T7; Hs (T)) with the same initial data.
During the time of existence 7' > 0 one finds F'(z) and F(y) in C([0,T]; L>=°(T x T)).
Here C denotes a constant which may be different from inequality to inequality but

)
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only depends on supq ry [[z[|, s (£), supo,ry [[yll 5. (¢), suppo 7y [[F'(2)]| 2= (), and

SuPjo, 17 | F ()| Lo (t).
Let us consider the function z(v,t) = z(v,t) — y(v,t). One finds

EE”ZHZLQ

Lz 1
dndry, I / /8y dndry.
/ /I e -y~ )

Next we symmetrize I and integrate by parts to get

// ”Z_dndw //I 7I2m_ i x_dvdn

We have the splitting: 11 = Il 1+ I 2, where

//z z_ 7| |3 —dndy and I} 5 =— // | 8|3xd17d'y.

Then a simple exchange of variables yields I1,; = I 2. We have:

1 r_-Oyx_  OyT- 82 1 Oy - 82
i1 =— - Y
w=gf [e( S E T )Mt /=5 “ep LE

hence
(39) || <2|1] < Oll2l72 + Clizll L2 1£(2) ] 2o

It remains an estimate for I5. We rewrite

(r—4y_) 2
Oyy— dnd-ry
/ / T e ly= (- + Ty-1)

and decompose Iy = I 1 + I3 2, where

/ / (r_4y_) -z Py(0yx + dyy) - =
\I ||y |(Jz—] + |y |) 02|95yl (105 I|+|3wy\)|77|

z/z~ztd7:I1+12,

where

) dndry

and

Oy + 0,y
Ioo = — .92 2l - L(2)d.
o= [ Yyl (onal -1y~

As before, we control I5; and I5 > in the following manner:

Ly<C / ol / (2/(2] + | dvdn < Cllzles  Tna < Cllzll sl £(2)]| 2.

Adding both estimates we obtain the bound for I5, which together with (39)) yield

d
(40) %”Z”LQ < C(llzllp2 + 11£(2) 1 22)-
Next we show that

(41) 1L(Hllz < pCIfl15a " 10y £
‘We have

8=

1£(2)]3 < C S W2 @IEDIFR)2 < (S 1F R (3 m(20k)|F(k)[2)

k£0 k0 k#0
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for 1 < p < oo and, therefore, inequality In |k| < pP|k| with |k| > 1 gives (@I).
Introducing that estimate in ([{) we obtain

d -1
E”ZHLQ <Cpllzl ="

for p > 1. Since ||z]|12(0) = 0, we can conclude that the maximal solution of this
inequality satisfies
12l z2 (8) < (Ct)P

for p > 1. Therefore, choosing ¢t < (2C)~! and taking the limit as p — +oo we
prove uniqueness.
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