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Neophylpalladium complexes of the type [Pd(CH2CMe2Ph)(N-O)(L)], where N-O is picolinate or a related bidentate, 

monoanionic ligand (6-methyl-2-carboxylate, quinoline-2-carboxylate, 2-pyridylacetate or pyridine-2-sulfonate) and 

L is pyridine or a pyridine derivative, efficiently catalyze the oxidation of a range of aliphatic, benzylic and allylic 

alcohols with oxygen, without requiring any additives. A versatile method is described which allows the synthesis of 

the above-mentioned complexes with a minimum synthetic effort from readily available materials. Comparison of 

the rates of oxidation of 1-phenylethanol with different catalysts reveals the influence of the structure of the 

bidentate N-O chelate and the monodentate ligand L on the catalytic performance of these complexes. 

 

Introduction 

 

Oxidation of alcohols is one of the most important synthetic operations both in the organic chemistry 

laboratory and in the chemical industry.1 Although classic oxidation reactions can be very efficient and selective, 

they often involve the use of stoichiometric reagents and halogenated solvents, resulting in the generation of large 

amounts of waste. The urgent need for more sustainable chemical processes has prompted the development of 

mild and selective oxidation methods based on the use of green reagents and solvents.2 In this context, direct use 

of O2 as oxidizing reagent is a very desirable feature for modern synthetic methodologies.3,4 Therefore, new 

catalysts for aerobic oxidation of alcohols have received much attention in recent years.5  

The ability of palladium compounds to oxidize organic compounds has been known for a long time.6 In such 

reactions, palladium is reduced to palladium metal. In order to render such reactions catalytic they have to be 

coupled with a redox process that restores the metal to the divalent state.7 Reduced palladium does not react 

directly with oxygen, but the discovery that Pd can be reoxidized with copper(II) chloride led to the development 

one of the prime industrial applications of homogeneous catalysis, the Wacker process for the synthesis of 

acetaldehyde from ethylene.8 In this process, Pd(0) is oxidized by Cu(II) to Pd(II), and the resulting Cu(I) is brought 
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back to Cu(II) by reaction with O2. The aerobic oxidation chemistry developed in the Wacker process is an early 

example of what later came to be considered as green chemistry, but the elimination of toxic and highly corrosive 

copper salts would increase its efficiency and render palladium-catalyzed aerobic oxidations a more attractive tool 

in organic synthesis.5 Stabilization of simple palladium catalysts such as palladium acetate with suitable ligands 

prevents the aggregation of Pd(0) into metal particles (palladium black) and enables direct re-oxidation of the 

reduced catalyst with oxygen, removing the need for redox co-catalysts.9 In the late 1990s, Larock10 discovered 

that, in the coordinating solvent dmso and in presence of a base (Na2CO3), palladium acetate catalyzes the aerobic 

oxidation of allyl and benzyl alcohols. Shortly after, Uemura reported a new catalyst generated from palladium 

acetate, pyridine and molecular sieves.11 Sigman developed a further example of a “modified palladium acetate” 

catalyst containing triethylamine, which oxidizes alcohols at the room temperature.12  

Palladium acetate catalysts modified with weak ligands such as dmso or monodentate nitrogen bases are in 

fact equilibrium mixtures of species differing in the number of ligands attached to the metal. In addition, these 

systems require additives such as an external source of acetate (e. g., NaOAc, NBu4OAc), bases or molecular 

sieves. Therefore, careful optimization of the catalyst composition is required to obtain its maximum efficiency.13 In 

2000, independent reports by Bortolo14a and Sheldon14b showed that palladium acetate complexes with strongly 

binding phenantroline-type ligands are very active catalysts for alcohol oxidation. The well-defined nature of the 

palladium-phenantroline moiety is more amenable to systematic chemical modification, allowing rational 

optimization of the catalyst effciency.15 After this seminal discovery, a number of well-defined palladium catalysts 

have been discovered, for instance, chiral complexes with the bidentate nitrogen ligand (-)-sperteine, developed 

simultaneously by the Sigman16 and Stoltz17 groups. These catalysts selectively discriminate between alcohol 

enantiomers, and therefore perform the kinetic resolution of racemic mixtures. Sigman has also developed efficient 

catalysts containing non-dissociable N-heterocyclic ligands.12b,18 Other well-defined systems based on 

cyclopalladated complexes19 or pincer ligands20 have also been reported. Very recently, Waymouth described new 

catalysts incorporating fluorinated phenantrolines that are particularly resistant to severe oxidative conditions,21 

albeit their productivity is modest. In spite of the rapid progress of this field, the structural diversity of well–defined 

palladium oxidation catalysts is still rather limited because not many suitable ligands are known that also withstand 

the aggressive action of oxygen.  

The mechanism of aerobic alcohol oxidation with palladium catalysts has been actively investigated.13,18,22�25 

Although some important details of the mechanism may change from one system to other, a number of essential 

features, outlined in Scheme 1, have been recognized. One of the key intermediates is the alkoxide complex A. 

This species is initially formed when the catalyst precursor (e. g., an acetate complex) enters into the catalytic 

cycle. Intermediate A is unstable and undergoes -hydrogen elimination, resulting in the formation of the oxidized 

product, an aldehyde or ketone, and a hydride species, B. The next steps in the catalytic cycle eventually result in 

the transfer of the hydrogen atoms arising from alcohol oxidation to an O2 molecule. This process may take place 

along two different pathways. In its classic version, the mechanism involves elimination of HX (usually acetic acid) 

from hydride B, with concomitant reduction of palladium to Pd(0) as intermediate C. This complex C reacts then 

with O2 forming a palladium peroxide, D, which is subsequently attacked by the free acid, affording a Pd(II) 

hydroperoxide, E.26 More recently, it has been suggested that in certain cases hydride B may not decompose, but 

instead it reacts directly with O2  affording same hydroperoxide E without actually involving Pd(0) intermediates 

(dotted arrow).27 Both pathways are supported by experimental and computational data, and any of them could 
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prevail depending on the system considered.28 Whatever the exact mechanism is, alkoxide A is brought back into 

the cycle when the hydroperoxide E undergoes protic exchange with the alcohol, releasing H2O2. Hydrogen 

peroxide can be recovered under specifically designed conditions,14a but more often it is disproportionated into 

water and oxygen by the catalase action of palladium complexes.29 Therefore water is the only byproduct 

generated in the catalytic cycle, which contributes to increase its atom efficiency.  
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            Scheme 1 

 

The catalytic cycle described above is a helpful guide to the rational design of new catalysts because it 

assigns a role to each of their components. To begin with, a base is essential in order to generate the palladium 

alkoxo intermediate. Some systems require an exogenous basic additive, such as Na2CO3 in the Larock system,10 

or an excess of the same nitrogen base used as ligand, as in the case of the (-)-sparteine system developed by 

Sigman and Stoltz.30 Oberhauser has recently shown that dicationic [PdL4]
2+ complexes (L = pyridine, 4-

ethylpyridine) are efficient catalysts for the selective oxidation of diols in the presence of potassium carbonate.31 In 

some other cases, acetate or other ligands can act as internal bases. It is now widely accepted that carboxylate 

ligands, present in most alcohol oxidation catalysts play a double role as internal bases, assisting the deprotonation 

of the alcohol, and, more importantly, transferring the hydride generated in the alkoxide decomposition to the 

peroxide intermediate (B to D steps in Scheme 1).29b Another important feature for this catalytic process is the 

ability of intermediate A to generate a coordination vacancy in cis to the alkoxide ligand, in order to facilitate -

hydrogen elimination.13,24,32 This is not strictly necessary, as palladium alkoxides are in general so prone to -

hydrogen elimination that this takes place even if 4-coordination is enforced by pincer-type ligands.33 However, the 

presence of one or more readily dissociable ligands is an important feature of most Pd oxidation catalysts and 

probably contributes to accelerate this step. Finally, the presence of one or more reasonably good stabilizing 

ligands is mandatory to prevent the aggregation of reduced Pd species into catalytically inactive bulk metal. 

Prominent examples of successful catalyst designs incorporating these three elements (internal base, labile co-

ligands, and at least one strongly stabilizing ligand) are the carbene-carboxylate complexes introduced by 
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Sigman,17,34 and dimeric phenantroline derivatives bridged by carboxylate or hydroxide ligands, described by 

Waymouth.21,35  

As a further step in the rational design of palladium catalysts for the aerobic oxidation of alcohols, we decided 

to integrate the three above-mentioned key features required for catalytic activity into a single ligand. We reasoned 

that a bidentate ligand incorporating a heterocyclic donor unit and an anionic carboxylate fragment could stabilize 

the palladium centre throughout the different stages of the catalytic cycle, and at the same time behave similarly to 

acetate, playing the role of internal base. Such a ligand leaves room for both the alkoxide group and a free 

coordination position in cis to the latter, creating the adequate environment for -hydrogen elimination. Many 

simple heterocyclic molecules fulfil this design and, importantly, are stable towards oxygen, for example, pyridine-

2-carboxylic (picolinic acid) acid and its derivatives. A wide range of catalyst structures could be build from these 

molecules.  

At the outset of this work, Muldoon reported that highly active oxidation catalysts can be generated when 

anionic N-O ligands, for example 2-heteroarylcarboxylic or 2-heteroarylsulfonic acids, are combined with palladium 

acetate, tetrabutylammonium acetate.36 It was suggested that anionic carboxylate complexes [Pd(N-O)(OAc)2]
- are 

responsible for the catalytic activity, although no evidence was provided to support this proposal. A number of well-

defined palladium complexes with 2-pyridincarboxylate and related ligands have been reported in the literature. In 

most cases, these are bis-ligand derivatives, [Pd(N-O)2],
37 or hybrid bis-chelates complexes38 of the type [Pd(N-

O)(L-L)]+ that, having no open coordination sites, are not expected to be catalytically active. However, several 

complexes with the general structure [Pd(N-O)(X)(L)], where X is an anionic ligand and L is a neutral donor have 

been described, most notoriously a series of organometallic derivatives (X = Me) synthesized by Cavell.39 

Organopalladium compounds containing the very stable 3-allylpalladium template have been recently used for the 

generation of active alcohol oxidation catalysts containing pyridine31 or N-heterocyclic ligands.40 In our search for 

well-defined palladium complexes that could be used as precursors for this type of catalysts, we decided to prepare 

and investigate complexes of the type [Pd(X)(N-O)(L)], with N-O = picolinate and other related bidentate anionic 

ligands. In this paper we show that neophylpalladium derivatives (X = neophyl, 2-methyl-2-phenylpropyl) are well-

defined precursors for aerobic alcohol oxidation catalysts. We describe a very convenient and versatile route for 

the synthesis for these complexes as well as their catalytic performance in the aerobic oxidation of alcohols.  

 

Results and Discussion 

 

Synthesis of catalyst precursors. In a first attempt to prepare suitable catalyst precursors, we marked our target on 

a hybrid palladium carboxylate complex F, containing acetate, picolinate and pyridine ligands (Scheme 2). We 

hoped that this catalyst design would provide all essential elements required for catalytic activity without need of 

any further component, anticipating that the chelate would enhance stability as compared to other carboxylate-

based catalysts. In order to prepare such hybrid carboxylates, we reacted stoichiometric amounts of the palladium 

acetate pyridine adduct [Pd(OAc)2Py2]
12a and picolinic acid. However, this reaction does not afford the desired 

mixed carboxylate product, but a precipitate of the insoluble Pd(N-O)2 complex G,37 irrespectively of the ligand ratio 

used. Compound G proved catalytically inactive.  
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As mentioned above, Cavell has reported a series of methylpalladium picolinate complexes [PdMe(N-O)L],39 

with L = phosphine, phosphite or nitrogen bases, including a pyridine derivative.39a Therefore, we turned to 

palladium alkyls to prepare stable catalyst precursors containing a single picolinate ligand and a dissociable 

pyridine ligand. These compounds are stable in solution and their synthesis is straightforward, but requires the use 

of toxic reagents such as thallium (I) picolinate or dimethyl sulfide and the thermally sensitive complex 

[(PdMe(SMe2)(-I))2]. Previously, we showed that the readily available palladium metallacycle 

[PdCH2CMe2-o-C6H4(cod)] 41 is a versatile starting material for the synthesis of a wide range of -alkylpalladium 

complexes containing different types of ligands. Thus, we decided to use this compound for the synthesis of alkyl 

complexes containing picolinate and related anionic N-O ligands (Scheme 3). The cyclooctadiene ligand is easily 

displaced from the metallacyclic complex by monodentate ligands, e. g., pyridine or phosphines, to afford the 

corresponding bis(ligand) derivatives. Picolinic acid selectively cleaves the Pd-aryl bond of the bis-pyridine or bis-

PMe3 metallacycles, and this is followed by loss of one monodentate unit to afford the N,O chelated complexes 1-

Py and 1-PMe3, respectively, in essentially quantitative yield. This is a very general reaction, which allows the 

systematic synthesis of related derivatives varying the steric and electronic environment of the metal centre. Thus, 

complexes 2-Py and 3-Py, containing the bulkier 6-methylpyridine-2carboxylate and quinoline-2-carboxylate 

ligands, respectively, were prepared analogously from the corresponding carboxylic acids. The size of the chelate 

ring was increased in the 2-pyridylacetate derivative 4-Py, and the reaction of the pyridine-containing metallacyle 

with 2-pyridinsulfonic afforded complex 5-Py, containing a less basic sulfonate group instead of the carboxylate 

unit.  

The lower part of Scheme 3 describes a slight variation of the precedent methodolgy. Reacting the 

cyclooctadiene metallacycle with picolinic acid affords the co-ligand free compound 1, as a greenish-yellow 

precipitate. This compound reacts rapidly and quantitatively with monodentate ligands (e. g., pyridine derivatives or 

PPh3), yielding the corresponding adducts 1-L. This modification avoids the unproductive use of a second 

equivalent of the monodentate ligand, and enables the preparation of derivatives of ligands such as 2,4-lutidine that 

fails to displace cyclooctadiene from [PdCH2CMe2-o-C6H4(cod)] . The low solubility of compound 1 prevented us 

from growing X-ray quality crystals. This insolubility suggests that the apparent unsaturation of the Pd atom could 

be compensated with intermolecular interactions, probably by the formation of dimers bridged through the 

pyridinecarboxylate ligand. This is supported by the electrospray mass spectrum of 1, which shows a signal cluster 
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showing a base peak with m/z = 747 and the isotopic pattern expected for the composition M2·Na+ (Figure 1). The 

spectrum shows also a small signal centered at m/z = 384, corresponding to the monomeric species M·Na+.  
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Figure 1. ESI mass spectrum of compound 1 (from methanol). Inset: A, expansion of signal centered at m/z = 747; B, isotopic pattern calculated 
for the ion [M2·Na]+. 

 

Palladium complexes 1 - 5 have been characterized by NMR, IR and elemental analysis. Although the non-

symmetrical nature of the N-O donor allows for cis/trans isomerism, this is only observed for 1-PPh3. The NMR 

spectra of the latter compound show two sets of signals in 3:2 ratio, e. g., two singlets at  39.0 (major) and 32.6 

ppm in its 31P{1H} spectrum. However, a single set of signals is observed in the spectra of all other complexes. This 

is fully consistent with the behaviour of the methyl derivatives described by Cavell, who observed cis/trans isomers 

only for bulky ligands, such as PPh3, while smaller phosphine ligands  (e. g. P(CH2Ph)3 or PMe2Ph), or pyridine 

give rise to a single species.39a Although the stereochemistry of the complexes cannot be directly deduced from 

their NMR spectra, it can be safely assumed that the most favourable isomer will have the strongest  donor 

ligand, the alkyl group, and the weakest one, the carboxylate or sulfonate functionality, occupying mutually trans 

positions. The stereochemical preference is probably more marked for pyridine than for phosphine ligands, since 

the contrast between the -donor properties of R and L is less pronounced in the latter case. The trans 

arrangement of the alkyl ligand and the carboxylate fragment is confirmed in the X-ray diffraction structure of 
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complex 1-Py (Figure 2). Bond lengths and angles are similar to those observed in the structures of phosphine-

stabilized methylpalladium 2-pyridinecarboxylate complexes,39b,d except for the Pd-N1 bond length, which is 

appreciably shorter (2.053(3) Å vs. ca. 2.12 Å in the PPh3 complexes), due to the lower trans influence of pyridine 

as compared to phosphine. The aromatic rings of the pyridine and neophyl ligands of 1-Py are almost aligned and 

lie at close distance (e. g., N2 – C17 = 3.254(5) Å), evidencing an attractive -stacking interaction, but this has no 

noticeable effects in other parts of the molecule. 



 

Figure 2. ORTEP view of the molecular structure of compound 1-Py. Selected bond distances (Å) and angles (deg): Pd1-C12, 2.028(3); Pd1-
N1, 2.054(3); Pd1-N2, 2.033(3); Pd1-O2, 2.130(3); N2-Pd1-C12, 91.78(13); N1-Pd1-O2, 80.92(10); N1-Pd1-C12, 98.23(13); N2-Pd1-O2, 
89.20(1); O2-C1-C2-N1, -4.4(5). 

 

Catalytic performance.- Catalysis experiments were carried out in magnetically stirred vials placed in a steel 

multireactor. Reaction volumes were limited to ca. 1 mL in order to facilitate oxygen diffusion and to minimize any 

hazards associated with the use of oxygen and organic solvents. Since we were interested in the ability of the 

heterocycle-carboxylate ligands to provide the essential elements for catalysis, the experiments were carried out in 

the absence of any additives other than the solvent.  

1-Phenylethanol was taken as the reference substrate in order to screen catalysts and reaction conditions 

(Table 1). Under all the conditions tested, conversion of 1-phenylethanol to acetophenone was very clean with all of 

the catalysts, and no byproducts were detected by GC with FID or mass detectors. Although the complexes are not 

active at the room temperature and pressure, they catalyze the reaction at 80 – 100 ºC under oxygen pressures of 

3 – 4 bar. Under these conditions, 1 mol% of the picolinate catalyst 1-Py quantitatively oxidizes the alcohol within 

12 h (entries 1, 15 and 19). Oxygen pressures below 3 bar lead to lower conversions (entry 20). Although this 

activity is low in comparison with some of the best catalysts known for alcohol oxidation, such as Sheldon’s 

phenantroline base catalysts14b,15a or Sigman’s heterocyclic carbene complex,18 it represents a clear improvement 

over palladium acetate catalysts modified with pyridine11 or triethylamine,12a which require > 3 mol% palladium 

catalyst to complete the oxidation of phenylethanol. 

Using a solvent such as toluene is important to obtain best results, as only partial conversion is achieved in 

its absence (67 %, entry 24). Interestingly, when the alcohol-catalyst mixture was suspended in water the yield was 
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similar to that under solvent-free conditions (65 %, entry 25), but much poorer yields were obtained in dmso (20 %, 

entry 26), in spite of the good solubility of reagents and products in the latter solvent. Although substrate 

conversion is not complete for catalyst loads below 1 mol %, catalyst performance improves with dilution in relative 

terms (entries 1 – 4). Thus, a 20-fold dilution of the catalyst, from 1 % to 0.05 %, causes only a 3-fold drop of 

conversion (from 100 % to 32 %). This means an increase of the total turnover number (TON) from 100 to 649, the 

latter figure being comparable with the absolute productivities achieved with phenantroline-containing catalysts.15 

 

Table 1. Aerobic oxidation of 1-phenylethanol with com-

plexes 1-5.a 

Ph Me

OHH O2

[Pd] Ph Me

O

Entry Catalyst 
Cat. 
load 

(mol %) 
Solv. 

p O2 

(bar) 
T  

(ºC) 
Yield 

1 1-Py 1 Tol 4 100 100 

2 1-Py 0.5 Tol 4 100 100 

3 1-Py 0.1 Tol 4 100 41 

4 1-Py 0.05 Tol 4 100 32 

5 2-Py 1 Tol 4 100 75 

6 3-Py 1 Tol 4 100 80 

7 4-Py 1 Tol 4 100 100 

8 5-Py 1 Tol 4 100 27 

9 1-PMe3 1 Tol 4 100 4 

10 1-PPh3 1 Tol 4 100 13 

11 1-CNPy 1 Tol 4 100 16 

12 1-DMAP 1 Tol 4 100 64 

13 1-Lut 1 Tol 4 100 60 

14 1 1 Tol 4 100 19 

15 1-Py 1 Tol 4 80 100 

16 3-Py 1 Tol 4 80 63 

17 1-CNPy 1 Tol 4 80 11 

18 1-Lut 1 Tol 4 80 73 

19 1-Py 1 Tol 3 80 100 

20 1-Py 1 Tol 2 100 65 

21 1-Py 1 Tol 4 60 43 

22 1-Py 1 Tol 4 60 16 

23 1-Py 1 Tol 4 60 9 

24 1-Py 1 -- 4 100 67 

25 1-Py 1 H2O 4 100 65 

26 1-Py 1 dmso 4 100 20 

a) Reaction conditions: 1-Phenylethanol 60 L (0.45 mmol), toluene (0.5 
mL), 12 h. 

Catalyst screening suggests that the parent complex 1-Py gives rise to the best catalyst for the oxidation of 

1-phenylethanol, and that modifications of the structure of the N-O ligand lead to similar or lower yields. For 

example, a comparison of entries 1, 5 and 6 suggests that the presence of substituents in the proximity of the metal 

center (a methyl group in complex 2-Py, or a fused benzo ring in the quinoline-carboxylate derivative 3-Py) causes 

a moderate decrease of the catalyst activity. The pyridinylacetate derivative 4-Py performs similarly to 1-Py (entry 
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8), achieving full conversion of the alcohol to ketone. Complex 5-Py, in which a less basic sulfonato group replaces 

the acetate fragment, is considerably less active than 1-Py (entry 9). 

Far from being a mere spectator, the monodentate ligand L is an essential component of the catalyst. In 

fact, the coligand free dimer 1 is a rather poor catalyst, affording only 19 % yield, and phosphine complexes 1-PPh3 

and 1-PMe3 show little or no activity (entries 9 and 10). Pyridine itself is the best choice among the different co-

ligands tested. Introduction of either electron-donor or withdrawing groups at position 4 of the pyridine ligand 

causes loss of activity. This loss much more pronounced for complex 1-CNPy, containing the electron-poor 4-

cyanopyridine ligand, than for the strongly basic 4-dimethylaminopyridine ligand 1-DMAP (entries 11, 12 and 17). 

The activity of the latter is similar to that of 1-Lut, which contains the bulkier ligand 2,4-dimethylpyridine (2,4-

lutidine) (entries 14 and 19). Noteworthy, this complex performs slightly better at lower temperature, suggesting 

that its productivity may be limited by its thermal stability. 

In order to gain a more precise understanding of factors that influence the catalysts performance, oxidation 

of 1-phenylethanol was studied at variable reaction times. Five catalysts, 1-Py, 1-CNPy, 1-DMAP, 2-Py and 4-Py 

were selected for this study as representative of the different electronic, steric and structural properties. A plot of 

conversion vs. time is presented in Figure 3. As can be seen, complex 1-Py completes the substrate conversion in 

less than 6h, while the rest of catalysts only achieve partial conversion at this time. However, the initial rates of 1-

Py and 2-Py are very similar, the latter decaying in the longer term. This suggests that the methyl group introduced 

in the structure of 2-Py increases the catalyst activity, but also facilitates its deactivation. In contrast, although 

catalyst 4-Py is substantially less active than 1-Py or 2-Py, it is also more stable and fully converts the substrate in 

the 12 h run. The low activity of 1-CNPy is basically due to its low stability, becoming completely inactive in the 

initial stages of the experiment, whilst 1-DMAP shows a rather good stability but lower activity than 1-Py.  

With 4-Py, the oxidation rate holds nearly constant even when most of the alcohol has been converted. 

This indicates that, at least for this catalyst, the reaction rate does not depend on the substrate concentration, i. e., 

the reaction is zero order on alcohol. This condition is incorporated in the simple kinetic model shown in Scheme 4, 

which combines zero and first order dependencies on the substrate and the catalyst, respectively, with 

unimolecular catalyst decay. Fits of the conversion data with the rate equation deduced for this model (Ec. 3) are 

reasonably good for all catalysts, and extrapolation of the 0 – 3 h data are in good agreement with the final 

conversions after 12 h. Therefore it can be concluded that all catalysts exhibit zero order dependency on the 

alcohol. The kinetic model allows discriminating the influence of catalyst deactivation (kdec) from the intrinsic 

catalyst activity (kc). These parameters, intuitively presented as the catalyst half-life time (t1/2, h) and catalyst 

turnover frequency (TOF, h-1) (see Table in Scheme 4), provide a more solid ground for the general conclusions 

deduced from the visual examination of Figure 3.  For example, the lower conversion achieved by 1-DMAP as 

compared to 1-Py is entirely due to differences in the intrinsic activities (TOF) of these catalysts, since their half-

lifes are virtually identical. In contrast, a poor ligand such as 4-cyanopyridine drastically reduces catalyst stability 

under the reaction conditions. Unfortunately, it is not possible at this point to judge how this ligand influences the 

intrinsic activity of the latter, because the estimation of the TOF is probably biased by the short lifetime of this 

catalyst. The intrinsic activity of pyridine-carboxylate complexes are probably similar those of modified palladium 

acetate catalysts, but the overall performance of the former is improved by their much higher stability in solution. In 

comparison, the activity the Pd(OAc)2/Py catalyst falls to negligible levels within 2 h at room temperature.11a 
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However, the TOF numbers reported for catalysts containing some specific phenantroline derivatives14,15 or N-

heterocyclic carbene12b,18 ligands are ca. one order of magnitude higher than those reported in Scheme 4. 

 

 

Figure 3. Oxidation of 1-phenylethanol with several catalysts at different conversion times. Lines represent fittings of data to Eq 4 (Scheme 4). 
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Scheme 4. Kinetic model for the catalyzed alcohol oxidation, and values of the intrinsic activity and decay rate, expressed as turnover 
frequency (h-1) and catalyst half-life (h). 

 

 The aerobic oxidation of a range of alcohols was also investigated with catalysts 1-Py, 1-CNPy, 1-DMAP, 

2-Py and 4-Py. The alcohols studied included benzylic (benzyl alcohol), allylic ((E)-1,3-diphenylprop-2-en-1-ol 

(DPP), (E)-hex-2-en-1-ol (2-hexenol)), and aliphatic (1-decanol, menthol) derivatives. Table 2 collects yields and 

selectivity data obtained under the standard conditions (100 ºC, 4 bar O2 and 12 h, at 1 mol% catalyst load). Benzyl 

alcohol and menthol (a secondary aliphatic alcohol with a substantial steric hindrance) produce very good results, 

comparable to those recorded with 1-phenylethanol both in terms of conversion and selectivity. These alcohols are 

also similar in their response to different catalysts, with 1-Py and 4-Py affording the best results, and 1-CNPy the 

worst. Oxidation of other alcohols is not fully selective. GC-MS analysis of the reaction mixtures also shows the 

formation of small amounts of unidentified products in the case of DPP, and carboxylic acids (i. e., overoxidation 
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products) for the primary alcohols (1-decanol, 2-hexenol). Compared to secondary alcohols, the oxidation of 

primary alcohols is more difficult, and the selectivity is lower. The least satisfactory results are obtained for 1-

decanol, for which 1-decanoic becomes the prevalent product. A similar result is was obtained by Sheldon with 

water-soluble phenantroline catalyst, but this author showed that the selectivity for aldehyde is greatly improved if a 

radical scavenger (TEMPO) is added to the system.14b Interestingly, some remarkable specificities are observed in 

the oxidation of allyl alcohols, suggesting that catalyst structure can be tuned to improve selectivity. For example, 

1-CNPy is surprisingly active in the oxidation of DPP, whilst 1-Py consistently afforded low conversions with this 

alcohol. For both allyl alcohols, DPP and hex-2-en-1-ol, the best results are obtained with catalysts 2-Py and 4-Py. 

The peculiar behaviour of these substrates might be due to the interaction of ,-unsaturated carbonyl products 

with the catalysts, leading to the formation of different active species. Displacement of weak co-ligands such as 

CNPy could actually contribute to improve catalyst stability, explaining the unusually high activity observed in the 1-

CNPy/DPP system. 

 

Table 2. Oxidation of benzylic, allylic and 
aliphatic alcohols.a 

Alcohol Catalyst Convers. 
Select

. 

PhCH2OH 

1-Py 100 100 
1-CNPy 38 84 
1-DMAP 80 100 

2-Py 100 100 
4-Py 100 100 

OH

Ph Ph

 
 

(DPP) 

1-Py 65 95 
1-CNPy 100 85 
1-DMAP 80 95 

2-Py 100 94 
4-Py 100 89 

(E)-2-hexen-1-ol 

1-Py 98 29 
1-CNPy 46 89 
1-DMAP 58 86 

2-Py 40 93 
4-Py 63 90 

OH

 

1-Py 100 100 
1-CNPy 11 100 
1-DMAP 39 100 

2-Py 73 99 
4-Py 100 100 

1-decanol 

1-Py 90 17 
1-CNPy 57 23 
1-DMAP 83 20 

2-Py 92 21 
4-Py 86 22 

a) Catalyst loading 1 mol %. For other conditions see foot 
of Table 1. 

Mechanism of catalytic oxidation. Although it can be reasonably assumed that the general mechanism shown in 

Scheme 1 also holds for pyridine-carboxylate alkyl complexes, the specific features of this system raise a number 

of questions.  One of them is how the alkyl precursor complex enters into the catalytic cycle. Presumably, the 

activation of this precursor requires the substitution of the alkyl group by an alkoxide ligand. Two different 

mechanisms, shown in Scheme 5, can be invoked to explain such process. One of them involves the protonolysis 

of the Pd-C bond, leading to palladium alkoxide complex A’ plus t-butylbenzene. Attempts to directly detect well-
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defined, Pd-containing species in this system by 1H NMR were unsuccessful (see Experimental), but we observed 

that 1-Py decomposes when CH3OH or CD3OD solutions are heated under inert atmosphere, producing a dark 

precipitate. The decomposition process takes several hours to complete at 50 ºC, but only a few minutes at 100 ºC. 

Should this reaction involve protolytic cleavage of the Pd-C bond, an equivalent amount of t-butylbenzene would be 

generated. 1H-NMR and GC-MS analysis of the methanol solutions confirmed the formation of t-butylbenzene, but 

the amount was much lower than expected (ca. 15 % yield), and significant amounts of isomeric butenylbenzenes 

were detected as well. These are known products of decay of neophyl radicals,42 therefore the decomposition of 1-

Py involves Pd-C bond homolysis rather than protolytic cleavage. It is also conceivable that the presence of O2 

could accelerate the transformation of the catalyst precursor. For example, Pd-C homolysis could be favoured if the 

Pd complex is previously oxidized by electron transfer to oxygen.43 However, the fraction of 1-Py that decomposes 

when a CD3OD solution is stirred for 50 min at 50 ºC in a reactor under O2 atmosphere (4 bar) is very similar to that 

observed within the same time in NMR tube experiments under inert atmosphere at the same temperature  (ca. 50 

%), suggesting that oxygen has little effect on the reaction rate. GC-MS analysis of this reaction mixture revealed 

the formation of the same products detected when 1-Py was heated under inert atmosphere, together with minor 

amounts of oxygenated products tentatively identified as aldehydes or alcohols arising from autooxidation of 

neophyl or rearranged neophyl radicals (i. e. O2 capture by radicals). This suggests that the mechanism of catalyst 

activation does not involve formal O2 insertion into the Pd-C bond of the precursor, as this would lead exclusively to 

oxygenated organic products.44 Considering these observations, it seems likely that the activation of catalyst 

precursors involves first Pd-C bond homolysis, followed by the reaction of oxygen with H, the resulting Pd(I) 

species, to afford a Pd superoxide intermediate J, or a related peroxide species (Scheme 5, below). Recently, 

Ozerov and Thomas reported that the reaction of a pincer-based Pd(I) complex with O2 affords superoxide or 

peroxide products.45 The superoxide/peroxide intermediate would react with the alcohol to produce the required 

alkoxide A’. This step could involve proton exchange with the alcohol, releasing a hydroperoxide radical, although 

other routes to the alkoxide from the hydroperoxide intermediate are conceivable as well. 

The appearance of the dark suspensions obtained after heating 1-Py in the absence of oxygen is very 

different from the mixtures recovered after catalysis experiments. The latter are brownish suspensions containing a 

small amount of a pale solid. To identify this solid, a 2-phenylethanol oxidation experiment was carried out with an 

extra load of the catalyst, and the insoluble white material was separated by centrifugation. This was identified as 

palladium(II) bispicolinate G on the basis of its ESI-MS spectrometry and by comparison of its IR spectrum with that 

of an authentic sample of the same material (Scheme 5). Therefore, it can be concluded that catalyst deactivation 

involves a disproportionation process leading catalytically inactive G and undisclosed “naked” palladium species, 

but not to the formation of palladium black.46 
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Scheme 5. Activation and deactivation pathways for catalyst 1-Py. 

 

The instability of 1-Py under the conditions applied in the catalysis experiments contrasts with the hours-

long lifetimes of most catalysts generated from pyridine-carboxylate catalysts. This indicates that the processes 

leading to catalyst activation are fast in comparison to the catalytic cycle itself. Thus, it is reasonable to suppose 

that the effects of the ligands on catalytic activity can be interpreted on the basis of the fundamental steps of the 

previously described cycle (Scheme 1), adapted to the pyridine-carboxylate system as presented in Scheme 6. The 

zero-order dependency on the alcohol concentration implies that formation of the alkoxide complex A’, i. e., the 

exchange between hydroperoxide E’ and the free alcohol (i. e. E’ → A’) is also fast with regard to the subsequent 

steps and has no influence on the catalytic rate (kc  in Scheme 4).  
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Scheme 6. Proposed mechanism for alcohol oxidation with pyridinecarboxylate catalysts 

One of the main differences between Schemes 1 and 6 is that the anionic ligand termed X in the former 

(usually X = acetate) becomes a structural component of the catalyst in the latter, therefore ligand L is the only one 

that can readily leave the coordination sphere of the metal. As mentioned in the Introduction, -hydrogen 

elimination can take place in square-planar palladium complexes such as A’, but it is greatly enhanced if a 

coordination vacancy exists in the cis position to the alkoxo ligand. Since -H elimination from the alkoxide is the 

key step for the alcohol oxidation, the activity of the catalyst will depend on the ability of the monodentate ligand L 

to dissociate from the metal center. The lack of activity of 1-PMe3 is probably due in part to the extremely good 

binding properties of the small and basic PMe3 ligand. On the other hand, the ability to dissociate is not the only 

important property of L, otherwise base-free complex 1 would exhibit the highest catalytic activity when, in fact, it is 

a rather poor catalyst. Although PPh3 is at the same time relatively labile and a good stabilizing ligand, complex 1-

PPh3 has nearly the same activity as 1, probably because PPh3 it is readily oxidized by O2 under oxygen 

atmosphere and this renders the catalyst essentially ligand-free. Very likely, the stability of the catalytic system 

requires the presence of a reasonably good monodentate ligand L. Pyridines are similar to PPh3 in their good 

combination of leaving and stabilizing properties, but, in addition, they are resistant to oxygen. In fact, the kc and 

kdec data for different pyridines containing electron donor and withdrawing groups can be rationalized in terms of 

the ability to dissociate and at the same time stabilize the catalyst. For example, the low stability of the catalyst 

generated from 1-CNPy is doubtless due to the decreased stabilizing capacity of the electron-poor ligand 4-

cyanopyridine. Although the lability of this ligand should lead to a higher catalytic activity, the short catalyst life 

prevented an accurate measurement of kc. On the other hand, the higher stability of catalyst 1-DMAP is partially 

offset by its lower intrinsic activity, presumably due to the difficulty of the strongly basic ligand 4-

dimethylaminopyridine to dissociate. Having properties intermediate beween those of CNPy and DMAP, the parent 

pyridine ligand has better balance between lability and stabilizing capabilities, and this is probably the reason why 

1-Py gives rise to the most efficient catalyst. 

A second aspect of Scheme 6 worth some comment is the cis/trans isomerism of the intermediates and its 

relationship with the geometric requirements of some elemental steps in the catalytic cycle. It can be foreseen that 

the favoured stereochemistry of A’ is probably the same as for 1-Py, for identical reasons. Hence, A’ has been 

represented with the stronger donor, the alkoxide, placed in trans with regard to the weakest one, carboxylate. This 

configuration helps dissociation of L form A’ because pyridine exerts a stronger trans effect than the carboxylate 

group. However, -hydrogen elimination from M leads (once ligand L is recaptured) to hydride P with the hydride 

and pyridine fragments occupying mutually trans positions. This configuration is significantly higher in energy than 

the opposite one but, interestingly, it is the correct one for reductive O-H coupling. It could be argued that this 

geometrical coincidence would be meaningless if the mechanism turns out to involve direct oxygenation of the 

hydride P to hydroperoxide E’ (dotted arrow in the scheme). However, the high energy of intermediate P would also 

contribute to the efficiency of the catalytic cycle by decreasing the energy barrier for the reaction of the hydride with 

oxygen. Note that no matter what the mechanism of oxygenation is, intramolecular proton transfer in the peroxide 

D’ or direct reaction of P  with O2, the hdyroperoxide intermediate E’ is always formed in a configuration that is the 

opposite to that of A’ (i. e., with the carboxylate fragment and the pyridine ligand in cis). Thus, the last step in the 

cycle involves cis/trans isomerization in addition to the hydrogen peroxide – alcohol exchange. 
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The structure of the N-O chelating ligand has also a noticeable influence on the intrinsic activity and the 

decay rate of the catalysts. Comparison of the activities of 1-Py and the related complex 2-Py in Table 1 suggests 

that both complexes perform similarly. However, it experiments at different reaction times show that the latter is 

somewhat more active, though the difference is compensated by a faster decay rate. This is strongly reminiscent of 

the boosting effect of methyl substituents on Sheldon’s Pd-phenantroline catalysts,15a and the facile oxidation of 

these substituents to afford catalytically inactive carboxylate complexes, discovered by Waymouth.35 Although we 

have not investigated the final fate of the catalyst in alcohol oxidations with 2-Py, oxidation of the methyl 

substituent to afford a catalytically inactive pyridine 2,6-dicarboxylate complex also appears as a likely proposal in 

this particular case. The behaviour of complex 4-Py can be considered opposite to that of 2-Py. 4-Py achieves 

lower TOF values than 1-Py or 2-Py, but the catalyst generated by the former is much more stable. The 

enhancement of the catalyst stability could be attributed to the higher basicity and better binding properties of the 

pyridineacetate ligand, as compared to pyridinecarboxylate derivatives. Considering this, it seems likely that the 

low activity of the pyridinesulfonate derivative 5-Py could be due to rapid catalyst decay, since the binding capacity 

of the sulfonate ligand is relatively low. 

 

Conclusions and Outlook 

 

 Well-defined palladium complexes of the type [Pd(N-O)(X)(L)], in which N-O is an anionic chelate, L is a 

monodentate base and X is a generic anionic ligand are attractive as catalysts for aerobic alcohol oxidation 

because they contain within themselves the essential elements to generate catalytic activity. We have developed a 

versatile synthetic methodology that provides access to a wide variety of neophylpalladium complexes containing 

different combinations of chelating and monodentate ligands. These complexes promote the aerobic oxidation of 

benzylic, allylic and aliphatic alcohols by oxygen. Under the catalysis conditions, the Pd-C bond undergoes 

homolysis, giving rise to a the actual active species. A drawback of our catalyst design is the tendency of chelate 

complexes to disproportionate to give catalytically inactive bis-ligand complexes [Pd(N-O)2]. This seems to be the 

main pathway to catalyst deactivation. 

The chelating ligand N-O is the key element to ensure the stability of the catalyst, and controls the 

stereoelectronic properties of the active centre. We also believe that the anionic carboxylate group imparts 

bifunctional character to this ligand, facilitating the proton transfer from the substrate (alcohol) to the final electron 

acceptor (oxygen).  Co-ligand L has also an important role. It has to be labile enough to generate the coordinative 

unsaturation required to enable catalytic activity, but at the same time it has also a contribution to the system 

stability, preventing too rapid catalyst decay. Among the different co-ligands tested, pyridine itself showed the best 

balance of these two properties.  

While the oxidation of benzyl and secondary aliphatic alcohols with pyridine-carboxylate catalysts is highly 

selective, carboxylic acids were produced in the case of the primary aliphatic and allyl alcohols. This problem is 

particularly severe for the aliphatic alcohol 1-decanol, which affords decanoic as the main product. However the 

oxidation of allyl alcohols can be performed with reasonable selectivity (> 90 %) with catalysts 2-Py or 4-Py. The 
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causes for this specificity are still unclear, but could be related to the ability of the oxidation products to interact with 

the catalytic species. 

Neophylpalladium pyridinecarboxylate complexes are modular. Their synthesis is straightforward and can be 

readily extended to other complexes containing different chelates and monodentate ligands. Since the activity and 

selectivity of these catalysts are ligand-controlled, it is foreseen that the catalyst design can be tuned to improve 

activity, selectivity and resistance to the aggressive oxidation conditions, or to generate desirable properties such 

as compatibility with water or other environmentally friendly solvents. Another useful property of this system is that 

the catalysts perform without additives, facilitating product separation and purification. Although this work has 

focused on general aspects of a new type of palladium oxidation catalysts, such as their synthesis, activity and 

selectivity, we have been able to come to some relevant mechanistic conclusions. We are continuing this work with 

new experimental and computational studies in order to gain a better understanding of these mechanisms, and to 

develop new and improved catalyst designs.  

 

Experimental Section  

All procedures and chemical manipulations were carrie d out under Ar or N2 atmosphere using Schlenk or 

glovebox techniques. Solvents were rigorously dried and degassed before use. Commercially available reagents 

were used as received. The metalalcycle [PdCH2CMe2-o-C6H4(cod)]  was prepared according to literature 

methods.41 NMR spectra were recorded on Bruker DRX 300, 400 and 500 MHz spectrometers. Assignment of 

signals was assisted by combined one-dimensional and two-dimensional techniques (HSQC, HMBC and COSY). 

Chemical shifts () are given in ppm. The resonances of the solvent were used as internal standards for 1H and 13C 

spectra, but chemical shifts are reported with respect to TMS. 31P spectra are referenced to external PPh3 in C6D6 

( −6 ppm). Abbreviations for multiplicities are as follow: s, singlet; d, doublet; t, triplet; m, multiplet; dd, doublet of 

doublet; td, triplet of doublet; ddd, doublet of doublet of doublet. Assignations of NMR signals are indicated 

according to the atom numbering scheme given in Figure 4. IR spectra were recorded in Nujol mulls on Bruker 

Vector 22 and Tensor 27 spectrophotometers.  GC analyses were carried out in Agilent 7820A equipped with an 

FID detector, automatic liquid sampler and HP-5 column (30 m, 0.32 mm diam.) using helium gas as carrier, Tinjector 

= 275 ºC; Tdetector = 300 ºC; Tcolumn = 60 ºC (3 min) and 270 ºC (15 min). GC-MS analyses were carried out in 

Thermoquest Trace CG Chromatographs equipped with an AutomassMulti mass spectrometer. ESI-MS spectra 

were measured with a Bruker Esquire 6000 equipped with electrospray ionization (ESI) with ion trap mass 

analyzer. Microanalyses were performed by the Microanalytical Service of the Instituto de Investigaciones 

Químicas. 

 

Figure 4. Atom numbering scheme for complexes 1-5. 

 



 17

Reaction of Pd(OAc)2(Py)2 with pyridine-2-carboxylic acid 

To a solution of Pd(OAc)2(Py)2 (0.101 g, 0.26 mmol) in CH2Cl2 (5 mL) was added a solution of pyridine-2-

carboxylic acid (0.035 g, 0.28 mmol) in the same solvent (3 mL) at room temperature. After 3 h stirring, a white 

precipitate of palladium(II) bispicolinate, G,37a was formed. The reaction mixture was centrifuged and the product  

was washed with hexane (2 × 3 mL) and dried under vacuum. IR (nujol mull, cm-1): 3069 w, 2953 st, 1924 st, 2854 

st, 1690 st ((C=O, C=N)), 1607 m ((C=C) arom), 1573 w, 1494 m 1462 m, 1332 st (O-CO)), 1281 st; 1268 m, 

1166 m, 1156 m, 1060 m, 858 m, 818 w, 762 st, 724 w, 719 m. ESI-MS: M·Na+, m/e 372.95 calcd for 

C12H8N2O4Pd; found 372.9. 

 

Synthesis of 1: A solution of pyridine-2-carboxylic acid (0.037 g, 0.3 mmol) in 10 mL of a 1:1 mixture of Et2O and 

CH2Cl2 was added to a solution of [PdCH2CMe2-o-C6H4(cod)]  (0.104 g, 0.3 mmol) in Et2O (10 mL) at room 

temperature. After stirring for 2 h, a green precipitate of complex 1 was formed. The liquid was filtered out and the 

product was washed with hexane (2 × 5 mL) and Et2O (2 × 5 mL) and dried under vacuum. Yield 91%. 1H NMR 

(300 MHz, CD2Cl2) δ 7.08-7.95 (m, 2H, CH3, CH2), 7.95-7.83 (m, 2H, CH4, CH5), 7.81-7.69 (m, 4H, o,m-Ph), 7.37 

(m, 1H, p-Ph), 1.33 (s, 6H, CMe2), 1.26 (s, 2H, CH2). IR (KBr, cm-1): 3083 w, 3055w,  2950 st, 2919 st, 1615 st 

((C=O, C=N)), 1591 st ((C=C) arom), 1494 m, 1472 m, 1445 m, 1398 st (O-CO)),1333 st, (O-CO)), 1239 w, 

1120 w, 1093 m, 1057 m, 1030 m, 849 m, 758 st, 696 st, 555 w, 460 w. ESI-MS (methanol solution): M·Na+, m/e 

calcd for C32H34N2O4Pd2, 747.1; found 747.1  

 

General procedure for the synthesis of 1-Py, 2-Py, 3-Py and 5-Py. To a solution of [PdCH2CMe2-o-C6H4(cod)]  

(0.104 g, 0.3 mmol) in Et2O (20 mL) was added the corresponding ligand (0.6 mmol) at −30 ºC. The mixture was 

allowed to warm to room temperature and stirred for 2 h. The solvent was evaporated under reduce pressure and 

the solid residue was washed with hexane (2 × 10 mL) and dried under vacuum. This was dissolved in CH2Cl2 (10 

mL) and cooled to -50 º C. A solution of 0.3 mmol the appropriate bidentate ligand in acidic form (picolinic acid, 6-

methyl-2-pyridinecarboxylic acid, 2-quinolinecarboxylic acid or 2- pyridinesulfonic acid) was added, and the 

resulting mixture was stirred at the same temperature. After 30 min stirring, the cooling bath was removed and the 

mixture was stirred for 2 h at room temperature. The mixture was filtered and the solvent was evaporated under 

reduced pressure. The residue was washed with hexane (2 × 5 mL) and Et2O (2 × 5 mL) to afford the 

corresponding product after drying under vacuum.  

1-Py: Colourless solid, 92%. yield. 1H NMR (400 MHz, CD2Cl2)  8.55 (d, 3JHH = 4.7 Hz, 2H, CH2’), 8.22 (d, 3JHH = 

5.6 Hz, 1H, CH6), 8.07 (dd, 3JHH = 7.8, JHH = 1.5 Hz, 1H, CH3), 7.89 (td, 3JHH = 7.7, JHH = 1.5 Hz, 1H, CH4), 7.76 (td, 
3JHH = 7.7, JHH = 3.8 Hz, 1H, CH4’), 7.43 (d, 3JHH = 7.7 Hz, 2H, o-Ph), 7.34 (ddd, 3JHH = 7.4, JHH = 5.5, 1.6 Hz, 1H, 

CH5), 7.28 (t, 3JHH = 7.0 Hz, 2H, CH3’), 6.99 (t, 3JHH = 7.7 Hz, 2H, m-Ph), 6.90 (t, 3JHH = 7.3 Hz, 1H, p-Ph), 2.10 (s, 

2H, CH2), 1.37 (s, 6H, CMe2). 
13C{1H} NMR (126 MHz, CD2Cl2)  169.4 (COOPd), 156.4 (C2), 152.4 (2 × CH2’), 

151.2 (ipso-Ph), 147.5 (CH6), 138.8 (CH4), 138.0 (CH4’), 127.9 (m-Ph), 127.1 (CH3), 126.4 (CH5), 126.2 (o-Ph), 

125.4 (3C, CH3’ and p-Ph), 42.6 (CH2), 42.1 (CMe2), 31.20 (CMe2). IR (nujol mull, cm-1): 1637 st ((C=O, C=N)), 
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1596 m ((C=C) arom), 1376 st (O-CO)). Elemental analysis: Calc. for C21H22N2O2Pd: C 57.22, H 5.03, N 6.35; 

Found: C 57.22, H 5.32, N 6.15.  

2-Py: Colourless solid, 90 % yield. 1H NMR (400 MHz CD2Cl2)  8.26 (d, 3JHH = 5.4 Hz, 2H, CH2’), 8.01 (d, 3JHH = 

7.8 Hz, 1H, CH3), 7.74 (t, 3JHH = 7.7 Hz, 1H, CH4), 7.61 (t, 3JHH = 7.8 Hz, 1H, CH4’), 7.27 (d, 3JHH = 7.2 Hz, 2H, o-

Ph), 7.12 (d, 3JHH = 7.7 Hz, 1H, CH5), 7.08-6.97 (m, 5H, CH3’, m,p-Ph), 2.38 (s, 2H, CH2), 1.51 (s, 3H, R = Me), 

1.46 (s, 6H, CMe2). 
13C{1H} NMR (75 MHz, CD2Cl2):  162.1 (COOPd), 158.1 (C2), 153.7 (CH2’), 152.4 (C6), 152.2 

(i-Ph), 138.7 (CH4), 137.3 (CH4’), 128.1 (m-Ph), 127.6 (CH5), 126.0 (o-Ph), 125.7 (CH3’), 125.1 (p-Ph), 123.9 (CH3), 

42.3 (CMe2), 35.7 (CH2), 31.1 (CMe2), 23.1 (R = Me). IR (nujol mull, cm-1): 1643 st ((C=O, C=N)), 1599 m ((C=C) 

arom), 1352 st (O-CO)). Elemental Analysis: Calc. for C24H24N2O2Pd: C 58.09, H 5.32, N 6.16; Found: C 58.19, 

H 5.23, N 5.91.  

3-Py: Colourless solid, 93 % yield. 1H NMR (300 MHz, CD2Cl2)  8.40-8.23 (m, 4H, 2 CHquin. and CH2’), 7.85 (d, 
3JHH = 8.2 Hz, 1H, CHqui.), 7.71 (t, 3JHH = 7.7 Hz, 1H, CH4’), 7.44 (t, 3JHH = 7.6 Hz, 1H, CHquin.), 7.26 (m, 2H, o-Ph), 

7.17 - 7.05 (m, 3H, CHquin and. 2 CH3’),’ 7.04-6.91 (m, 3H,m,p-Ph), 6.37 (s, 1H, CHquin.), 2.52 (s, 2H, CH2), 1.46 (s, 

6H, CMe2). 
13C{1H} NMR (75 MHz, CD2Cl2)  161.1 (COOPd), 153.8 (CH2’), 152.5 (i-Ph), 146.0 (Cquin), 139.2 

(CHquin), 138.7 (C2), 137.6 (CH4’), 130.5 (Cquin), 130.3 (CHquin), 128.7 (CHquin), 128.1 (m-Ph), 128.0 (CHquin), 126.6 

(CHquin), 126.0 (CH3’ and o-Ph), 125.1 (p-Ph), 122.94 (CHquin), 42.3 (CMe2), 36.89 (CH2), 31.1 (CMe2). IR (nujol 

mull, cm-1): 1670 st ((C=O, C=N)), 1601 m ((C=C) arom), 1377 st (O-CO)). Elemental Analysis: Calc. for 

C25H24N2O2Pd: C 61.17, H 4.93, N 5.71; Found: C 61.08, H 5.07, N 5.58.  

5-Py: Colourless solid, 89 % yield. 1H NMR (300 MHz, CH2Cl2) δ 8.55 (s, 2H, CH2’), 8.19 (d, 3JHH = 5.5 Hz, 1H, 

CH6), 8.00-7.87 (m, 2H, CH4 and CH3), 7.79 (t, 3JHH = 7.8 Hz, 1H, CH4’), 7.44 (d, 3JHH = 7.8 Hz, 2H, o-Ph), 7.39-

7.25 (m, 3H, CH5, CH3’), 7.00 (t, 3JHH = 7.5 Hz, 2H, m-Ph), 6.90 (t, 3JHH = 7.2 Hz, 1H, p-Ph), 2.40 (s, 2H, CH2), 1.34 

(s, 6H, CMe2). 
13C{1H} NMR (75 MHz, CD2Cl2)  163.0 (C2), 152.6 (CH2’), 150.1 (i-Ph), 148.0 (CH6), 140.0 (CH4), 

138.5 (CH4’), 128.1 (m-Ph), 126.3 (3C, CH5, o-Ph), 125.7 (3C, p-Ph and CH3’), 123.85 (CH3), 44.68 (CH2), 42.29 

(CMe2), 30.7 (CMe2). IR (nujol mull, cm-1): 1601 m ((C=C) arom), 1274 -1182 (many strong bands associated to 

the sulfonyl group (S=O)). Elemental Analysis: Calc. for C20H22N2O3PdS: C 50.37, H 4.65, N 5.87, S 6.72; 

Found: C 50.58, H 4.65, N 5.53, S 7.03. 

 

Synthesis of 4-Py. To a solution of [PdCH2CMe2-o-C6H4(cod)]  (0.346 g, 1 mmol) in Et2O (40 mL) was added 

pyridine (77 mg, 81 μL, 3 mmol) at −30 ºC. The mixture was allowed to warm to room temperature and stirred for 2 

h. After evaporating the solvent under reduced pressure, the residue was washed with hexane (2 × 10 mL) and 

dried under vacuum to afford the pyridine-ligated metallacycle as a white solid. A solution of 2-pyridylacetic acid 

was prepared by mixing MeOH solutions of NaOMe (0.17 M, 5.9 mL, 1 mmol) and 2-pyridylacetic acid 

hydrochloride (0.137 g, 1 mmol) and stirring resulting mixture for 30 min at room temperature. This was added to a 

solution of the previously prepared pyridine complex in THF (20 mL), stirred at −30 ºC. After 30 min, the mixture 

was allowed to warm to the room temperature and the stirring was continued for 2 h. The solids were removed by 

centrifugation and the solution was concentrated under vacuum to 3-4 mL. Toluene was added (10 mL) and the 
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solution was evaporated to dryness, leaving 4-Py as grey solid, which was washed with Et2O (3 × 20 mL) and dried 

under vacuum. Yield 88 %: 1H NMR (CD2CL2, 500 MHz)  8.54 (d, 3JHH = 5.7 Hz, 1H, CH6), 8.49 (d, 3JHH = 5.5 Hz, 

2H, CH2’), 7.77 (t, 3JHH = 7.7 Hz, 1H, CH4’), 7.72 (t, 3JHH = 7.7 Hz, 1H, CH4), 7.34-7.21 (m, 4H, CH3, CH5, CH3’), 

7.18 (d, 3JHH = 7.5 Hz, 2H, o-Ph), 6.99-6.87 (m, 3H, m,p-Ph), 2.95 (s, 2H, CH2COOPd), 2.07 (s, 2H, PdCH2), 1.14 

(s, 6H, CMe2). 
13C NMR (CD2Cl2, 126 MHz)  171.6 (COOPd), 159.3 (C2), 152.3 (CH2’), 151.3 (i-Ph), 151.0 (CH6), 

138.5 (CH4), 138.0 (CH4’), 127.9 (m-Ph), 125.5 (o-Ph), 125.4 (CH3), 125.3 (CH3’), 125.2 (p-Ph), 122.8 (CH5), 51.4 

(CH2COOPd), 43.2 (PdCH2), 42.1(CMe2), 31.1 (CMe2). R (nujol mull, cm-1): 1636 st ((C=O, C=N)), 1598 m 

((C=C) arom), 1340 st (O-CO)).  Elemental Analysis: Calc. for C22H24N2O2Pd: C 58.09, H 5.32, N 6.16; Found: 

C 58.08, H 5.42, N 6.11. 

 

Synthesis of 1-PMe3: To a solution of [PdCH2CMe2-o-C6H4(PMe3)2] 41 (0.195 g, 0.5 mmol) in CH2Cl2 (15 mL) was 

added a solution of pyridine-2-carboxylic acid (0.062 g, 0.5 mmol) at −50 ºC and the reaction mixture was stirred for 

30 min. The mixture was allowed to reach room temperature and stirred for 2 h. Then it was filtered and the solvent 

evaporated under reduced pressure. The residue was washed with hexane (2 × 15 mL) and Et2O (2 × 15 mL). 

Yield 60%. 1-PMe3 was obtained as yellow solid, in 95 % yield: 1H NMR (300 MHz, CH2Cl2)  8.16-8.07 (m, 2H, 

CH6 and CH3), 7.88 (td, 3JHH = 7.6, JHH =1.6 Hz, 1H, CH4), 7.63 (d, 3JHH = 7.3Hz, 2H, o-Ph), 7.35 (t, 3JHH = 6.0 Hz, 

1H, CH5), 7.15 (t, 3JHH = 7.7 Hz, 2H, m-Ph), 7.00 (t, 3JHH = 7.3 Hz, 1H, p-Ph), 1.90 (d, 3JHP = 4.2 Hz, 2H, CH2), 1.53 

(s, 6H, CMe2), 1.37 (d, 2JHP = 10.7 Hz, 9H, PMe3).
 13C{1H} NMR (126 MHz, CD2Cl2)  170.7 (COOPd), 154.6 (C2), 

152.05 (i-Ph), 145.9 (CH6), 139.0 (CH4), 128.1 (m-Ph), 126.8 (o-Ph), 126.7 (CH3), 126.2 (CH5), 125.7 (p-Ph), 41.84 

(CMe2), 36.19 (CH2), 32.68 (CMe2) , 15.10 (d, 1JCP = 31.8 Hz, PMe3). 
31P{1H} NMR (121 MHz, CD2Cl2)  −4.32. IR 

(nujol mull, cm-1): 1670 st ((C=O, C=N)), 1598 m ((C=C) arom), 1352 st (O-CO)), 958 st ((P-C)).  Elemental 

Analysis: Calc. for C19H26NO2PPd: C 52.12, H 5.99, N 3.20; Found: C 52.16, H 6.18, N 3.29. 

 

General procedure for the synthesis of 1-Lut, 1-CNPy, 1-DMAP, and 1-PPh3. A solution of pyridine-2-carboxylic 

acid (0.037 g, 0.3 mmol) in a mixture of Et2O (5 mL) and CH2Cl2 (5 mL) was added to a solution of 

[PdCH2CMe2-o-C6H4(cod)]  (0.104 g, 0.3 mmol) in Et2O (10 mL) at room temperature. After stirring for 2 h, a green 

precipitate of 1 was formed. A solution of 0.3 mmol of the corresponding pyridine derivative or PPh3 in CH2Cl2 (3 

mL) was added and the resulting mixture was vigorously stirred at room temperature for 30 min. The solvent was 

evaporated under reduced pressure and the residue was washed with hexane (2 × 5 mL) and Et2O (2 × 5 mL) to 

affford the corresponding pure complex after drying under vacuum.  

1-Lut: Colourless solid, 100% Yield. 1H NMR (300 MHz, CD2Cl2):  8.34 (d, 3JHH = 5.9 Hz, 1H, CH6’), 8.27 (d, 3JHH = 

5.6 Hz, 1H, CH6), 8.08 (dd, 3JHH = 7.8, JHH = 1.5 Hz, 1H, CH3), 7.90 (td, 3JHH = 7.7, JHH = 1.5 Hz, 1H, CH4), 7.41-

7.32 (m, 3H, CH5 and o-Ph), 7.06-6.87 (m, 5H, m,p-Ph, CH3’ and CH5’), 2.89 (s, 3H, R’ = Me), 2.32 (s, 3H,R” = Me), 

2.12 (br, 1H, PdCHH), 2.09 (br, 1H, PdCHH), 1.36 (br s, 6H, CMe2). 
13C{1H} NMR (75 MHz, CD2Cl2)  169.6 

(COOPd) 160.7 (C2’), 156.2 (C2), 151.8 (CH6’), 151.0 (i-Ph), 149.7 (C4’), 147.3 (CH6), 138.8 (CH4), 127.9 (m-Ph), 

127.1 (CH3), 126.8 (CH3’), 126.4 (CH5), 126.1 (o-Ph) 125.25 (p-Ph), 123.3 (CH5’), 41.9 (CMe2), 39.4 (CH2), 31.7 

(CMe2), 26.8 (R’ = Me), 21.0 (R” = Me). IR (nujol mull, cm-1): 1638 st ((C=O, C=N)), 1596 m ((C=C) arom), 1351 
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st (O-CO)). Elemental Analysis: Calc. for C23H26N2O2Pd: C 58.92, H 5.59, N 5.97; Found: C 58.83, H 5.66, N 

5.90. 

1-CNPy: Colourless solid, 90% yield. 1H NMR (300 MHz, CH2Cl2):  8.60 (d, 3JHH = 5.7 Hz, 2H, CH2’), 8.40 (d, 3JHH 

= 5.6 Hz, 1H, CH6), 8.11 (d, 3JHH = 7.6 Hz, 1H, CH3), 7.96 (td, 3JHH = 7.6, J = 1.6 Hz, 1H, CH4), 7.52-7.38 (m, 3H, 

CH5 and CH3’), 7.33 (m, 2H, o-Ph) 7.06-6.84 (m, 3H, m,p-Ph), 2.14 (s, 2H, CH2), 1.42 (s, 6H,CMe2). 
13C{1H} NMR 

(75 MHz, CD2Cl2)  169.3 (COOPd), 156.6 (C2), 153.2 (CH2’), 151.2 (i-Ph), 147.5 (CH6), 139.4 (CH4), 128.0 (m-Ph), 

127.5 (CH3), 127.1 (CH5), 126.7 (CH3’), 126.2 (o-Ph), 125.6 (p-Ph), 115.8 (CN), 43.6 (PdCH2), 42.2 (CMe2), 31.2 

(CMe2). IR (nujol mull, cm-1): 2213 w ((C≡N)); 1655 st ((C=O, C=N)), 1591 m ((C=C) arom), 1342 st (O-CO)).  

Elemental Analysis: Calc. for C22H21N3O2Pd: C 56.72, H 4.54, N 9.02; Found: C 56.80, H 4.44, N 9.64.  

1-DMAP: Colourless solid, 93% yield. 1H NMR (400 MHz, CD2Cl2,):  8.17 (d, 3JHH = 7.5 Hz, 2H, CH2’), 8.09 (d, 3JHH 

= 5.7 Hz, 1H, CH6), 8.03 (d, 3JHH = 7.2 Hz, 1H, CH3), 7.84 (td, 3JHH = 7.6, 1.6 Hz, 1H, CH4), 7.53 (d, 3JHH = 7.4 Hz, 

2H,o-Ph), 7.25 (t, 3JHH = 7.3 Hz, 1H, CH5), 7.06 (t, 3JHH = 7.7 Hz, 2H, m-Ph), 6.93 (t, J = 7.3 Hz, 1H, p-Ph), 6.47 (d, 
3JHH = 7.4 Hz, 2H, CH3’), 3.05 (s, 6H, NMe2), 2.03 (s, 2H, CH2), 1.35 (s, 6H,CMe2). 

13C{1H} NMR (75 MHz, CD2Cl2): 

 169.6 (COOPd), 156.31 (C2), 154.8 (C4’), 151.7 (i-Ph), 151.1 (CH2’), 147.4 (CH6), 138.4 (CH4), 127.9 (m-Ph), 

126.9 (CH3), 126.3 (o-Ph), 126.2 (CH5), 125.3 (p-Ph), 107.6 (CH3’), 42.15 (CMe2), 41.7 (PdCH2) , 39.5 (NMe2), 

31.26 (CMe2). IR (nujol mull, cm-1): 1655 st ((C=O, C=N)), 1600 m ((C=C) arom), 1344 st (O-CO)).  Elemental 

Analysis: Calc. for C23H27N3O2Pd: C 57.09, H 5.62, N 8.68; Found: C 56.99, H 5.58, N 8.91.  

1-PPh3: yellow solid, 94 % yield, 1:0.7 mixture of cis/trans isomers. 1H NMR (300 MHz, CD2Cl2):  8.33-6.64 (m, 48 

H, CH arom.), 2.18 (br s, 2H, PdCH2  major isomer), 1.92 (br s, 2H, PdCH2 minor isomer), 1.36 (br s, 6H, CMe2, 

major isomer), 1.15 (br. s, 6H, CMe2, minor isomer).  31P{1H} NMR (121 MHz, CD2Cl2) δ 39.0 (major isomer), 32.7 

(minor isomer). IR (nujol mull, cm-1): 1657 st ((C=O, C=N)), 1597 m ((C=C) arom), 1341 st (O-CO)).  Elemental 

Analysis: Calc. for C34H32NO2PPd: C 65.44, H 5.17, N 2.24; Found: C 65.35, H 5.27, N 2.37.  

 

General procedure for the catalytic aerobic alcohol reaction. 

  

A glass vial (1.5 mL) equipped with a stir bar was charged with the corresponding catalyst (0.0045 mmol), 

alcohol (0.45 mmol) and solvent (0.5 mL). The vial was placed in a multi-sample screening reactor and the air was 

flushed with pure O2. The reactor was charged with O2 at the specified pressure and placed in a oil bath preheated 

at the working temperature on a magnetic stirrer/heating dish. At the prescribed time the reactor was placed in an 

ice bath and carefully depressurized. The mixture was filtered through a celite pad and the resulting mixture was 

analysed by GC, using biphenyl as internal standard. 
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Decomposition of 1-Py  

 

Solutions of 1-Py (3.44 mg, 7.8 mol) containing mesitylene (1.88 mg, 15.6 mol) as internal standard in 

CD3OD (0.6 mL) or CD2Cl2 (0.6 mL) were transferred to a NMR tubes capped with J.Young valves and placed in a 

preheated oil bath at 50 ºC or 100 ºC. The course of the decompositions was monitored by 1H NMR. 

  

Decomposition of 1-Py in the presence of O2. 

 

A solution of 1-Py (5.2 mg, 11.8 mol) in 2.5 mL of CD3OD transferred containing mesitylene as internal 

standard was transferred to a glass Fischer-Porter® reactor. The reactor was vented with O2, pressurized at 4 bar 

of oxygen and heated at 50 ºC for 50 min in a thermostated oil bath with magnetic stirring. The 1H NMR spectrum 

showed that the amount of 1-Py surviving was 52 % of the original amount. 

 

Attempted observation of reaction intermediates. 

 

A solution of 1-Py (5 mg, 11.5 mol) in a 1:1 mixture of isopropanol and toluene was placed in a Fischer-

Porter®. The reactor was vented with O2 pressurized at 4 bar of oxygen and heated at 50 ºC in a thermostated for 

60 min with magnetic stirring.  After 1 h  the volatiles compounds was removed under reduced pressure. The solid 

remaining was dissolved in C6D5Cl and analysed by 1H NMR. The spectrum showed a mixture containing the 

surviving 1-Py and undisclosed species containing pyridine and picolinate ligands. 

  

Identification of Pd(II) bispicolinate (G) after catalytic reaction 

  

A Fisher-Porter glass reactor (100 mL) was charged with 1-Py (18 mg, 41 mol), 1-phenylethanol (0.5 mL, 4.1 

mmol) and toluene (5 mL). The reactor was vented with O2 at atmospheric pressure and then pressurized at 4 bars 

and placed in a preheated oil bath at 100 ºC. After 12 h stirring, a precipitate was formed. The reaction mixture was 

centrifuged and the solid was washed with Et2O (2 × 3 mL) and dried under reduce pressure. ESI-MS (acetonitrile 

solution): M·Na+, m/e 372.95 calcd for C12H8N2O4Pd; found 372.9. The identity of the complex was confirmed by 

comparison of its IR spectrum with that of an authentic sample prepared according a literature method.37b 

 

X-ray structure analysis for 1-Py 

 

 A suitable crystal coated with dry perfluoropolyether was mounted on a glass fibre and fixed in a cold nitrogen 

stream. Intensity data were collected on a Bruker-Nonius X8Kappa Apex II CCD diffractometer equipped with a 
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graphite monochromator to obtain a (Mo K) = 0.71073 radiation. The data were reduced by SAINT47 and 

corrected for absorption effects by the multi-scan method (SADABS).48 The structure was solved by direct methods 

(SIR-2002)49 and refined against all F2 data by full-matrix least-squares techniques (SHELXTL-6.12)50 minimizing 

w[F0
2-Fc

2]2. All non-hydrogen atoms were included in calculated positions and refined with anisotropic thermal 

parameters. Hydrogen atoms were included in calculated positions and allowed to ride on their respective attached 

carbon atoms with the isotropic temperature factors (Uiso values) fixed at 1.2 times (1.5 times for the methyl groups) 

those Ueq values of the corresponding atoms. 1-Py: C21H22N2O2Pd, M = 440.81, monoclinic, a = 11.3433(13) Å, b = 

14.1759(16) Å, c = 13.0253(15) Å,  = 90.00º, º,  = 90.00º, V = 1950.1(4) Å3, T = 173(2) K, space 

group, P21/n, Z = 4, (MoK) = 0.968 mm-1, 18782 reflections measured, 3394 independent reflections (Rint = 

0.0570). The final R1 values were 0.0339 (I > 2(I)). The final wR(F2) values were 0.0891 (all data). The goodness 

of fit on F2 was 1.010. CCDC reference number 892325 contains the supplementary crystallographic data for this 

paper. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving/html or from the 

Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax +44 1223-336-033; or 

deposit@ccdc.cam.ac.uk. 
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