
A Case Study in (Mem)Brane Computation:
Generating Squares of Natural Numbers

Nadia Busi1 and Miguel A. Gutiérrez-Naranjo2

1 Dipartimento di Scienze dell’Informazione - Università di Bologna
Mura Anteo Zamboni 7, I-40127 Bologna, Italy

busi@cs.unibo.it
2 Dpto. de Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

magutier@us.es

Abstract. The aim of this paper is to start an investigation and a com-
parison of the expressiveness of the two most relevant formalisms inspired
by membranes interactions, namely, P systems and Brane Calculi. We
compare the two formalisms with respect to their ability to act as gener-
ator devices. In particular, we show different ways of generating the set
L = {n2 | n ≥ 1} in P systems and in Brane Calculi.

1 Introduction

Natural Computing studies new computational paradigms inspired from various
well known natural phenomena in physics, chemistry, and biology. It abstracts
the way in which nature computes, conceiving new computing models. There are
several fields in Natural Computing that are now well established. Among them,
we mention Genetic algorithms introduced by J. Holland [7] that is inspired by
natural evolution and selection in order to find a good solution in a large set of
feasible candidate solutions, Neural Networks introduced by W.S. McCulloch and
W. Pitts [8] which is based on the interconnections of neurons in the brain, and
DNA-based molecular computing, that was born when L. Adleman [1] published
a solution to an instance of the Hamiltonian path problem by manipulating DNA
strands in a lab.

This paper is devoted to a new field in Natural Computing. Starting from
the structure and functioning of cells as living organisms able to process and
generate information, two different branches of Natural Computing were recently
initiated: Membrane Computing and Brane Calculi.

Membrane Computing was introduced by Gh. Păun in [9]; a comprehensive
presentation1 can be found at [11]. The devices of this model are called P sys-
tems. Roughly speaking, a P system consists of a membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous non-deterministic maximally parallel manner.

1 A layman-oriented introduction can be found in [10] and further bibliography at [14].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157757088?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Brane Calculi were introduced by L. Cardelli in [4] on the assumption that
in living cells membranes are not merely containers, they are highly dynamic
and participate actively in the cell life. In this way, computation happens on the
membrane, not inside of it.

The first attempt of bridging the two research areas was made in [6] by the
fathers of the two disciplines, L. Cardelli and Gh. Păun. As they point out,
Membrane Computing and Brane Calculi have different objectives and develop
in different directions. While Membrane Computing tries to abstract computing
models, in the Turing sense, from the structure and the functioning of the cell
(. . .), Brane Calculi pay more attention to the fidelity to the biological reality
(. . .).

In that paper [6], four basic operations from Brane Calculi, namely, pino, exo,
mate and drip, are expressed in terms on the Membrane Computing formalism
and the Turing completeness of systems which use the mate, drip operations is
shown. The Turing universality of Brane Calculi (in fact, by using only phago and
exo operations) was proved in [3]. Recently, it has been proved that P systems
with mate and drip operations and using at most five membranes during any
step of a computation are universal (see [2]). This result improves a similar one
from [6] were eleven membranes are used.

In some sense, in this paper we cross the bridge in the other way. Instead
of expressing Brane Calculi operations in terms of the Membrane Computing
formalism, we take a problem from computability, the generation of a set of
numbers, and we show how it can be handled both in Membrane Computing
and in Brane Calculi.

The paper is organized as follows: first the case study, i.e., the set L =
{n2 | n ≥ 1} and some considerations with respect to the codifications are fixed
in the next section. In Section 3, two different Membrane Computing devices
that generate L are shown. Inspired on the second Membrane Computing de-
sign, two Brane Calculi devices that generate L are presented in Section 4. Some
final remarks are presented in the last section.

2 The Case Study

Computational devices can be designed in order to perform different tasks.
Among such tasks, they can be designed to solve decision problems (IX , θX)
where IX is a language over a finite alphabet (whose elements are called in-
stances) and θX is a total boolean function over IX . In a more general case,
the function is not boolean and the problem consists on the computation of a
function f from IX onto a general set S.

Another type of tasks is the generation of various sets (of numbers, vectors,
strings, etc.). Due to the nondeterminism, several different computations are
obtained and some piece of information is considered as the output. Collecting all
(acceptable) outputs, we get a set (of numbers, vectors, strings, etc.) generated
by the computation device.

In order to fix ideas, let us consider the case study used in this paper. We
will consider the set {n2 | n ≥ 1}. For its generation, we will design appropriate
devices in the computational models Membrane Computing and Brane Calculi.
Such devices are non-deterministic and several computations can be performed
from the starting point. In each device, a piece of information will be considered
the output of the system. In the case of Membrane Computing, the output is cod-
ified as the number of objects inside a fixed membrane in a halting configuration.
In the Brane Calculi device, the output is codified as the number of membranes
of a specific kind that are present in the system in a halting computation. The
set of all possible outputs of the device is exactly L = {n2 | n ≥ 1}. In this way,
L is the set generated by the device.

3 Membrane Computing

In Membrane Computing, many different types of rules and different semantics
have been presented. The choice of these rules and semantics lead us to different
models of P systems. In this section we present two P systems constructed in
two different models that generate the set {n2 | n ≥ 1}.

In these examples several types of rules are used (O is the alphabet of objects,
H is a finite set of labels, and λ is the empty string):

– Object evolution rules [a → v]h where h ∈ H , a ∈ O, and v is a string over
O describing a multiset of objects. They are associated with membranes and
depending only on the label of the membrane. Using such a rule means that
an object a evolves to the multiset v inside the membrane with label h.

– Cooperation rules: [v → w]h where h ∈ H and v, w are string over O describ-
ing a multisets of objects. This rule is similar to the previous one, but in
this type, the rule is triggered by a multiset of objects whereas in an object
evolution rule only one object is necessary for triggering it.

– Dissolution rules: [a]h → b where h ∈ H , a ∈ O, b ∈ O ∪ {λ}. The object
a inside the membrane labeled with h produces the dissolution of the mem-
brane and it is transformed into the object b. This object b together with
the remaining objects in the membrane h are placed inside the surrounding
membrane.

– Send-in communication rules: a[]h → [b]h where h ∈ H , a, b ∈ O. An
object a out of the membrane labeled with h is sent into the membrane and
transformed into b.

– Send-out communication rules: [a]h → []h b where h ∈ H , a, b ∈ O. This is
dual to the previous case. An object a inside the membrane labeled with h
is sent out of the membrane and transformed into b.

Rules are applied according to the following principles:

– Rules are used as usual in the framework of Membrane Computing, that
is, in a maximally parallel way. In one step, each object in a membrane
can only be used for one rule (non-deterministically chosen when there are

several possibilities), but any object which can evolve by a rule of any form
must do it (with the restrictions indicated below).

– If a membrane is dissolved, its content (multiset and internal membranes)
becomes part of the immediately external one. The skin membrane is never
dissolved.

– All the elements which are not involved in any of the operations to be applied
remain unchanged.

– Several rules can be applied to different objects in the same membrane si-
multaneously. The exception are the division rules since a membrane can be
dissolved only once.

In order to generate a set, an output membrane is fixed and the number of
objects in it is counted when the system halts. The number of objects can vary
from one computation to other due to the nondeterminism of the system. In the
next examples, the set of numbers obtained in the output membrane, i.e., the
generated set, is {n2 | n ≥ 1}.

3.1 Cooperation and Priorities

The first P system that we show is taken from [11] (p. 75) and it uses two
of the most powerful features in P systems. The first one is the use of rules
with cooperation between objects as described above. This type of rules are not
triggered by the occurrence of only one object, but two or more objects are
necessary in order to trigger the rule. The second feature is the priority among
rules. In the general framework of Membrane Computing, if two rules can be
applied, one of them is chosen in a non-deterministic way. If a priority between
rules is added, we decrease the non-determinism, since we have a precedence
between them.

With the notation fixed above, the P system is Π = (O, H, μ, w1, w2, w3, 1, R)
where O = {a, b, d, e, f} is the set of objects, H = {1, 2, 3} is the set of labels,
μ = [[[]3]2]1 is the membrane structure, w1 = ∅, w2 = ∅, w3 = af are the
multisets placed in the membranes at the starting point, 1 is the label of the
output membrane, and R is the set of rules:

Rule 1: [a → ab]3 Rule 5: [b → d]2
Rule 2: [a]3 → b Rule 6: [d → de]2
Rule 3: [f → ff]3 Rule 7: [ff → f]2
Rule 4: [d]1 → d []1 Rule 8: [f]2 → λ

with the priority

(Rule 7: [ff → f]2) > (Rule 8: [f]2 → λ)

Rules 1, 3, 5 and 6 are object evolution rules. Rule 7 is a cooperation rule: we
need two objects f in order to trigger the rule. Rules 2 and 8 are dissolution
rules. Finally, rule 4 is a send-out communication rule.

The computation is performed as follows. In the initial configuration we only
have objects af in the membrane labeled with 3.

C0 = [[[af]3]2]1

Due to rule 3, the object f deterministically evolves to ff . For the object a we
have two possibilities: By application of rule 1, the object a evolves to ab or by
applying rule 2, membrane 3 dissolves. If we iterate the use of rules 1 and 3,
after n steps, n ≥ 0, we get n occurrences of b, one copy of a, and 2n occurrences
of f in membrane 3.

C1 = [[[abf2]3]2]1
C2 = [[[ab2f4]3]2]1
. . .
Cn = [[[abnf2n

]3]2]1

If then rule 2 is chosen, the membrane labeled with 3 is dissolved after the
evolution of f . With the dissolution, the 2n+1 copies of object f and the n + 1
copies of b become occurrences of objects of membrane 2.

Cn+1 = [[bn+1f2n+1
]2]1

In one step, the n + 1 copies of b are transformed into n + 1 copies of d by rule
5, while the number of occurrences of f is halved.

Cn+2 = [[dn+1f2n

]2]1

In the next step each occurrence of d introduces one occurrence of e and the
number of occurrences of f is halved again.

Cn+3 = [[dn+1en+1f2n−1
]2]1

After n applications of rule 7, [ff → f]2, only one copy of object f is present
in membrane labeled with 2. In the meantime, rule 6 is applied n + 1 times in
each step.

Cn+4 = [[dn+1e2(n+1)f2n−2
]2]1

Cn+5 = [[dn+1e3(n+1)f2n−3
]2]1

. . .

Following the priority relation, rule 7 [ff → f]2 is used as much as possible;
when only one object f remains, rule 8 is used.

C2n+2 = [[dn+1en(n+1)f]2]1
C2n+3 = [dn+1e(n+1)2]1

With the dissolution of membrane 2, all the objects d become objects of mem-
brane 1. In the next step, rule 4 is applied n + 1 times and all copies of d are
sent out to the environment.

C2n+4 = [e(n+1)2]1 dn+1

No further step is possible and the computation stops. In the membrane la-
beled with 1 we have (n + 1)(n + 1) copies of object e for some n ≥ 0, hence the
set generated is {n2 | n ≥ 1}.

3.2 A Simplified Solution

Now we present a new solution to the same problem. We do not use cooperation
or priorities. Only send-in communication, dissolution and object evolution rules
are applied. The design is based on the well-known property of natural numbers

n∑

k=0

(2k + 1) = (n + 1)2 for all n ≥ 0

The P system is the following: Π = (O, H, μ, we, wr , ws, r, R) with the set of
objects O = {a, b, c, z}, the set of labels H = {e, r, s}, the membrane structure
μ = [[]e []r]s. The initial multisets are we = a2bz, wr = ∅ and ws = ∅, i.e., the
membranes s and r are empty and there exist two copies of a and one copy of b
and z in the membrane e. The output membrane is labeled with r and the set of
rules R is the following:

Rule 1: [a → ab]e Rule 5: [a → λ]s
Rule 2: [b → bc]e Rule 6: [b → λ]s
Rule 3: [z → z]e Rule 7: c []r → [c]r
Rule 4: [z]e → λ

Note that the only non-determinism in this example is produced by the object
z. This object can trigger two rules. The first one is [z → z]e which represents
that the object z inside the membrane e does not change. The second one is
[z]e → λ which means that the object z dissolves the membrane e. The collateral
effect of the application of this rule is that the remaining objects in e are sent
to s.

The initial configuration is C0 = [[a2bz]e []r]s. In the first step the two
objects a evolve according to the rule 1, [a → ab]e, and the object b evolves
following the rule 2, [b → bc]e. These evolutions are deterministic. For the object
z we have two options, rules 3 and 4. Let us suppose that z remains unchanged
following rule 3, [z → z]e. We obtain the configuration C1 = [[a2b3cz]e []r]s.
Let us suppose that in the next steps the object z does not dissolve the membrane
e. We obtain C2 = [[a2b5c4z]e []r]s, C3 = [[a2b7c9z]e []r]s,. . . and in general,
if the element z does not dissolves the membrane e, in the n-th (n ≥ 1) step we
reach the configuration

Cn = [[a2b2n+1cn2
z]e []r]s

Let us now suppose that in the n-th step the object z dissolves the membrane
e by using rule 4. Since the dissolution is considered after the evolution of objects
a and b, we reach the configuration

Cn+1 = [a2b2(n+1)+1c(n+1)2z []r]s n ≥ 0

One of the effects of the dissolution is that the objects a, b, and c are now in
the membrane s. On one hand the rules [a → λ]s and [b → λ]s are triggered in
the next step, so objects a and b disappear. On the other hand, objects c are in
the region surrounding the membrane r, so the communication rule c []r → [c]r
are applied and all the elements c go into membrane r. In this way, the next
configuration is Cn+2 = [[c(n+1)2]r]s with n ≥ 0.

No more rules can be applied, so this is a halting configuration and we have
computed the number n2 with n ≥ 1 (encoded by the elements c) in the output
membrane.

4 Brane Calculi

In this section we tackle the problem of generating the set {n2 | n ≥ 1} in Brane
Calculi.

Brane Calculi [4] are a family of process calculi proposed for modeling the
behavior of biological membranes. In a process algebraic setting, Brane Calculi
represent an evolution of BioAmbients [12], a variant of Mobile Ambients [5]
based on a set of biologically inspired primitives of interaction. The main novelty
of Brane calculi consists in the fact that the active entities reside on membranes,
and not inside membranes.

In this paper we are interested in the membrane operations of two basic in-
stances of Brane calculi proposed in [4]: the Phago/Exo/Pino (PEP) and the
Mate/Bud/Drip (MBD) calculi.

The interaction primitives of PEP are inspired by endocytosis (the process
of incorporating external material into a cell by engulfing it with the cell mem-
brane) and exocytosis (the reverse process). A relevant feature of such primitives
is bitonality, a property ensuring that there will never be a mixing of what is in-
side a membrane with what is outside, although external entities can be brought
inside if safely wrapped by another membrane. As endocytosis can engulf an ar-
bitrary number of membranes, it turns out to be a rather uncontrollable process.
Hence, it is replaced by two simpler operations: phagocytosis, that is engulfing
of just one external membrane, and pinocytosis, that is engulfing zero external
membranes.

The primitives of MBD are inspired by membrane fusion (mate) and fission
(mito). Because membrane fission is an uncontrollable process that can split
a membrane at an arbitrary place, it is replaced by two simpler operations:
budding, that is splitting off one internal membrane, and dripping, that consists
in splitting off zero internal membranes. An encoding of the MBD primitives in
PEP is provided in [4].

4.1 Basic Brane Calculi: Syntax and Semantics

In this section we recall the syntax and the semantics of Brane Calculi [4].
A system consists of nested membranes, and a process is associated to each
membrane.

Definition 1. The set of systems is defined by the following grammar:

P, Q ::= � | P ◦ Q | !P | σ�P �

The set of membrane processes is defined by the following grammar:

σ, τ ::= 0 | σ|τ | !σ | a.σ

Variables a, b range over actions that will be detailed later.

The term � represents the empty system; the parallel composition operator on
systems is ◦. The replication operator ! denotes the parallel composition of an
unbounded number of instances of a system. The term σ�P � denotes the mem-
brane that performs process σ and contains system P .

The term 0 denotes the empty process, whereas | is the parallel composition of
processes; with !σ we denote the parallel composition of an unbounded number
of instances of process σ. Term a.σ is a guarded process: after performing the
action a, the process behaves as σ.

We adopt the following abbreviations: with a we denote a.0, with �P � we
denote 0�P �, and with σ� � we denote σ� � �.

The structural congruence relation on systems and processes is defined as
follows:2

Definition 2. The structural congruence ≡ is the least congruence relation sat-
isfying the following axioms:

P ◦ Q ≡ Q ◦ P σ | τ ≡ τ | σ
P ◦ (Q ◦ R) ≡ (P ◦ Q) ◦ R σ | (τ | ρ) ≡ (σ | τ) | ρ
P ◦ � ≡ P σ | 0 ≡ σ

!� ≡ � !0 ≡ 0
!(P ◦ Q) ≡!P◦!Q !(σ | τ) ≡!σ | !τ
!!P ≡!P !!σ ≡!σ
P◦!P ≡!P σ | !σ ≡!σ

0� � � ≡ �

Definition 3. The basic reaction rules are the following:

(par)
P → Q

P ◦ R → Q ◦ R
(brane)

P → Q

σ�P � → σ�Q �

(strucong)
P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

2 With abuse of notation we use ≡ to denote both structural congruence on systems
and structural congruence on processes.

Rules (par) and (brane) are the contextual rules that permit to a system to
execute also if it is in parallel with another process or if it is inside a membrane,
respectively. Rule (strucong) ensures that two structurally congruent systems
have the same reactions.

With →∗ we denote the reflexive and transitive closure of a relation →.
We say that a system P is deterministic iff for all P ′, P ′′: if P → P ′ and

P → P ′′ then P ′ ≡ P ′′. We say that P has a halting computation (or a deadlock)
if there exists Q such that P →∗ Q and Q
→.

The system P ′ is a derivative of the system P if P →∗ P ′; the set of derivatives
of a system P is denoted by Deriv(P).

The Phago/Exo/Pino Calculus (PEP). The PEP calculus is inspired by
endocytosis/exocytosis. Endocytosis is the process of incorporating external ma-
terial into a cell by “engulfing” it with the cell membrane, while exocytosis is the
reverse process. As endocytosis can engulf an arbitrary amount of material, giv-
ing rise to an uncontrollable process, in [4] two more basic operations are used:
phagocytosis, engulfing just one external membrane, and pinocytosis, engulfing
zero external membranes.

Definition 4. Let Name be a denumerable set of ambient names, ranged over
by n, m, The set of actions of PEP is defined by the following grammar:

a ::= C←
n | C←⊥

n(σ) | C→
n | C→⊥

n | ©◦ (σ)

Action C←
n denotes phagocytosis; the co-action C←⊥

n is meant to synchronize with
C←
n; names n are used to pair-up related actions and co-actions. The co-phago

action is equipped with a process σ, this process will be associated to the new
membrane that engulfs the external membrane. Action C→

n denotes exocytosis,
and synchronizes with the co-action C→⊥

n . Exocytosis causes an irreversible mixing
of membranes. Action ©◦ denotes pinocytosis. The pino action is equipped with
a process σ: this process will be associated to the new membrane, that is created
inside the membrane performing the pino action.

Definition 5. The reaction relation for PEP is the least relation containing the
following axioms, and satisfying the rules in Definition 3:

(phago) C←
n.σ|σ0�P � ◦ C←⊥

n(ρ).τ |τ0�Q � → τ |τ0� ρ�σ|σ0�P � � ◦ Q �

(exo) C→⊥
n .τ |τ0� C→

n.σ|σ0�P � ◦ Q � → P ◦ σ|σ0|τ |τ0�Q �

(pino) ©◦ (ρ).σ|σ0�P � → σ|σ0� ρ� � ◦ P �

The Mate/Bud/Drip Calculus (MBD). The MBD calculus is inspired by
membrane fusion and splitting. To make membrane splitting more controllable,
in [4] two more basic operations are used: budding, consisting in splitting off
one internal membrane, and dripping, consisting in splitting off zero internal
membranes. Membrane fusion, or merging, is called mating.

Definition 6. The set of actions of MBD is defined by the following grammar:

a ::= maten | mate⊥
n | budn | bud⊥

n(σ) | drip(σ)

Actions maten and mate⊥
n will synchronize to obtain membrane fusion. Action

budn permits to split one internal membrane, and synchronizes with the co-
action bud⊥

n . Action drip permits to split off zero internal membranes. Actions
bud⊥ and drip are equipped with a process σ, that will be associated to the new
membrane created by the membrane performing the action.

Definition 7. The reaction relation for MBD is the least relation containing
the following axioms, and satisfying the rules in Definition 3:

(mate) maten.σ|σ0�P � ◦ mate⊥
n .τ |τ0�Q � → σ|σ0|τ |τ0�P ◦ Q �

(bud) bud⊥
n(ρ).τ |τ0� budn.σ|σ0�P � ◦ Q � → ρ�σ|σ0�P � � ◦ τ |τ0�Q �

(drip) drip(ρ).σ|σ0�P � → ρ� � ◦ σ|σ0�P �

In [4] it is shown that the operations of mating, budding and dripping can be
encoded in PEP.

For the sake of simplicity, in the present paper we consider a basic calculus
containing the membrane interaction primitives of both the PEP and the MBD
calculi. As the primitives of MBD can be encoded in PEP, we conjecture that
the system described in the following part of the paper can be encoded in an
equivalent system that makes use of the PEP primitives only.

4.2 Computing {n2 | n ≥ 1} in Brane Calculi

Now we show how to model our case study in Brane Calculi. Our solution is in-
spired by the simplified solution in Subsection 3.2. When moving from P systems
to Brane Calculi, two main problems arise.

The first problem is concerned with the fact that in Basic Brane Calculi
there are no objects/proteins floating inside the membranes. Hence, we need an
alternative representation of the output of our system. In the solution based on
P systems presented in Subsection 3.2, the natural number n is represented as
n occurrences of object c inside membrane r. Here the idea is to represent the
output as a family of membranes with a particular process C on them, such that
process C can be distinguished by other processes residing on other auxiliary
membranes.

A second major problem is concerned with the interleaving semantics of Brane
Calculi. We note that the maximal parallelism semantics of P systems is a very
powerful synchronization mechanism. This ensures that – at each computational
step – for each occurrence of object b a new object c is created and for each
occurrence of object a a new object b is created. If we simply encode each object a
(resp. b, c) with a membrane A� � (resp. B� �, C� �, thus obtaining a flat multiset
of membranes, then for mimicking a computational step of the corresponding P

system we need to perform a synchronization among an unbounded number of
membranes, and this seems to be a very difficult task in Brane Calculi. On the
other hand, it is quite easy to synchronize an a priori fixed number of membranes.
To solve this problem, we decided to move from the flat structure of membranes
proposed above (and consisting in a multiset of membranes A� �, B� �, and
C� � contained in the same surrounding membrane) to a hierarchical structure.

We start presenting a simplified version of the solution, where the output of
the system is represented by the number of occurrences of C appearing in the
whole structure of the system, and not inside a specific membrane. Then, we
present a more elegant solution where the output of the system is represented
by the number of occurrences of C contained in a specific membrane.

Solution with output scattered in the whole system. The initial system
consists of an external membrane, containing two instances of membranes repre-
senting an encoding of object a and one brane representing an encoding of object
b, as depicted in Figure 1 (the need for the auxiliary membranes decorated with
processes X , Ta and Tb will be clarified in the following).

A A

!
B X

Ext

Ta Tb Ta Tb
M

Fig. 1. The initial membrane system (with M = mate⊥
n)

We mimic a single maximal parallelism computational step of the P system
in Subsection 3.2 by the following sequence of steps: each membrane encoding
object b creates – by dripping – a new membrane representing an encoding of c;
each membrane encoding object a is surrounded by a newly created membrane
representing a and containing a new instance of a membrane representing b.

An evolution of the representation of an object a as a nested family of mem-
branes is reported in Figure 2.

The representations of objects a and b are arranged in a hierarchical structure:
there exists a membrane with process A (and representing object a) surrounding
both a membrane with process B (representing object b) and another membrane
with process A′ (surrounded by another membrane with process E – such a
membrane is created during the phagocytosis to preserve bitonality and cannot
be avoided). The membrane with object A′ contains a membrane decorated
with B and another membrane E containing a membrane A′, and so on. The
most internal instance of membrane decorated with A′ contains the two terminal
membranes Ta and Tb.

A maximal parallelism computational step of the P system in Subsection 3.2
is mimicked in the following way: the external membrane – with process Ext –

Fig. 2. The evolution of the system encoding object a

sends one (asynchronous) signal to each of its children. The child membrane with
process B reacts to the signal by spawning a new child membrane with process
C, and sends a signal to the external brane to communicate that it has finished
its task. Each child membrane with process A reacts in the following way:

– first of all, the A membrane sends two signals to its children – decorated with
B and E – that will be used to wake up the instances of membranes decorated
with B inside the hierarchical structure (each of such B membranes will
spawn a new C membrane);

– then it waits for two signals from its children, to acknowledge the end of
the creation of new copies of C by the B membranes in the hierarchical
structure;

– now, a new membrane is created, and the A membrane enters this new
membrane by phagocytosis and spawns a new membrane with process B;

– finally, the A membrane sends a signal to the external membrane to acknowl-
edge the end of its task, and evolves to a membrane with process A′.

Before presenting the definition of the system, we show how to obtain asyn-
chronous communication between a father and a child membrane. If the father
membrane wants to send a signal to one of its children, it produces by pinocyto-
sis a bubble with process mate⊥

x ; the child accepts this signal by performing an
action matex. On the other hand, if a child wants to send a signal to its father,
it produces by dripping a bubble with process C→

x; the father receives this signal
by performing an action C→⊥

x .
Formally, the system is defined as follows:

mate⊥
n� � ◦ Ext� A� Ta� � ◦ Tb� � � ◦

A� Ta� � ◦ Tb� � � ◦
B� � ◦
!(X� �) �

So, we have a big membrane containing two copies of A and one copy of B,
plus the membrane mate⊥

n� �. The membrane mate⊥
n� � is a trigger that fuses

with the big membrane: if the fusion is performed by the first maten action of

Ext, then some new copies of C are produced; otherwise, the system ends. As
we already said before, the output of the system is represented by the number of
occurrences of C appearing in the whole structure of the system, and not inside
a specific membrane.

The process Ext is the following:

Ext = !maten. ©◦(mate⊥
as

). ©◦(mate⊥
as

). ©◦(mate⊥
bs

). C→⊥
af

. C→⊥
af

.
C→⊥
bf

.drip(mate⊥
n) |

maten.0

The program Ext triggers the two copies of A and B by producing three
bubbles by pinocytosis that can fuse with the two instances of A and with B.
The membrane B simply produces a child bubble labeled with C then signals
the termination of this task to the external membrane. In this simplified version
of the solution, C may be any process that can be distinguished from the others.

The evolution of membrane A is depicted in Figure 2; here we give a more
detailed description of the behavior of such a kind of membrane.

First of all, the membrane A sends a signal to its children: at the beginning,
this membrane has two dummy children (represented by systems Ta and Tb) that
simply send back the signal; however, during the computation the last created
membrane A has to send a signal to its children to permit to its descendants
of kind B to produce new copies of C. Thus, membrane A sends a signal with
label as to its child with process E and a signal with label bs to its child with
process B to trigger the starting of the execution of a computational step by
the two children. Then, the membrane A waits for two signals: a signal with
label af from its child E (meaning that all the B descendants have spawn a
new copy of C) and a signal with label bf from its child B (meaning that B has
spawn a new copy of C). After the membrane A has received these two signals
from its children, membrane A creates a new sibling bubble decorated with D,
then A enters the D bubble (note that phagocytosis creates a new membrane
surrounding A inside D; this causes the necessity to propagate signals across this
membrane, that has process E). After A enters D, D creates a child with process
B by pinocytosis, and then signals that it has finished its task to its father, and
then, by fusing with a copy of an X membrane, it becomes a membrane with
program A.

The definitions of the remaining systems and processes are as follows:

A = mateas . ©◦(mate⊥
as

). ©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf

.drip(D). C←
d.A

′

A′ = !mateas . ©◦(mate⊥
as

). ©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf

.drip(C→
af

)
D = C←⊥

d (E). ©◦(B).drip(C→
af

).mate⊥
x

X = matex.A
E = !mateas . ©◦(mate⊥

as
). C→⊥

af
.drip(C→

af
)

B = !matebs . ©◦(C).drip(C→
bf

)
Ta = (!mateas .drip(C→

af
))

Tb = (!matebs .drip(C→
bf

))

Solution with output contained in a specific membrane. Now we show
how to put the encoding of the output of the system inside a single membrane,
with process Res. First of all, we surround the system by two membranes: the
external membrane is decorated with process Ext1 and the internal membrane
is decorated with process Ext2. The initial state of the system is reported in
Figure 3.

!
XA A B

Ext2

Ta Tb Ta Tb

Res

Ext1

M

!
Y

Fig. 3. The initial configuration of the system with output in the Res membrane (with
M = mate⊥

n)

The system behaves as the system presented in the previous subsection as
far as the generation of new copies of C is concerned. On the other hand, when
we decide to terminate (by choosing the second maten action) then, instead
of blocking the system, the continuation of process Ext2 (together with system
!Y � �) permits to the nested membranes A,A′ and B to perform an exocytosis. In
this way, all the C membranes (as well as the terminating Ta and Tb membranes)
are put in the region of the external membrane. The Ext2 membrane, as well
as the E membranes, disappear by performing an exocytosis with the external
membrane, whereas each C membrane produces a child decorated with C′ by
pinocytosis, and then fuses with the Res membrane.

When the computation stops, the result is represented by the number of C′

membranes contained inside the Res membrane, and the structure of the system
is depicted in Figure 4.

Formally, the system is defined as follows:

Ext1�mate⊥
n� �◦ Ext2� A� Ta� � ◦ Tb� � � ◦

A� Ta� � ◦ Tb� � � ◦
B� � ◦
!(X� �)◦
!(Y � �)� ◦

Res� � �

X

!

Ext1’

Res

C’ C’ C’...
Y

!

Fig. 4. The final configuration of the system with output in the Res membrane

The processes Ext1 and Ext2 are defined as follows:

Ext1 = ! C→⊥
out

Ext2 = !maten. ©◦(mate⊥
as

). ©◦(mate⊥
as

).pino(mate⊥
bs

). C→⊥
af

. C→⊥
af

.
C→⊥
bf

.drip(mate⊥
n) |

maten. C→⊥
ae

. C→⊥
ae

. C→⊥
be

. C→
out

The definitions of the remaining systems and processes are as follows:

A = mateas . ©◦(mate⊥
as

). ©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf

.drip(D). C←
d.A

′ | C→
ae

A′ = !mateas . ©◦(mate⊥
as

). ©◦(mate⊥
bs

). C→⊥
af

. C→⊥
bf

.drip(C→
af

) | C→
ae

D = C←⊥
d (E). ©◦(B).drip(C→

af
).mate⊥

x

X = matex.A
Y = matey. C→⊥

ae
. C→⊥

be
. C→⊥

out

E = !mateas . ©◦(mate⊥
as

). C→⊥
af

.drip(C→
af

) | mate⊥
y

B = !matebs . ©◦(C).drip(C→
bf

) | C→
be

Ta = (!mateas .drip(C→
af

)) | C→
out

Tb = (!matebs .drip(C→
bf

)) | C→
out

Res = !mate⊥
res

C = ©◦ (C′).materes

5 Final Remarks

In the last years, two branches of Natural Computing, Membrane Computing
and Brane Calculi have been developed at the crossroads of Cell Biology and
Computation. Both branches start from the idea of cells are capable to process
and to generate information. Nonetheless, they have followed different paths.

Membrane Computing are more interested in the study of computational de-
vices, by taking the cell as inspiration whereas Brane Calculi try to stay as close
to the Biology as possible.

In a certain sense, Brane Calculi are dual to Membrane Computing, since they
work with object placed on membranes, not with object placed in the regions
surrounded by membranes. This is a key difference. In Membrane Computing,
the objects represent chemicals swimming in an aqueous solution inside the mem-
branes and membranes separate the compartments where local rules are applied.
In Brane Calculi, objects are placed on membranes and they correspond to pro-
teins embedded in the real membranes. The computation is made by membrane
operations controlled by these objects.

Another notable difference between Brane Calculi and P systems is concerned
with the semantics of the two formalism: whereas Brane Calculi are usually
equipped with an interleaving, sequential semantics (each computational step
consists of the execution of a single instruction), the usual semantics in mem-
brane computing is based on maximal parallelism (a computational step is com-
posed of a maximal set of independent interactions).

In this paper we started a joint investigation of both formalisms inspired by
the behavior of biological membranes. In particular, we investigate their compu-
tational power w.r.t. their ability to generate sets of numbers, and we take as a
case study the set L = {n2 | n ≥ 1}.

First we recalled the P systems presented in [11] which generates L, then we
provided a new, simplified solution. Then we move to Brane Calculi, and we
tackle the problem of presenting a solution to the case study based on the sim-
plified solution we propose for P systems. After discussing the problems which
arise when moving from P systems to Brane Calculi, we present two solutions
of the problem in Brane Calculi. The most relevant problem is due to the shift
from the maximal parallelism semantics of P systems to the interleaving seman-
tics of Brane Calculi: while maximal parallelism turns out to be a very powerful
synchronization tool, permitting to synchronize an unbounded number of com-
ponents, it seems that this form of synchronization turns out to be problematic
in Brane Calculi. We solve this problem by moving from a “flat” representation
of the system to a hierarchical representation, that can be easily obtained by
making use of an unbounded number of membranes.

We think that the present paper could represent a first step in the comparison
of the two aforementioned formalisms. As future work, we plan to investigate the
possibility to compute NP-complete problems in polynomial time with Brane
Calculi, by taking as a starting point the encouraging results on this topic ob-
tained for P systems (see, for example, [13] and references therein).

Acknowledgement

The second author acknowledges the support by Project TIN2005-09345-C03-01
of the Ministry of Education and Science of Spain, cofinanced by FEDER funds,
and by the Project of Excellence TIC-581 of the Junta de Andalućıa.

References

1. L.M. Adleman. Molecular computations of solutions to combinatorial problems.
Science, 226 (1994), 1021–1024.

2. D. Besozzi, N. Busi, G. Franco, R. Freund, Gh. Păun. Two universality results for
(mem)brane systems. In Proceedings of the Fourth Brainstorming Week on Mem-
brane Computing, Vol. I (M.A. Gutiérrez Naranjo, Gh. Păun, A. Riscos-Núñez,
F.J. Romero-Campero, eds.), Fénix Editora, 2006, 49–62.

3. N. Busi, R. Gorrieri. On the computation power of brane calculi. Third Workshop
on Computational Methods in Systems Biology, Edinburgh, 2005.

4. L. Cardelli. Brane calculi. In Computational Methods in Systems Biology 2004 (V.
Danos, V. Schachter, eds.), LNBI 3082, Springer-Verlag, Berlin, 2005, 257–278.

5. L. Cardelli and A.D. Gordon. Mobile ambients. Theoretical Computer Science, 240,
1 (2000), 177–213.

6. L. Cardelli, Gh.Păun. An universality result for a (mem)brane calculus based on
mate/drip operations. Intern. J. Found. Computer Sci., 17, 1 (2006), 49–68.

7. J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, MI: Uni-
versity of Michigan Press, 1975.

8. W.S. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5 (1943) 115–133.

9. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143.

10. Gh. Păun, M.J. Pérez-Jiménez. Recent computing models inspired from biology:
DNA and membrane computing. Theoria, 18 (2003), 72–84.

11. Gh. Păun. Membrane Computing – An Introduction Springer-Verlag, Berlin, 2002.
12. A. Regev, E. M. Panina, W. Silverman, L. Cardelli, E. Shapiro. BioAmbients:

An abstraction for biological compartments. Theoretical Computer Science, 325, 1
(2004), 141–167.

13. A. Riscos-Núñez. Cellular Programming: Efficient Resolution of Numerical NP-
Complete Problems. Ph.D. Thesis. University of Seville, 2004.

14. P systems web page http://psystems.disco.unimib.it/

	Introduction
	The Case Study
	Membrane Computing
	Cooperation and Priorities
	A Simplified Solution

	Brane Calculi
	Basic Brane Calculi: Syntax and Semantics
	Computing $\{n^2\mid n\geq 1\}$ in Brane Calculi

	Final Remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

