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Abstract. 

Advanced SiC-based ceramics and fibre reinforced composites are interesting materials 

for a wide variety of applications involving sliding wear conditions because of their 

excellent thermomechanical properties. The microstructure and wear resistance of 

sintered SiC fibre bonded ceramics (SA Tyrannohex) was studied. The material is 

composed by SiC-fibres in two orientations, with polygonal cross sections and cores 

having higher carbon content than their surroundings, as observed with SEM. A thin 

layer of C exists between the fibres. This layer has been found to be a turbostratic-

layered structure oriented parallel to the fibre surface. XRD shows that the material is 

highly crystalline and composed mostly of β-SiC. Unlubricated wear behaviour of the 

SA-Tyrannohex material when sliding against a Si3N4 ball in air at room temperature 

was evaluated. Experiments were performed using a pin on disk apparatus, under 

different normal loads, 2, 5 and 10 N at sliding speeds of 25, 50, 100 mm/s. A decrease 

of the friction coefficient with load was found due to the presence of the turbostratic 

carbon layer between the fibres. Wear rates of the order of 100 mm3/MJ were obtained, 

independently of sliding speed. Microfracture of the fibres is the main wear mechanism. 

Keywords: Silicon carbide; wear; composites; fibres 

1. Introduction 

 Ceramics are finding increasing utility in tribological applications like gas 

turbine components [1], cutting tools [2, 3], or braking systems, especially those to be 

used at high temperatures and in aggressive environments due to its chemical stability 
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and good abrasive resistance at elevated temperatures. However, low toughness is the 

cause of their limited reliability. 

 Ceramic Matrix Composites (CMCs), apart from the good properties of 

monolithic ceramics like low density, high melt point and high temperature stability, 

exhibit high tenacity due to their microstructural design. These properties make CMCs 

leading candidates for numerous applications as structural elements in high-temperature 

environments. The interest in CMCs is especially relevant in the aerospace industry due 

to their high fracture toughness and good specific mechanical strength and creep 

resistance, allowing higher thrust-to-density ratios than metal-based systems [4]. For 

these reasons, CMCs are currently used in strategic applications such as structural 

elements in gas turbines [5] and aerojets [6], thermal protection in re-entry vehicles [7] 

or advanced friction systems [8]. 

An increasing number of the aforementioned applications involve sliding wear 

conditions [9], where both matrix and fibres properties must be taken into account to 

prevent severe wear. Krenkel et al. found that carbon fibres lead to an improved damage 

tolerance in comparison to monolithic SiC, whereas a silicon carbide matrix improves 

wear resistance compared to carbon/carbon composites [8].Particularly, CMCs with SiC 

fibres in a SiC matrix (SiC/SiC) present a very high maximum operating temperature in 

oxidizing environments due to the initial formation of a SiO2 layer that acts as a 

diffusional barrier for O2.The SA-Tyranno SiC fibres, developed by Ube Industries Ltd., 

are good for a variety of applications due to their high crystallinity and low oxygen 

content, which imparts them with enhanced creep resistance, and the incorporation of Al 

ions that enhance their resistance to oxidation and chemical attack by glassy and 

alkaline deposits [10-13]. In addition, their dense sintered structure composed of nearly 

stoichiometric SiC crystals [10, 14] gives these fibres high thermal stability. 

Although CMCs can result in a composite with the potential of enhancing 

tribological performance, their usage is often limited due to their high manufacturing 

costs. Fibrous ceramic SiC monoliths obtained from hot-press sintering of fibres are a 

cost effective alternative to SiC/SiC ceramic matrix composites. In this work we study 

the SA-Tyrannohex material which is obtained through hot pressing of stacked, woven 

SA-Tyranno fibres mats [10-13] and has several advantages over conventional CMCs. 

For instance, SA-Tyrannohex is significantly cheaper to manufacture than CMCs since 
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their fabrication involves fewer processing steps, and can be made into complex shapes 

by laying up the fibre mats into shapers, molds or preforms. Sintering additives such as 

Al are already present and uniformly distributed in the fibre precursors, while the 

carbon interfacial layer required for enhanced toughness in CMCs appears in-situ during 

processing. Full densities are nearly achieved and the absence of pores and defects 

results in good mechanical properties, excellent thermomechanical performance [15] 

and great oxidation resistance at temperatures up to 1600ºC [16].The presence of a very 

high interface density imparts high fracture toughness. In sliding contact, the dominant 

wear mechanism of ceramics in dry atmospheres is microfracture [17, 18]. Penetration 

of a harder solid into the surface of the ceramic does not occur and toughness is the 

main determinant of wear resistance. Khedkar et al. showed that composites with higher 

heat absorption capacity exhibited improved wear resistance [19]. SA-Tyrannohex has 

relatively high thermal conductivity at temperatures above 1000ºC, in the fibre direction 

and in the orthogonal direction, compared with other materials including some SiC/SiC 

composites (CVI) and Al2O3 and metals [10]. 

 There is very limited previous work on the wear resistance of SiC/SiC ceramic 

composites, and thus the purpose of the present investigation was to study the 

tribological behaviour of the SA-Tyrannohex material when sliding against Si3N4 in air 

at room temperature.  

2. Materials and Methods. 

 Commercial SA-Tyrannohex billets measuring (1 × 2.5 × 2.5) cm3 were obtained 

from Ube Industries (Yamaguchi, Japan). Table 1 includes a summary of mechanical 

and thermal properties of this material as provided by the supplier. Samples for wear 

tests were cut into slices with a thickness of 1.5 mm using a low speed diamond saw. 

Specimen for SEM and XRD observation were prepared by conventional 

metallographic techniques. 

 Friction experiments were performed on a pin-on-disk tribometer (Microtest 

MT3, Madrid, Spain) consisting of stationary pin sliding on rotating disk in accordance 

with ASTM G99. A ball on disk geometry was chosen to avoid misalignment problems. 

Slices of the SA-Tyrannohex material were polished to a Ra value of 0.7 µm and used as 

disks. Commercially available 6 mm diameter Si3N4 balls were used as counter surface. 

Both disks and balls were cleaned in acetone in an ultrasonic bath for 10 minutes and 
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dried in air prior to use. Tests were carried out at a constant sliding speed of 100 mm/s 

under three different normal loads 10, 5 and 2N to evaluate the influence of the applied 

load on the friction coefficient. To study the dependence with the sliding speed, 

experiments were carried out under a load of 5 N at three different sliding speeds, 100, 

50 and 25 mm/s. The normal loads were applied parallel to the pressing direction of the 

SA-Tyrannohex. The friction coefficient is the ratio F/L, were F is the friction force 

measured with a precision of 0.010 N and L the normal load. The tests were performed 

at ambient conditions (51 – 53 % RH, 27ºC RT) in air without lubrication. Wear tests 

were run for 800 m in most cases with the exception of the tests where excessive wear 

was experienced by the ball, which were terminated prematurely. Total displacement of 

the Si3N4 ball relative to SA-Tyrannohex disk was measured during the tests by a 

capacitive displacement sensor attached at the tribometer arm carrier with a precision of 

0.02 mm. This value represents the worn track depth of the material plus wear depth of 

the ball (see Figure 1). 

 Surface topography of the SA-Tyrannohex specimen after tribological tests was 

measured with a stylus-type profilometer. As the cross section profile of a wear track 

cannot be assumed to be uniform, profilometer traces across each wear scar at eight 

representative positions were obtained and averaged together. The volume of the worn 

out material was calculated by multiplying the averaged cross section area of the wear 

track times the length of the wear track. The specific wear rate is calculated as 

k=V/(Ld), were V is the volume of material worn, L the normal load and d the sliding 

distance. Wear rate of the Si3N4 balls was calculated in the same way. The volume loss 

in this case was calculated by means of geometrical arguments after measuring the 

radius of the near-circular scars on the balls with an optical microscope. Worn surfaces 

of the SA-Tyrannohex material were observed by SEM after cleaning them with 

compressed air.  

3. Results and Discussion. 

3.1. Microstructure. 

 Figure 2 shows a representative cross-section of the as-fabricated material in 

backscattered electrons contrast, in a plane containing the fibre mat stacking direction 

(a) and in a plane perpendicular to this pressing direction (b). Fibres of ~8-10 µm in 

diameter in both orientations are clearly visible with a very thin interfacial carbon layer 
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between them. This layer has been found to be a turbostratic-layered structure oriented 

parallel to the fibre surface [11]. Turbostratic carbon consists of disordered graphite, 

lacking the order of stacked graphene [20], and this layer will be shown to be essential 

for the wear resistance of the material. Fibres show polygonal cross sections 

characteristic of the sintering process, and some pores and voids are observed at triple 

points. The material density was measured using a He pycnometer and a value of 

3.0687±0.0009 g cm-3 was obtained. Darker contrast in the core of the fibres is 

indicative of a concentration gradient, and the cores were determined by EDS to have 

higher carbon content than their surroundings. The observed concentration gradient 

probably occurs during the fibre sintering step and could be due to differences in 

diffusivity between the species involved. The microstructure of the Tyranno-SA fibres 

consists of SiC grains of ~200 nm in diameter, with a considerable amount of free 

pyrolytic carbon at triple points which is homogeneously distributed in the fibre [14].  

 Figure 3 shows X-Ray diffraction patterns of the as fabricated SA-Tyrannohex 

in and out of the fibre plane. XRD shows that the material is highly crystalline and 

composed mostly of β-SiC with small amounts of h-graphite. This broad graphite peak 

is due to the presence of the carbon interfacial layer between the fibres. Differences in 

the relative intensity of the peaks for both orientations are indicative of a possible 

crystallographic texture. 

3.2. Tribological behaviour. 

3.2.1. Influence of normal load.  

 To study the effect of the applied load on friction coefficient and wear 

resistance, the results of tests carried out under normal loads of 10, 5 and 2N at a 

constant sliding speed of 100 mm/s are analysed here. 

 Figure 4 shows the variation in the friction coefficient of the SA-Tyrannohex 

material versus sliding distance for the three loads studied where it can be observed that 

the friction coefficient does not reach a steady value during the tests. This could be 

attributed to changes in contact geometry during the tests when fibres are fractured, as 

will be discussed below.. Mean value of the last 20 measurements of the friction 

coefficient was calculated as 0.618±0.009, 0.570±0.005 and 0.541±0.007 for a normal 

load of 2, 5 and 10N respectively. The response of materials to this kind of experiments 
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depends not only on the precise nature of the materials in relative movement, but also 

on the detailed conditions of the contact between them and of the motion. That makes it 

difficult to compare laboratory results from different studies. Similar dry sliding pin on 

disk tests compiled by Munro [21] when the load is ≤10N and the sliding speed is ≤250 

mm/s under different test configurations shows that the friction coefficient of sintered α-

SiC ranges from 0.5 to 0.8 at RT, values which are slightly higher than those of the SA-

Tyrannohex. The friction coefficient appears to be weakly dependent on the applied 

load, and decreases with increasing load. This decrease could be due to the presence of 

the interfacial carbon layer between the Tyranno-SA fibres, as more carbon debris is 

produced during friction with higher loads. Graphite is a well-known solid lubricant in 

air because weak bonding (Van der Waals forces) between the planes provides low 

shear strength in the direction of the sliding movement [22]. Friction forces cause the 

graphite particles to orient in the direction in which the graphite planes are parallel to 

the sliding movement. Furthermore, tests were done in a moist atmosphere (RH=51-

53%), probably causing water molecules to adsorb on the carbon surface resulting in 

further reduction of the bonding between the graphene planes. In addition, when 

temperature rises at the mating surface, the high thermal conductivity of SA-

Tyrannohex might help retain moisture for graphite to act as a lubricant. 

 Figure 5 shows a plot of total displacement of the Si3N4 ball relative to the SA-

Tyrannohex disk versus sliding distance under the different applied loads. The change 

in the distance between the two triboelements is the sum of the linear wear contributions 

from both of them (see Figure 1), and increases with increasing load. In an attempt to 

separate the contribution of each triboelement, balls were observed in an optical 

microscope. Subtraction of linear wear of the ball to the measurements of the total 

displacement leads to values of ~10 µm, which is less than the precision of the 

displacement sensor (±20 µm). Then, magnitude of wear scar depth of SA-Tyrannohex 

material is of the order of tens of microns but this technique is not appropriate to 

quantify it. Apart from this, these measurements does not take into account the fact that 

the material being removed from a triboelement might also partially be depositing 

within wear tracks or might be sticking to the counterface. Thus one would actually be 

measuring only an apparent total displacement between the two triboelements. Finally, 

that is not a good way to quantify wear. In order to quantify wear rate, surface 

topography of the disks after the tribological tests was measured with a stylus type 
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profilometer. Profiles of worn surface of the SA-Tyrannohex material after the tests are 

shown in Figure 6.a). The worn track depth increases with the increase in the applied 

load. Ordinarily, a high load implies a high shear stress on the sliding surface which 

should produce more fracture. This explains the increase in wear with the increase in 

load if the dominant wear mechanism is microfracture. 

 Wear rate of the two triboelements versus normal load is presented in Figure 

6.b). Inhomogeneity of the microstructure of the SA Tyrannohex material makes the 

cross section profile of each wear track was highly variable and position dependent. 

Variation in the profilometer measurements of the worn track depth was ± 10µm, due to 

one more fibre is fractured or not, depending on the position. Worn track depth is the 

same order of magnitude of the fibres' diameter. This is the origin of the large 

uncertainty of these measurements. Wear rate of the SA-Tyrannohex material can be 

considered independent of the applied load when taking this uncertainty into account. 

No dependence with load is indicative of elastic instead of plastic deformation taking 

place. Krenkel et al., simulating real conditions of braking systems for C/C-SiC 

composites [8], found wear rates the same order of magnitude than that of the SA-

Tyrannohex,~100 mm3/MJ. These values of wear rate are closely related to 

microstructure of the material. The high fibre volume fraction and the existence of a 

strictly controlled interphase provides the material with a much higher fracture energy 

than monolithic ceramics [10]. This structure is effective in preventing the large-scale 

fragmentation of the material, resulting in formation of small discontinuous fragments 

and thereby reducing the overall wear rate. Wear rate of the Si3N4 ball is an order of 

magnitude smaller than that of the SA-Tyrannohex material but considerable wear 

occurs due to the fractured SA fibres causing abrasion to the contact surface of the ball. 

 Figure 7 shows SEM micrographs of worn surfaces of the SA-Tyrannohex 

material after tests carried out under normal loads of 2 (a), 5 (b) and 10N (c) 

respectively. Notice that fibres in two perpendicular directions exist in all the surface of 

the material (see Figure 2.b) therefore, along the scar the sliding direction forms 

different angles with these fibres. Wear evidences no dependence with respect to fibre 

orientation. As shown in the micrographs, there is no presence of particles attached to 

the surface and fracture of fibres occurs, indicating that loss of material is caused by 

fibre pull out and fibre fragmentation. In Figure 7.b), where a region inside a wear track 

is shown, is clearly visible that two layers of fibres have fractured, which is in 
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agreement with the scar depth measured by the profilometer (Figure 6. b)), as fibres are 

~10 µm in diameter. In figure 7. f) a fractured fibre is observed. That confirms the 

dominant wear mechanism of the material is microfracture. In this material, the 

turbostratic carbon layer between the fibres is easily removed by the friction force and 

that makes fibres without an interfacial layer to deflect cracks support the high contact 

stresses until failure. Fischer et al. [18] proposed for Si3N4 in sliding contact in 

intermediate humidity air (~40%) wear occurs by a combination of fracture and 

chemical reactions. In this study, we have used energy dispersive spectroscopy in the 

SEM to test for the presence of oxidation but we have not observed any tribochemical 

film on the worn surfaces. If temperatures in the contact area were high enough 

oxidation of the fibres’ surface and/or the free C could occur. In any case, these 

oxidized fibres will be eventually fractured according to SEM observations, so 

microfracture and not oxidation will be the main mechanism producing wear. Absence 

of C between fibres due to oxidation of this interlayer would make fibres’ fracture more 

favourable as explained previously3.2.2. Influence of sliding speed. 

 Results of tests carried out under a normal load of 5N at a constant sliding speed 

of 25, 50 and 100 mm/s respectively are analysed here to study the effect of the sliding 

speed on friction coefficient and wear rate. 

 Figure 8 shows the friction coefficient of the SA-Tyrannohex material versus 

sliding distance for the three sliding speeds tested. Dependence of friction coefficient 

with sliding distance shows that the lower the sliding speed, the shorter the sliding 

distance is from beginning to stabilization. The magnitude of the friction coefficient for 

the speeds of 25 and 50 mm/s are very close and higher than that for the speed of 100 

mm/s. Mean value of the last 20 measurements of friction coefficient is 0.610±0.009, 

0.614±0.007 and 0.570±0.005 for a sliding speed of 25, 50 and 100 mm/s respectively. 

There are no results in literature for friction coefficient of SiC against Si3N4 measured in 

identical conditions as those studied here. For similar tests, results are analogous. A 

coefficient of friction of 0.6 is obtained by Ajayi et al. [23] for a hot-pressed SiC with a 

diamond ball as a counter surface, loads between 1 and 30 N and low sliding speeds ( 

<0.1 mm/s).When a sliding contact passes a spot on a surface, the temperature on the 

surface rises due to frictional heating and a rapid cooling down follows due to heat 

dissipation. The temperature rise will induce thermal strain and therefore compressive 

stress at the surface. As the sliding speed increases, local temperature elevations at the 
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wear interface are bigger [24] so fracture induced by thermal shock is more likely. For 

this reason the friction coefficient might decrease with increasing speed due to material 

exhibiting less resistance to the sliding ball. In the range of velocities analysed here, the 

friction coefficient of the SA-Tyrannohex material shows no dependence with sliding 

speed except a slight decrease with the highest speed, consistent with the data for 

sintered SiC compiled by Munro [21]. Although high thermal conductivity of the 

material (77.7-36.4 W/mK in plane and 44.8-23.6 W/mK out plane over RT-1400ºC) 

and relative low thermal expansion coefficient in plane (3.20-4.66 ∙10-6 K-1 over 20-

1600ºC) might result in high thermal shock resistance and explain no dependence of 

friction coefficient with sliding speed, fracture induced by thermal shock is a possible 

wear mechanism due to other factors like high elastic modulus (310-200 GPa over 20-

1600ºC). It would be necessary to make temperature measurements at the counter 

surface and further testing at sliding speeds above 100 mm/s in order to find out if there 

is a critical value of the sliding speed at which thermal shock is an important agent 

producing wear and causing significant variations in friction coefficient values. 

 Figure 9 shows total displacement of the Si3N4 ball relative to the SA-

Tyrannohex disk versus sliding distance at the different sliding speeds. This distance 

decreases slightly when the sliding speed increases but the magnitude of this decrease is 

smaller than the resolution of the displacement sensor. We can then conclude that the 

sum of the linear wear contributions from both elements shows no dependence with 

speed. For the same reasons exposed previously, it is not possible to separate 

contribution of wear of each triboelement to the change in this distance and it is not a 

good way to quantify wear. It is necessary to look at the profile meter’s measurements 

to study the effect of sliding speed on wear of the SA-Tyrannohex material. Surface 

profiles of worn surfaces of the SA-Tyrannohex material after the tests performed under 

a normal load of 5N show that worn track depths and widths are similar for the sliding 

speeds of 25 and 50 mm/s and  larger for the highest velocity studied(see Figure 10.a)).  

 Wear rate of the two triboelements versus sliding speed for the experiments 

carried out under a normal load of 5N is presented in Figure 10.b). Uncertainty is due to 

reasons previously explained. Wear rate of the SA-Tyrannohex slightly decreases when 

duplicating speed and then increases when increasing speed again, but it can be 

considered constant with the speed taking the uncertainty in these measurements into 

account. Slight dependence of wear rate with sliding speed could be due to the hardness 
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of the SA-Tyrannohex material might be little sensitive to temperature changes. Data on 

hardness of the material versus temperature are not available yet but H. L. Wang et al. 

[25] found that degradation in hardness of ceramics with increasing temperature 

correlates well with thermal expansion behaviour, so material with larger thermal 

expansion coefficient will soften more rapidly than those with lower CTE values. Our 

SiC material has a thermal expansion coefficient (in plane) of 3.20-4.66 ∙10-6 K-1 over 

20-1600ºC, that is low in comparison with ceramics included in the aforementioned 

study. Measured wear rates were as low as ~100 mm3/MJ, even for the highest studied 

sliding speed, which could be due to the expected high thermal shock resistance of the 

material. Esposito et al. [26] showed that zirconia based ceramics suffer severe wear at 

high sliding speeds above 200 mm/s, due to low thermal shock resistance of zirconia. 

Wear rate magnitude of the Si3N4 ball is constant for all the sliding speeds and it is an 

order of magnitude smaller than that of the SA-Tyrannohex material.  

4. Conclusions. 

 Microstructure and wear resistance of sintered SiC fibre-bonded ceramics 

fabricated by Ube Industries was studied. The SA-Tyrannohex material is composed by 

SiC-fibres in two perpendicular orientations, with polygonal cross sections and cores 

having higher carbon content than their surroundings, as observed in the SEM. A thin 

layer composed of C exists between the fibres. This layer has been found to be a 

turbostratic-layered structure oriented parallel to the fibre surface. XRD shows that the 

material is highly crystalline and composed mostly of β-SiC. 

 Unlubricated wear behaviour of the SA-Tyrannohex material when sliding 

against a Si3N4 ball in air at room temperature was evaluated. Experiments were 

performed using a pin on disk apparatus, under different normal loads, 2, 5 and 10 N at 

sliding speeds of 25, 50 and 100 mm/s. The main findings could be summarized as 

follows: 

- A decrease of the friction coefficient of the material with load was found due to the 

presence of the turbostratic carbon layer between the fibres. C debris, larger with higher 

load, act as a solid lubricant reducing friction. 

- Friction coefficient shows no significant dependence with sliding speed in the range of 

25-100 mm/s possibly due to the expected high thermal shock resistance of the material. 
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Higher speeds must be studied to determine the existence of a critical value of velocity 

above which some dependence is observed. 

- Wear rates of the order of 100 mm3 /MJ were obtained. Microfracture of the fibres is 

the main wear mechanism in all cases. No dependence with fibres orientation was 

found. The high fracture energy, high thermal conductivity and low thermal expansion 

of the SA-Tyrannohex material helps to avoid severe wear. 

The data reported here is the first for SiC-fibre bonded ceramic materials to the best of 

our knowledge and will serve to evaluate friction related applications for this new 

family of ceramic materials. Although the friction coefficient is lower than for sintered 

SiC thanks to the presence of free carbon in the microstructure, the trade-off is a larger 

wear rate due to microfracture and debonding of the fibres. 
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Tables 

Table 1. Summary of the mechanical properties of SA-Tyrannohex fibre-bonded SiC 

ceramic, as provided by the manufacturer. 
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Table 2. Summary of wear properties derived from this work. 

Load (N) v (mm s-1) Friction coefficient Wear rate (mm3 MJ-1) 

2 100 0.618 (9) 90 

5 100 0.570 (5) 128 

5 50 0.614 (7) 94 

5 25 0.610 (9) 139 

10 100 0.541 (7) 155 

 

List of figures. 

1. Schematic of the pin on disk tribometer used in the tribological tests and a detail of 

the displacement of the two triboelements that is being measured by the sensor. A) 

shows the initial situation before the tribological test. Displacement sensor takes this 

Properties Unit RT 1400°C 1500°C 1600°C 1700°C 

Fibre Volume fraction Vol % 98～         

Porosity Vol % <1     

Density g·cm
-3

 3.1         

Tensile Strength (in air) MPa 180  180 160  

Young's Modulus GPa 310   240 200   

Elongation % 0.06  0.10 0.17  

Poisson's ratio   0.12         

Bending Strength (in Ar) MPa 300 300  320 300 

Interlaminar Shear Strength (in Ar) MPa 25   15     

Compressive Strength (In Plane) MPa 300   340   300 

Compressive Strength (Out Plane) MPa 1400   790   620 

Thermal Expansion  (In Plane) ×10
-6 

K
-1

 3.20 4.55  4.66  

Specific heat  (In Plane) J  g-1 K-1 0.66 1.51   1.54   

Specific heat (Out Plane) J  g-1 K-1 0.65 1.33  1.38  

Thermal Conductivity (In Plane) W  m-1 K-1 77.7 36.4   33.1   

Thermal Conductivity (Out Plane) W  m-1 K-1 44.8 23.6   22.2   
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position of the triboelements as a reference. B) Represents a situation in which wear of 

the disk occurs. Displacement sensor measurement corresponds to this wear. C) In this 

case wear of the two triboelements takes place so sensor measurement is the sum of 

these two contributions. 

2. SEM images of a representative cross-section of the as-fabricated material in 

backscattered electrons contrast, in a plane containing the fibre mat stacking direction 

(a) and in a plane perpendicular to the pressing direction (b). Fibres in both orientations 

are clearly visible. Darker contrast in the core of the fibres is indicative of a C rich 

region. 

3. X-Ray diffraction patterns of the as fabricated SA-Tyrannohex both in and out of the 

fibre plane. XRD shows that the material is highly crystalline and composed mostly of 

β-SiC (orange marks) with small amounts of h-graphite (green marks).Differences in 

the relative intensity of the peaks for both orientations are indicative of a possible 

crystallographic texture. 

4. Friction coefficient of the SA-Tyrannohex material against a Si3N4 ball versus sliding 

distance under three different applied loads at a sliding speed of 100 mm/s. The value of 

the friction coefficient decreases with the increase of the applied load. 

5. Total displacement of the Si3N4 ball relative to the SA-Tyrannohex disk versus 

sliding distance under three different applied loads at a sliding speed of 100 mm/s. The 

change in the distance between the two triboelements is the sum of the linear wear 

contributions from both elements. 

6.a) Surface profile of worn surface of the SA-Tyrannohex material after the tests 

performed under three different normal loads at a sliding speed of 100 mm/s. Resolution 

in worn track depth is 1 nm and resolution in distance is 0.5 µm. The worn track depth 

and width increase with the increase in the applied load.  b) Wear rate of the two 

triboelements versus normal load for the experiments carried out at a sliding speed of 

100 mm/s. Wear rate shows no significant dependence with normal load. Wear rate of 

the Si3N4 ball is an order of magnitude smaller than that of the SA-Tyrannohex material. 

7. Secondary electron imaging (SEI) SEM micrographs of worn surface of the SA-

Tyrannohex material after tests carried out at a sliding speed of 100 mm/s under normal 

loads of 2N (a), 5N (b) and 10N (c) and at sliding speeds of 50 mm/s (d) and 25 mm/s 
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(e-f) under a normal load of 5N. Black arrows show the sliding direction. White arrows 

point to the boundary of the wear scar. Image (b) and (f) show a high magnification 

inside the wear track region presenting an area inside the scar. 

8. Friction coefficient of the SA-Tyrannohex material against a Si3N4 ball versus sliding 

distance at three different sliding speeds under an applied load of 5N. Friction 

coefficient slightly decreases with the highest speed. 

9. Total displacement of the Si3N4 ball relative to the SA-Tyrannohex disk versus 

sliding distance at three different sliding speeds under an applied load of 5N. The 

change in the distance between the two triboelements is the sum of the linear wear 

contributions from both elements. 

10.a) Surface profile of worn surface of the SA-Tyrannohex after the tests performed 

under a normal load of 5N at three different sliding speeds. Resolution in worn track 

depth is 1 nm and resolution in distance is 0.5 µm. Worn track depth and width are 

similar for the three different sliding speeds. 

b) Wear rate of the two triboelements versus sliding speed for the experiments carried 

out under a normal load of 5N.Wear rate shows no dependence with sliding speed. Wear 

rate of the Si3N4 ball is an order of magnitude smaller than that of the SA-Tyrannohex 
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