
 From Out-Place Transformation Evolution to
 In-Place Model Patching

Alexander Bergmayr, Javier Troya, and Manuel Wimmer
Vienna University of Technology, Austria

[lastname]@big.tuwien.ac.at

ABSTRACT

Model transformation is a key technique to automate software en-
gineering tasks. Like any other software, transformations are not
resilient to change. As changes to transformations can invalidate
previously produced models, these changes need to be reflected on
existing models. Currently, revised out-place transformations are
re-executed entirely to achieve this co-evolution task. However,
this induces an unnecessary overhead, particularly when compu-
tation-intensive transformations are marginally revised, and if ex-
isting models have undergone updates prior the re-execution, these
updates get discarded in the newly produced models.

To overcome this co-evolution challenge, our idea is to infer
from evolved out-place transformations patch transformations that
propagate changes to existing models by re-executing solely the
affected parts based on an in-place execution strategy. Thereby,
existing models are only updated by a patch instead of newly pro-
duced. In this paper, we present the conceptual foundation of our
approach and report on its evaluation in a real-world case study.

1. INTRODUCTION

Model transformation is a key technique to automate software
engineering tasks [6, 25]. Transformations enable reverse-engi-
neering and forward-engineering scenarios and facilitate exchang-
ing models between tools [2]. They are often implemented as out-
place transformations [19], where the output models are built from
scratch by executing the transformation on the input models.

Like any other software, transformations change over time [23,
27, 30]. As changes to transformations can invalidate previously
produced models, these changes need to be propagated to existing
models. We refer to this challenge as transformation/output model
co-evolution, where changes to a transformation imply an evolu-
tion. Consequently, output models need to co-evolve. Currently,
revised out-place transformations have to be entirely re-executed
to achieve this co-evolution task. However, this induces an unnec-
essary overhead, particularly when computation-intensive transfor-
mations are marginally revised, and if existing models have un-
dergone manual updates prior the re-execution, these updates get
discarded in the newly produced models. Furthermore, if mod-

els reference each other based on identifiers, re-creating the output
models from scratch can break these inter-model references.

To tackle the challenge of co-evolving output models with chang-
es in transformations, we propose to infer in-place patch transfor-
mations from evolved out-place transformations for existing output
models. A patch transformation enables propagating changes of
an evolved out-place transformation to the pertinent output models
without re-creating them from scratch. Hence, a patch transfor-
mation only updates existing models [19] according to an evolved
transformation by an in-place execution strategy that enables the
patching of these models. Our approach fills the gap between cur-
rent research on incremental transformations [9, 11, 13, 16, 21, 22]
for propagating changes in input models to already existing output
models and metamodel/transformation co-evolution for propagat-
ing changes in metamodels to transformations [10, 12, 18, 24].

In Section 2, we present dimensions of model transformation
evolution, summarize work related to our approach, and formu-
late the statement of the transformation/output model co-evolution
problem. The conceptual foundation for our approach and the gen-
eration of in-place patch transformations for out-place transforma-
tions implemented in ATL [15] is discussed in Section 3. Finally,
we report on evaluation results gained from a real-world case study
for translating Java models to UML models in Section 4 before we
conclude in Section 5 with an outlook on future work.

2. PROBLEM STATEMENT
The background of this work is the model transformation pat-

tern [8]. It describes the systematic transformation of input models
conforming to input metamodels into output models conforming
to output metamodels. To implement transformations, several lan-
guages with different characteristics emerged in the last decade.
Most importantly, their underlying paradigm can be classified in
declarative, imperative, and hybrid. Furthermore, the execution
possibilities of transformations is of major interest. While some
languages enable uni-directional execution only, others are capable
to transform in both directions and to match and synchronize exist-
ing input models and output models. In this paper, we set the focus
on uni-directional languages and present our approach according
to ATL, which is one of the most prominent hybrid languages cur-
rently used in academia and industry.

To establish the basis for our investigations, we discuss the evo-
lution dimensions one is confronted with in the field of model trans-
formation engineering. Each evolution dimension we discuss has
an initial evolution step and an associated co-evolution step. Re-
cently, two evolution dimensions as depicted in Figures 1(a) & 1(b)
have been investigated.

There are approaches that consider the evolution of metamod-
els based on which transformations are defined (cf. Figure 1(a)).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/157756883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Input Models Output ModelsTransformation

Input Metamodels Output Metamodels
conforms to conforms to

Transformation’

co-evolves

defined with
respect to

Input Metamodels’ Output Metamodels’
evolves evolves

Input Models Output ModelsTransformation

Input Metamodels Output Metamodels

conforms to conforms todefined with
respect to

Input Models’ Output Models’

evolves co-evolves

Input Models Output ModelsTransformation

Transformation’

evolves

Output Models’

co-evolves

Input Metamodels Output Metamodels

conforms to conforms todefined with
respect to

(a)

(b)

(c)

Figure 1: Dimensions of model transformation evolution: (a) meta-
model/transformation co-evolution, (b) input/output co-evolution,
(c) transformation/output co-evolution.

Metamodels contribute important parts to the type system of trans-
formations. Consequently, if they change, the transformations are
also influenced and may require co-evolution actions. This evo-
lution dimension is often referred to as metamodel/transformation
co-evolution and is supported by [10, 12, 18, 24]. The main goal of
these approaches is to (semi-)automatically adapt transformations
to new metamodel versions while preserving their behavior.

The evolution at model level poses another challenge. If input
models evolve, the respective output models have to co-evolve (cf.
Figure 1(b)). This could be straightforwardly achieved by execut-
ing the entire transformation in batch mode for new versions of in-
put models. Due to several reasons, such as reducing computation
time, e.g., in case of minor changes on large models or preserv-
ing manual updates in the output models, an incremental execu-
tion of the transformation is preferred. Thereby, only changes in
input models are propagated by the transformation to output mod-
els. There are several approaches that allow incremental execution
of model transformations with respect to changes in input mod-
els; consider [9] for a survey and [11, 13, 16, 21, 22] for specific
approaches. The main idea behind incremental transformations is
that the runtime complexity of a transformation is no longer propor-
tional to the size of input models but instead to the size of changes
performed on them. A related approach refers to change-driven
transformations [3] that react to changes in one model by propagat-
ing them to other models.

Besides these two evolution dimensions, which received already
attention in research, we identified a third one (cf. Figure 1(c)) that
can be considered as the intersection of the two discussed dimen-
sions and, to the best of our knowledge, has not yet been tackled.
Assuming that a transformation based on which output models have
already been produced from input models evolves, e.g., due to fix-
ing a bug in the transformation, all transformation executions have
to be reproduced to turn existing output models into valid trans-
formation results. Clearly, the same benefits incremental transfor-
mations provide for propagating changes in input models to output
models are desirable for reflecting changes in transformations to
previously produced output models. This leads to the following
problem statement of our work: How can we achieve incremental

transformation execution that propagates changes in transforma-
tions to existing output models?

3. PATCH TRANSFORMATIONS
We now discuss how the challenge of propagating changes in

transformations to previously produced output models is tackled.
The general idea of our approach is to reformulate changes done in
out-place transformations as in-place transformations that are capa-
ble of propagating these changes to the respective output models.

3.1 Approach at a glance
Figure 2 gives an overview of our approach. The upper part con-

siders the model transformation pattern as discussed in Section 2.
Filled lines represent inputs and outputs while thick dashed lines
represent optional inputs and outputs. Thin dashed lines represent
conceptual and conformance relationships, and indicate evolution.
Regarding the upper part, a model transformation receives a set of
models as input and produces a set of models as output. Option-
ally, it can automatically produce a special kind of output model,
namely a trace model. It captures the relationships between ele-
ments of input models and output models by defining trace links.
Each trace link corresponds to the execution of a transformation
rule as we will see later in more detail.

The lower part describes the evolution of transformations and
captures the main steps of our approach. Here, evolution means
that at least one change has occurred in the original transformation.
The set of change types that we consider in this paper is described
in Section 3.3. With the original transformation and the evolved
one, we produce a so-called diff model [17] that describes the dif-
ferences between the two transformation versions. Subsequently,
a Higher-Order Transformation (HOT)1 [1, 26, 28] takes this diff
model and the two transformation versions as input and produces a
new transformation called Patch Transformation (PT). It defines the
transformation rules required to co-evolve existing output models
according to changes in the transformation that has been executed
to produce these models.

A PT can have up to three (sets of) input models. Output models
produced from the original transformation are considered as input
models of a PT because they are evolved according to the changes
indicated by a PT. The trace model and existing input models of
the original transformation are optional inputs for a PT. Evidently,
the more information is provided as input, the more accurate the
evolved output models can be. In this work, we consider the case
where all three inputs are available. Thereby, a PT is capable of
producing results, i.e., output models and trace models, that are

1According to [26], “a HOT is a model transformation such that its
input and/or output models are themselves transformation models”.

Input Models
Output Models

Transformation

Input Metamodels Output Metamodels

conforms to
conforms to

Transformation’

Output Models’

evolves

Patch
Transformation

Higher Order Transformation

defined with
respect to

Trace Model

Diff Model

Trace Model’ conforms to

Figure 2: Patch transformation generation at a glance.

equal compared to results gained from entirely re-executing the
changed transformation for which a PT has been generated.

3.2 Transformation Language Elements
We have selected the ATL language as a proof-of-concept for our

approach. It is a hybrid model transformation language containing
a mixture of declarative and imperative constructs. ATL transfor-
mations are unidirectional, operate on read-only input models and
produce write-only output models. As we will see later, this is an
important property of ATL to facilitate patch transformations. In
this paper, we set our focus on ATL’s declarative part. The meta-
model depicted in Figure 3(a) summarizes the main concepts.

A Transformation is composed of declarative MatchedRules. It
gets passed Models as input and produces output Models, which
conform to a metamodel (cf. Figure 3(b)). A MatchedRule con-
tains one InPattern and one OutPattern. The former is a query on
the input model and gathers the set of InPatternElements that rep-
resent the input model elements of the rule. It can also contain a
Filter. If the conditions of such a Filter are satisfied by the InPat-
ternElements, the respective rule is applied. Filters are specified by
means of OCL (Object Constraint Language) expressions. OutPat-
terns describe the creation of elements in the output model. Such
elements are of type OutPatternElements. Each OutPatternElement
is composed of a set of Bindings. Their values are expressed and
computed by OCL expressions that are used to initialize the fea-
tures of output model elements.

Concerning the semantics of ATL, the order in which the rules
are defined does not affect the computation of output models, due
to a two-phase process. In the first phase, matching conditions of
rules, i.e., InPatterns, are evaluated. Then, ATL’s execution en-
gine allocates the set of output model elements that correspond to
OutPatterns declared in evaluated rules. In the second phase, these
output model elements are initialized by feature values obtained by
Bindings.

Listing 1 depicts an excerpt of the Java2UML transformation.
It is currently developed and continuously revised in the ARTIST
project [4]. The transformation consists of 29 rules that are defined
according to the Java metamodel (JMM) provided by MoDisco [7]
and the UML metamodel (UMLMM), which comes with the Eclipse
modeling distribution. Basically, Java packages and class decla-
rations are transformed to their UML correspondences. For the
purpose of demonstrating a running example, we assume that only
class declarations contained by certain packages, i.e., domain and
web, are considered. This behavior is achieved by the defined Fil-

(a)

Transformation

MatchedRule
name : String
rules 1..*

1..1
inPattern

InPattern
InPatternElement
name : String

1..*
elements

Filter0..1
filter

OutPattern

outPattern
1..1

OutPatternElement
name : String

elements
1..*

1..*

bindings
Binding

(b)

Class Feature

Reference Attribute

0..*
features

class
1..1 1..1feature

class
1..1

OCLExp
1..1condition

value

Metamodel
0..*

classes

in out

(c)
TraceLink

ruleName : String
TraceElement

patternName : String

0..*
inElements

Trace
0..*

links
0..*

outElements

1..* 1..*
Model

conformsTo 1..1

1..1

ModelElement

class1..1

value

1..1

Figure 3: Metamodel excerpts: (a) transformation language, (b)
metamodeling language, and (c) trace language.

ter of the InPattern in the second MatchedRule. The Bindings of
the two rules ensure that the names of the packages and classes as
well as the references in-between are pushed from the Java (input)
models to the produced UML (output) models. For demonstration
purposes, we assume a revision of the shown transformation that
refers to the Filter condition of the second rule. Thereby, class
declarations contained by the service package instead of the web
package are expected in the produced UML model.

Listing 1: Java2UML ATL transformation evolution.

r u l e Pack2Pack{
from s :JMM !Package
to t :UMLMM !Package (

name <− s .name ,
packagedElement <− s .ownedElements) }

r u l e Class2Class{
from s :JMM !ClassDeclaration (

Set{’domain’,’web’}->includes(s.package.name)
Set{’domain’,’service’}->includes(s.package.name))

to t :UMLMM !Class (name <− s .name) }

Let us comment on a feature of transformation languages that
we call inter-rule dependencies. In our transformation, the return
type of the value expression s.ownedElements is of type Sequence(
JMM!AbstractTypeElement). Thus, it may also contain classes as
JMM!ClassDeclaration is a subtype of JMM!AbstractTypeElement.
For that reason, when the Binding is computed, packagedElement
will reference, among others, those elements created in the second
rule2. It is important that we explicitly deal with these dependencies
when creating patch transformations. In case of our transformation,
a modification in the second rule may cause the re-computation of
the second Binding in the first rule. To deal with such situations, we
perform a static analysis on the revised transformation. It consists
of using a HOT to determine the return types of value expressions
of Bindings. Then, we calculate the dependencies between Bind-
ings and transformation rules. As we explain in Section 3.3, we
use these explicit dependencies when generating patch transforma-
tions.

Finally, we use in our approach an explicit trace metamodel (cf.
Figure 3(c)). In fact, we automatically obtain a trace model from a
transformation execution, e.g., by using Jouault’s TraceAdder [14].
A Trace is composed of TraceLinks. A TraceLink captures the
name of applied MatchedRule and contains TraceElements. These
elements contain the name of the corresponding InPatternElement
or OutPatternElement and reference to the input model elements
or output model elements that have been queried or generated, re-
spectively. To sum up, trace models explicitly capture transforma-
tion rule executions and information about input model elements
that contributed to the generation of output model elements. An
example trace model for a possible execution of the Java2UML
transformation is shown in Figure 4.

:TraceLink
ruleName=
“Pack2Pack“

:Trace

:TraceLink
ruleName=
“Class2Class“

:TraceElement
patternName=“t“

:TraceElement
patternName=“t“

:TraceElement
patternName=“s“

:ClassDeclaration
name=“Order“

:Package
name=“domain”

:Class
name=“Order“

:Package
name=“domain“

InputModel TraceModel OutputModel

:TraceElement
patternName=“s“

owned
Elements

packaged
Elements

value

valuevalue

value inEl.

inEl. outEl.

links

links

outEl.

Figure 4: Example trace model fragment for Java2UML.

2ATL performs a transparent lookup of output model elements for
given input model elements when executing Bindings. Hence, it
automatically retrieves corresponding UML elements for queried
JMM elements.

3.3 Change Types and Patch Requirements
The types of changes we have considered for the evolution of a

transformation and their co-changes for existing output models are
summarized in Table 1. We aim for completeness of our approach
by systematically considering the addition and deletion of instances
for any metaclass in the transformation metamodel (cf. Figure 3(a))
and modifications of their features.

MatchedRule. Adding or deleting a MatchedRule implies to add
or delete the elements that the rule creates. A change of the rule
name is propagated to the trace model, to keep it properly updated.

InPatternElement. If an InPatternElement is added or deleted,
the matches of a rule for a given input model may change as well.
For instance, if we had only one InPatternElement and we add an-
other one, the match is realized now with the cartesian product of
both element types. Contrarily, if we remove an InPatternElement,
the number of matches for a rule may decrease. Furthermore, the
addition or deletion of an InPatternElement may lead to a change
of the OutPattern in the rule provided that the variable referring to
the new/old InPatternElement is used in one or several Bindings.
As a result, we delete all the changes produced by the rule and ex-
ecute it. Similarly, when the class feature of an InPatternElement
changes, we consider it as an addition and a deletion. As for the
modification of its name feature, we need to propagate the change
to the trace model.

Filter. The effect of adding, deleting, or modifying a Filter is
equally treated. Even if a Filter is not defined, we can still consider
one whose condition is set to true. Similarly, if a Filter is removed,
it is the same as changing it to true. Consequently, we consider the
three cases as if the Filter is modified. In a first step, elements are
added to the output model that are created from elements in the in-
put model that now satisfy the Filter, whereas, in a second step, el-
ements are deleted in the output model that correspond to elements
in the input model that do not satisfy Filter anymore. Finally, the
the corresponding Bindings are executed.

OutPatternElement. Adding or deleting an OutPatternElement
implies to add or delete the respective elements in the output model
and to re-execute corresponding Bindings. If the class feature is
changed, we consider it as addition and deletion of the OutPatter-
nElement, whereas the modification of the name feature is propa-
gated to the trace model.

Binding. In case a Binding is added or deleted, the effect is to
compute its value or delete the value that was previously computed.
If the value expression of a Binding changes, it has to be recom-
puted and reassigned, whereas if the target feature is changed, we
consider it as an addition and a deletion of the Binding.

Apart from the co-changes described above, we also have to take
into account the dependencies between bindings and rules as ex-
plained in Section 3.2. If changes occur in MatchedRules, InPat-
ternElements, Filters and OutPatternElements (except for modifi-
cation of name features), we need to check if such changes are in-
volved in explicit dependencies. If they are, generated patch trans-
formations ensure that the pertinent Bindings are recomputed.

The way patch transformations are executed to produce evolved
output models follow the same semantics ATL applies for full exe-
cution (cf. Section 3.2). In a first phase, the output model elements
are appropriately added or deleted. Subsequently, in the second
phase, feature values of the output model elements are computed if
necessary. The latter implies the execution of affected bindings.

Listing 2 presents the patch transformation inferred from the re-
vision of the original out-place transformation in Listing 1. It is
defined in ATL’s refining mode that enables an in-place transfor-
mation strategy [29].

Table 1: Change types and co-changes.

Concept Change type Co change in outputmodel
Addition Execution of MatchedRule
Deletion Deletion of previously produced elements
Modification
(name feature)

Propagation of name change to trace model
(ruleName feature)

Addition
Deletion

1. Deletion of previously produced elements
2. Execution of the MatchedRule

Modification
(class feature)

Considered as Addition and Deletion of
InPatternElement

Modification
(name feature)

Propagation of name change to trace model
(patternName feature)

Filter

Addition
Deletion
Modification
(condition feature)

1. Deletion of elements that do not satisfy the
Filter

2. Creation of elements that satisfy the Filter
3. Execution of Bindings

Addition
1. Creation of elements
2. Execution of its Bindings

Deletion Deletion of previously produced elements
Modification
(class feature)

Considered as Addition and Deletion of
OutPatternElement

Modification
(name feature)

Propagation of name change to trace model
(patternName feature)

Addition Execution of added Binding
Deletion Deletion of feature values
Modification
(value feature)

Re execution of changed Binding

Modification
(feature feature)

Considered as Addition and Deletion of
Binding

MatchedRule

InPattern
Element

OutPattern
Element

Binding

Listing 2: Patch transformation in ATL refining mode.

r u l e PatchFilterDelete {
from s :UMLMM !Class (thisModule .rems−>includes (s)) }

r u l e PatchFilterAdd {
from s :JMM !ClassDeclaration (thisModule .adds−>

includes (s))
to t :UMLMM !Class (name <− s1 .name) }

r u l e Pack2Pack {
from ps :UMLMM !Package

us ing {s :JMM !Package = thisModule .tls−>any (e | e .
outElements−>exists (f | f .value = ps)) .
inElements−>any (e | e .patternName = ’ t ’) .
value ; }

to
t :UMLMM !Package (
packagedElement <− ps .packagedElement−>union (

JMM !ClassDeclaration .allInstances () −>
select (e | s .ownedElements−>includes (e) and
thisModule .adds−>includes (e)))) }

In the first rule, produced elements of existing models that do
not satisfy the revised filter condition are deleted, whereas in the
second rule, elements that have previously not satisfied the filter
condition but satisfy the revised one are produced. In our example,
these elements refer to UML classes of the original output model.
The pertinent UML classes are computed prior to the execution of
the patch rules and provided by the respective sets, i.e., rems and
adds. They are accomplished by executing the original and revised
filter conditions against the original input model and calculating
their differences. The third rule is dedicated to the re-execution of
bindings affected by transformation revisions. Even though in our
example the binding itself has not been explicitly revised, its re-
execution is required to ensure that newly added UML classes are
appropriately referenced by their containing UML packages. As
such packages can already contain classes, the union operator needs
to be applied to accomplish the expected result. In this respect, the
pertinent Java packages are required as well. They are queried from
the trace model in the using part of the patch transformation.

3.4 Implementation
We have implemented our approach as an experimental proto-

type in the Eclipse environment. It is available at our project web
site [20]. To compute the differences between ATL transforma-
tion versions, we first inject the transformation code into a model
representation by using the ATL injector component. This model-
based representation of the transformations allows us to employ
EMF Compare3 for computing the differences between them. To
get a more concise diff model for our purposes, we provide some
aggregation of diff elements as post-processing step of the compar-
ison. As a result, we get a solid basis for producing patch transfor-
mations. To generate them from diff models, Xtend4 is employed.
Patch transformations are expressed in ATL code. We use the re-
finement mode of ATL to realize them in terms of in-place transfor-
mations. Finally, to execute the patch transformations, we use the
ATL/EMF Transformation Virtual Machine [29] due to some ad-
vanced features and support for true in-place execution instead of
entirely copying the input model as it is performed by the standard
ATL virtual machine.

4. EVALUATION
To evaluate our approach, we investigated the Java2UML re-

verse-engineering case study that is developed and continuously
evolved in the ARTIST project by means of model transformations.
With this case study, we aim to answer the two research questions:

RQ1: Are patch transformations equally effective as the revised
transformations based on which they are inferred?

RQ2: How is the speed-up of executing patch transformations
compared to re-executing the pertinent revised transformation?

4.1 Case Study Setup
For the purpose of our case study, we selected a Java2UML

transformation that shows an extensive and well-documented evo-
lution. As input models for this transformation, we selected a refer-
ence application of the ARTIST project, which is based on the Java
Petstore5, and a framework that is of high relevance in this respect:
EclipseLink6. The main rational behind the reverse-engineering
of frameworks is to provide their annotations at the model level
in terms of corresponding UML profiles [5]. To generate the re-
spective Java models for the reference application and EclipseLink,
we employed MoDisco. We selected six different revisions of the
Java2UML transformation that have been performed throughout its
development to cover the presented change types and the core ef-
fects of patch transformations. Based on these revisions, we in-
ferred the corresponding patch transformations.

To answer RQ1, in a first step, we executed both the revised
transformations and the inferred patch transformations. The pro-
duced output models of the transformations are the basis to investi-
gate on the effectiveness of patch transformations compared to their
corresponding revised transformations. Then, in a second step, we
passed the respective pairs of output models to EMF Compare to
automate the comparison task. Clearly, the diff model computed
by EMF Compare needs to be empty to show that the produced
output models are equal. It is important to note that the element
identifiers can be different in the output models as patch transfor-
mations preserve them while they are newly produced if revised
out-place transformations are re-executed.

3
www.eclipse.org/emf/compare

4
www.eclipse.org/xtend

5
www.oracle.com/technetwork/java

6
www.eclipse.org/eclipselink

To answer RQ2, we measured and compared the pertinent exe-
cution times of patch transformations and their respective revised
transformations. For obtaining the measures, we executed the trans-
formations in the Eclipse environment on commodity hardware:
Intel Core i5-2520M CPU, 2.50 GHz, 8,00 GB RAM, 64 Bit OS.
Thereby, a first impression of possible performance improvements
by executing patch transformations instead of entirely re-executing
revised transformation is given. All relevant artifacts of our case
study are available at our project website [20].

4.2 Case Study Results
Considering the output models of the revised transformations

and the patch transformations (RQ1), their comparison shows that
our approach produces effective results. In fact, the updates of our
patch transformations to the output models reflect exactly the in-
tended effects of the revisions performed to the original transfor-
mation. Clearly, as patch transformations only update the output
models based on an in-place execution strategy, identifiers of ex-
isting elements and possible manual changes to elements that need
not to be patched are preserved.

Turning now the focus to the runtime efficiency of our approach
(RQ2), generally, our inferred patch transformations execute less
rules compared to the revised transformations. The number of re-
quired rules of a patch transformation slightly varies depending
on the considered change type. In our case study, one up to six
rules were required to build-up a patch transformation. Clearly,
this number increases if certain rules need to be re-executed as a
result of revising another rule (cf. inter-rule dependencies). Such
dependencies lead to patch transformations covering not only re-
vised rules but also rules that are affected by the performed revi-
sions, e.g., bindings, as shown in Listing 1. Finally, the adaptation
of the trace model requires also additional rules in the patch trans-
formation, e.g., when matched rules are added. While the number
of rules have certainly an impact on the execution time of patch
transformations, our results show that their need to traverse and
query the traces of the original transformation produces an over-
head compared to the revised transformations. Still, in our case
study, for the majority of patch transformations a speed-up can be
observed, as summarized in Table 2. In fact, only in one case, such
a speed-up could not be achieved as the input and output models
of the reference application are rather small and the inferred patch
transformation for this case is more complex compared to other
ones. However, the benefit of patch transformations to guarantee

Change Type Revised Patch Revised Patch
MatchedRule
Addition

0,076 0,067 1,134 6,698 4,766 1,405

MatchedRule
Deletion

0,057 0,014 4,071 6,114 1,417 4,315

Filter
Modification

0,066 0,079 0,835 5,854 4,987 1,174

OutPattern
Element
Addition

0,066 0,058 1,138 7,531 3,149 2,392

Binding
Addition

0,063 0,010 6,300 6,687 0,104 64,298

Binding
Deletion

0,064 0,009 7,111 6,882 0,058 118,655

Speed Up Speed Up

EclipseLink
(> 100.000 Elements)

Reference Appliction
(> 1000 Elements)

Transformation Transformation

Table 2: Re-execution vs. patch execution (time measures in sec.)

a non-invasive update to the output models is in our case study al-
ways given.

Threats to validity. We focussed on the Java2UML case study
and applied patch transformations on small to large models that
represent real-world applications and frameworks. Concerning in-
ternal validity, we need to further explore different combinations of
changes and investigate if they can be correctly detected and effi-
ciently propagated. Concerning external validity, we cannot claim
any results outside of our performed case study concerning other
transformation languages or transformations. We leave these con-
siderations as subject to future work.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented the problem of transformation/out-

put model co-evolution and tackled it by reformulating changes on
out-place transformations in terms of in-place patch transforma-
tions for existing output models. We demonstrated our approach
for the declarative part of ATL and showed its benefits in a real-
world case study. While our results are already promising, several
lines of future work remain. First, we plan to tackle the problem
of re-calculating trace models in cases where they are missing by
transforming out-place transformations to match transformations.
Second, we want to explore the extreme case where input models
are missing for existing output models. In this respect, the question
arise to which extent the output models can be kept conform to new
transformation versions.

Acknowledgement
This work is co-funded by the European Commission under the
ICT Policy Support Programme, grant no. 317859.

6. REFERENCES
[1] C. Amelunxen, E. Legros, and A. Schürr. Generic and

reflective graph transformations for the checking and
enforcement of modeling guidelines. In VL/HCC, 2008.

[2] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay,
G. Selim, E. Syriani, and M. Wimmer. Towards a model
transformation intent catalog. In Analysis of Model
Transformations Workshop @ MODELS, 2012.

[3] G. Bergmann, I. Ráth, G. Varró, and D. Varró. Change-driven
model transformations - change (in) the rule to rule the
change. SoSyM, 11(3):431–461, 2012.

[4] A. Bergmayr, H. Bruneliere, J. L. Cánovas Izquierdo,
J. Gorroñogoitia, G. Kousiouris, D. Kyriazis, P. Langer,
A. Menychtas, L. Orue-Echevarria Arrieta, C. Pezuela, and
M. Wimmer. Migrating Legacy Software to the Cloud with
ARTIST. In CSMR, 2013.

[5] A. Bergmayr, M. Grossniklaus, M. Wimmer, and G. Kappel.
JUMP—From Java Annotations to UML Profiles. In
MODELS, 2014.

[6] M. Brambilla, J. Cabot, and M. Wimmer. Model-Driven
Software Engineering in Practice. Morgan & Claypool,
2012.

[7] H. Bruneliere, J. Cabot, F. Jouault, and F. Madiot. MoDisco:
A Generic and Extensible Framework for Model Driven
Reverse Engineering. In ASE, 2010.

[8] K. Czarnecki and S. Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal,
45(3):621–646, 2006.

[9] J. Etzlstorfer, A. Kusel, E. Kapsammer, P. Langer,
W. Retschitzegger, J. Schoenboeck, W. Schwinger, and

M. Wimmer. A Survey on Incremental Model
Transformation Approaches. In Models & Evolution
Workshop @ MoDELS, 2013.

[10] J. García, O. Díaz, and M. Azanza. Model Transformation
Co-evolution: A Semi-automatic Approach. In SLE, 2012.

[11] D. Hearnden, M. Lawley, and K. Raymond. Incremental
Model Transformation for the Evolution of Model-Driven
Systems. In MoDELS, 2006.

[12] L. Iovino, A. Pierantonio, and I. Malavolta. On the Impact
Significance of Metamodel Evolution in MDE. JOT,
11(3):3:1–33, 2012.

[13] S. Johann and A. Egyed. Instant and incremental
transformation of models. In ASE, 2004.

[14] F. Jouault. Loosely Coupled Traceability for ATL. In
Workshop Proceedings of ECMDA, 2005.

[15] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A
model transformation tool. SCP, 72(1-2):31–39, 2008.

[16] F. Jouault and M. Tisi. Towards Incremental Execution of
ATL Transformations. In ICMT, 2010.

[17] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige.
Different models for model matching: An analysis of
approaches to support model differencing. In CVSM
Workshop @ ICSE, pages 1–6, 2009.

[18] T. Levendovszky, D. Balasubramanian, A. Narayanan, and
G. Karsai. A Novel Approach to Semi-automated Evolution
of DSML Model Transformation. In SLE, 2009.

[19] T. Mens and P. V. Gorp. A taxonomy of model
transformation. ENTCS, 152:125–142, 2006.

[20] Patch Transformations. http://code.google.com/a/
eclipselabs.org/p/patch-transformations, 2014.

[21] I. Ráth, G. Bergmann, A. Ökrös, and D. Varró. Live Model
Transformations Driven by Incremental Pattern Matching. In
ICMT, 2008.

[22] A. Razavi and K. Kontogiannis. Partial Evaluation of Model
Transformations. In ICSE, 2012.

[23] A. Rentschler, Q. Noorshams, L. Happe, and R. Reussner.
Interactive Visual Analytics for Efficient Maintenance of
Model Transformations. In ICMT, 2013.

[24] D. D. Ruscio, L. Iovino, and A. Pierantonio. A
Methodological Approach for the Coupled Evolution of
Metamodels and ATL Transformations. In ICMT, 2013.

[25] S. Sendall and W. Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE
Software, 20(5):42–45, 2003.

[26] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On
the Use of Higher-Order Model Transformations. In
ECMDA-FA, 2009.

[27] M. van Amstel and M. G. J. van den Brand. Model
Transformation Analysis: Staying Ahead of the Maintenance
Nightmare. In ICMT, 2011.

[28] D. Varró and A. Pataricza. Generic and meta-transformations
for model transformation engineering. In UML, 2004.

[29] D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault. Towards a
General Composition Semantics for Rule-Based Model
Transformation. In MODELS, 2011.

[30] M. Wimmer, G. Kappel, J. Schönböck, A. Kusel,
W. Retschitzegger, and W. Schwinger. A Petri Net Based
Debugging Environment for QVT Relations. In ASE, 2009.

