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Abstract. Ecosystems are directly and negatively affected by many in-
dustrial risky activities such as the oil transportation and exploitation. It
is therefore important that oil companies carry out a correct maintenance
of their oil fields. In this work we implement in our previously proposed
evolutionary optimization tool (called PAE) a set of constraint-handling
techniques to solve a constrained version of the maintenance problem.
The results and comparisons demonstrated that the proposed repair al-
gorithm required less computational effort (evaluations) with the same
quality of solutions for the set of instances used.

1 Introduction

In general, constraints are an integral part of the formulation of any problem.
Coello Coello [1] describes a useful taxonomy of constraint handling techniques
including: (1) Penalty functions, (2) special representations and operators, (3)
repair algorithms, (4) separations of objectives and constraints and (5) hybrid
methods. Penalty functions [7] decrease the fitness of infeasible solutions as to
prefer feasible solution in the selection process. Special representation and op-
erators are designed to represent only feasible solutions and the operators are
able to preserve the feasibility of offspring generated. Repair algorithms aim to
transform an infeasible solution into a feasible one. The separation of objectives
and constraints consists on using these values as separated criteria in the selec-
tion process of an EA; this is opposed to penalty functions, where the values of
the objective function and the constraints are combined into one single value.
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Finally, hybrid methods are combination of different algorithms and/or mech-
anisms e.g., fuzzy-logic with EAs, cultural algorithms [6] and immune systems
[3].

The most common way of incorporating constraints into an EA have been
penalty functions. Penalty functions were originally proposed by Courant in the
1940s [2]. The idea of this method is to transform an optimization problem with
constraints in an optimization problem without any constraint. This is achieved
by adding (or subtracting) a certain value to the function objective keeping in
mind the amount of violation presented in certain solution.

Two types of penalty functions exist: exterior and interior. Exterior penalty
is the most usual method applied in EAs. The main reason for this is because
they do not require feasible solutions to proceed with the search. In fact, for
many applications where EAs are applied, find at least one initial feasible solu-
tion is NP-Hard [10].
As regards repair algorithms, in many combinatorial optimization problems is
relatively easy to “repair” an infeasible solution (i.e., to make feasible an infea-
sible solution). Such a repaired version can be used either for evaluation only, or
it can be also replace (with some probability) the original solution. The question
of replacing repaired solutions is related with the so-called Lamarckian evolu-
tion, which assumes that an individual improves during its lifetime and that the
resulting improvements are coded back into the chromosome [11]. We applied
this concept to our problem of oil wells maintenance scheduling in [8].
The contribution of this paper is the study of the performance of PAE, our pre-
viously proposed evolutionary optimization tool by considering a set of penalty
functions and repair algorithms based on set of well known constraint-handling
techniques.
The paper continues as follows. Section 2 shows the domain and problem de-
scription. Section 3 describes the evolutionary algorithm proposed to solve the
problem. Section 4 presents the penalty functions and repair algorithms used in
our experimental study whereas Section 5 shows experimental tests and results,
and finally in Section 6, we give some conclusions and analyze future research
directions.

2 Domain and Description of the Problem

Oil Companies carry out maintenance or prevention visits to each of their oil
wells (producing wells, injectors, batteries, and collectors). An oil field is formed
by batteries, each battery contains about 20 oil wells. Each oil well has different
production levels known a priori and they vary in time. The well production
defines the category and the number of times that it shall be visited in a month.
The oil wells can not be visited more than once in the same shift and depending
on its type there are some tasks that shall be carried out. Each task has been
given the necessary equipment, a frequency of realization and an approximate
time for its duration. Currently the route carried out by the team in charge of
maintenance visits is scheduled based on their experience. A work day begins
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in the morning and the oil wells are visited in two shifts of three hours. After
a shift is concluded the team in charge should return to the base to carry out
certain administrative activities and then continue with the following shift. The
demanded time in each oil well will depend on its type. Occasionally, there are
oil wells that for diverse causes should be visited more than once (twice or three
times) in different shifts, and these are constraints imposed to this problem.

2.1 Problem Formulation

The problem can be precisely stated as defined in [9]:

1|Sjk|Cmax (1)

It denotes a single-machine scheduling problem with n jobs subject to sequence-
dependent setup times, where the jobs to be scheduled are the maintenance (or
intervention) service in each one of the oil wells. The objective is to minimize
the makespan (Cmax) subject to the dependent times of preparation of the se-
quence. This model leads to an optimization problem that is NP-Hard [9]. The
makespan can be calculated as:

n∑

k=1

(Sjk + tk) (2)

where Sjk represents the cost (in time) of going from oil well j to oil well k, tk
the respective time of maintenance in location k, and n the total number of oil
wells in the field. Moreover, the above formulation can be extended as follows:

Definition 1 Let OW1 ⊂ {1, . . . , N} and OW2 ⊂ {1, . . . ,M} be two subsets
of the all oil wells in the field where OW1 ∩ OW2 = ∅. OW1 represents the oil
wells that should be visited twice and OW2 represents the oil wells that should be
three times. Furthermore, the oil wells in OW1 or in OW2 can not be scheduled
in the same shift. A solution of a constrained instance of the problem that not
fulfill the above conditions is considered an infeasible solution.

As explained in further sections, the introduction of the above constraints
will affect the design of the EA as it necessary to consider a constraint handling
technique to solve this problem under the new formulation.

3 PAE: the evolutionary tool

To solve the problem under the evolutionary approach, the first step was de-
veloping an adequate encoding of the visits to the oil wells that represents a
solution to the problem. A schedule of visits was encoded in a chromosome as a
sequence of oil wells represented by natural numbers. Therefore, a chromosome
will be a permutation p = (p1, p2, . . . , pn) where n is the quantity of oil wells
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to be visited3. Each element pi represents the i− th oil well that will be visited
according to the sequence of visits.

Algorithm 1 EA-MCMP-SRI
1: t = 0 {current generation}
2: initialize Stud(t)
3: evaluate Stud(t)
4: while not max evaluations do
5: mating pool = Generate Random Immigrant ∪ Select (Stud(t))
6: while not max parents do
7: while max recombinations do
8: evolve (mating pool){recombination and mutation}
9: end while

10: end while
11: evaluate (mating pool)
12: Stud(t+1) = select new population from mating pool
13: t = t + 1
14: end while

In Algorithm 1 is presented a general outline of EA-MCMP-SRI, used for
solving our problem and explained in the following. The algorithm creates an
initial stud population Stud(0) of solutions to the scheduling problem in a ran-
dom way, and then these solutions are evaluated. After that, the stud population
undergoes a multirecombined process where the algorithm creates a mating pool
which contains the stud and random immigrants. The process for creating off-
spring is performed as follows. The stud mates with each of the parents, then
couples undergo crossover and 2×n2 (n2 ≤ max parents) offspring are created.
The best of this 2 × n2 offspring is stored in a temporary children pool. The
crossover operation is repeated n1 times (max recombinations) for different cut
points each time, until the children pool is completed. Children may or may not
undergo mutation. Finally, the best offspring created from n2 parents and n1
crossover is inserted in the new population.

The recombination operator used in this algorithm was PMX (Partial Mapped
Crossover). This operator was proposed by Goldberg and Lingle [4]. It can be
viewed as an extension of two-cut crossover for binary string to permutation rep-
resentation. For the mutation operation used, named Swapping Mutation (SM),
we select two random positions and then swap their genes. The selection operator
used for selecting an individual was a Proportional Selection.

In our evolutionary tool, a schedule of visits was encoded in a chromosome
as a sequence of oil wells represented by natural numbers. The chromosome
gives the sequence order to be followed in order to visit each oil well. Also,
one keeps in mind that exist oil wells that should be visited more than once

3 It must be noticed that n will varies according the possible elements in OW1 and
OW2 as explained further in this section.
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(according to OW1 and OW2) which implies that many solutions visited in
the search space will be infeasible. Moreover, for the constrained version of our
problem, the chromosome length will be n = m + |OW1| + |OW2|, i.e., p =
(p1, . . . , pm, pm+1, . . . , pn) where m is the total number of oil wells and |OW1|+
|OW2| is the number of the oil wells that must be visited twice or three times.
Thus, a pi ∈ {m + 1, . . . , n} decodes in an integer number that belongs either
to OW1 or OW2. When a solution is evaluated a penalty function or a repair
algorithm is applied to infeasible solutions depending on the approach that is
being used.

4 Penalty Functions and Repair algorithms considered

To handling constraints in the maintenance scheduling of oil wells we proposed
different techniques: three penalty functions and three repair algorithms.

4.1 Penalty Functions

To handling constraints with penalty functions, the fitness function f(p) is usu-
ally transformed in F (p) = f(p) + P(p) (for a minimization problem) where
P(p) is called the penalty function. In the present work the penalty function
was defined in the following way:

– Let us consider an infeasible solution p = (p1, .., pn). Accordingly, there will
be components that do not satisfy the problem constraint. The corresponding
penalty function P(p) will consider each one of these components as follows:

P(p) = 2×
∑

h∈H

shk

where H is the set of oil wells in solution p that not fulfill the problem con-
straint, h is a particular oil well, and shk represents the cost (in kilometers)
of going from oil well h to the base of operations k.

According to the above defined basic penalty function P, we present the following
combinations of Static, Dynamic and Adaptive penalty functions as follows:

A. Static Penalty (STT): Consists of applying the penalty function P(p)
to the infeasible solution. That is to say, adding to the fitness function the
penalty value obtained.

F (p) = f(p) + P(p)

B. Dynamic Penalties (DYN): Consist of multiplied the penalty function
P(p) by the value returned by the following monotonically increasing func-
tion:

V (g) =
(

g

G

)2
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where g is the current generation, G is the total number of generations, and
0 ≤ V (g) ≤ 1.

F (p) = f(p) + [P(p)× V (g)]
C. Adaptive Penalty (ADP):

For the adaptive approach we propose an adaptive coefficient (ρ) that mod-
ifies the penalty function. ρ is updated keeping in mind the degree of con-
straints violation. To achieve this objective a generations window (fixed in
10 generations) is analyzed and the penalty value imposed is increased or
decreased as corresponds. The fitness function is calculated as:

F (p) = f(p) + [P(p)× ρ]

where ρ ∈ (0, 2) and is calculated analyzing the violations average in the
generations window called AVw and the violations average in the currently
generation called AVc as stated bellow:

Vg =
AVw −AVc

AVw
× 100

Taking in mind the violation grade Vg, ρ is updated as:

ρ =





ρ + k if Vg < −0.25
ρ− k if Vg > 0.25
ρ otherwise

where k is set to 0.025.

4.2 Repair Algorithms

Three repair algorithms were implemented and they are described in the follow-
ing:

1. Lamarckian Approach (LMCK): Consist of genetically modify an in-
feasible solution and the transformed infeasible solution, i.e., an feasible one,
replaces the infeasible one in the population for further evolution.

2. Baldwinian Approach (BLDW): A less destructive approach of the
infeasible solutions allows combine learning and evolution. In this approach
the solutions are repaired only for their evaluation. Analytic and empiric
studies indicate that this technique reduces the speed of convergence of the
evolutionary algorithm and allows converging to global optimum [12].

3. Annealing Approach (ANNL): This approach is based on the main con-
cepts involved in Simulated Annealing [5]. The infeasible solutions are ac-
cepted with certain probability. At first stages the infeasible solutions are
accepted then this probability of acceptation is decreasing. When a infeasi-
ble solution is not accepted it is repaired.

In all the above approaches, the process of repairing a solution consists in swap-
ping the oil well that is located in an incorrect shift with an randomly selected
oil well located in a different shift. This process is repeated to every oil well that
not fulfill the problem constraint.
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5 Experiments and Results

In order to test the performance of the approaches applied to this problem we
performed three experiments considering an oil field with 110 oils wells and two
different sets OW1 and OW2 respectively. We defined six instances described
in Table 1, where column Ins represents the instance’s name, and |OW1| and
|OW2| represents respectively the quantity of oil wells that should be visited
twice and three times.

Table 1. Instances used in the experiments determined by OW1 and OW2.

Ins |OW1| |OW2|
I1 15 0

I2 17 0

I3 19 0

I4 8 8

I5 9 9

I6 10 10

In the first experiment we compared the results obtained with the three
penalty functions using instances I1, I2, and I3. In the second experiment, we
compared the results obtained with the three repair algorithms using the same
set of instances as before. And finally, in the third experiment the best tech-
nique of the previous experiments is compared using instances I4, I5, and I6.
Table 2 displays the obtained results for the first and second experiments where
the following information is showed in the respective columns: Ins is the in-
stance’s name, A is the used constraint-handling technique, Median represents
the median kilometers traveled, Avg represents the average kilometers traveled,
and Evals represents the number of thousands of evaluations made by each ap-
proach. It should be particularly noticed that any further reference to STT, DYN,
and ADP, stands for the EA-MCMP-SRI algorithm implementing the respective
penalty function and LMCK, BLDW and ANNL stands for the EA-MCMP-SRI
algorithm implementing the respective repair algorithm. In Table 2 for the first
group (the first three rows belonging to penalty functions approaches) it can
be observed that for all instances DYN obtained the minimum values for the
median kilometers traveled and for two instances (I1 and I3) obtained minimum
values for the average kilometers traveled. As regards the evaluations for two
instances (I2 and I3) ADP obtained the minimum values. For the second ex-
periment (the last three rows) it can be observed for all instances the minimum
values for median and average of kilometers traveled were obtained by ANNL.
Nevertheless, the minimum number of evaluations were obtained by LCMK for
all instances.

As all samples obtained follow a normal distribution. Thus, we conducted a
statistical analysis (ANOVA test) to compare the performance for the average
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Table 2. Results obtained by STT, DYN, ADP, LMCK, BLDW, and ANNL on in-
stances I1, I2 and I3.

Ins A Median Avg Evals A Median Avg Evals A Median Avg Evals

I1 STT 444.94 447.45 8432 DYN 443.93 438.46 9863 ADP 444.73 441.99 9043

I2 STT 446.84 453.30 9091 DYN 444.81 450.34 9186 ADP 445.66 448.39 8001

I3 STT 457.99 459.01 9145 DYN 446.60 449.83 9473 ADP 447.23 453.74 8919

I1 LMCK 448.24 454.93 8955 BLDW 448.73 455.03 9093 ANNL 444.55 453.51 9088

I2 LMCK 453.44 468.18 8587 BLDW 460.20 476.70 9414 ANNL 447.50 455.02 8692

I3 LMCK 468.98 468.14 8702 BLDW 479.32 477.87 9335 ANNL 447.92 464.96 8980

Table 3. Results obtained by ADP, DYN, and ANNL on instances I4, I5 and I6.

Ins ADP DYN ANNL

– Median Avg Evals Median Avg Evals Median Avg Evals

I4 482.29 486.89 9131 469.01 468.60 10165 464.42 464.88 6127

I5 498.30 502.64 9139 478.62 480.47 9809 479.08 481.01 7077

I6 514.36 514.51 9167 490.69 494.60 10057 490.23 492.61 7008

kilometers traveled obtained by the three penalty functions. From the analysis
we observed that not significative statical differences were found between DYN
and ADP, so both algorithms were used in the third experiment.

Table 3 shows the results obtained from the third experiment. It can be ob-
served that for two instances (I4 and I6) for all variables shown ANNL obtained
the minimum values. While DYN obtained minimum values for instance I5 for
median and average kilometers traveled. To make a deeper analysis of the results
obtained we applied the ANOVA test. In Figure 1(a) for I4 it can be observed
that ANNL obtained the minimum value for the median kilometers traveled.
Nevertheless the median obtained by DYN is very similar and this can also be
observed in Figure 1(b) where the differences between ANNL and ADP are sta-
tistically significatives. Finally, for the evals variable it can be observed in Figure
1 (c) less computational effort (evaluations) required by ANNL that the effort
required by the other two approaches.

In Figure 2(a) for I5 it can be observed that there is little difference between
the medians of DYN and ANNL, with the median obtained by DYN slightly
smaller than the obtained by ANNL. This is confirmed in Figure 2(b) where
statistical differences are detected between ADP and the other two techniques,
ANNL and DYN. Finally, for the evals variable it can be observed in Figure 2
(c) that also for this instance less computational effort (evaluations) is required
by ANNL with respect other techniques. In Figure 3 it can be seen a similar
behavior of the algorithms to that described for Figure 1.
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Fig. 1. (a) Box-plot , (b) Statistical differences and (c) Computational effort for I4

with ADP, DYN and ANNL approaches, respectively.

6 Conclusions

PAE is an application built with the objective of providing an effective tool that
facilitates the scheduling of maintenance visits to oil wells subject to constraints.
Evolutionary Algorithms are metaheuristics that use computational models of
evolutionary process. For the constrained scheduling of oil wells we used a variant
of a multirecombinative approach called EA-MCMP-SRI implementing different
penalty and repair approaches for handling the problem constraint. From the
carried out experiments we can remark that:

– In general, the Dynamic and Annealing approaches obtained similar values
for the analyzed quality variables (median and average kilometers traveled).

– In regards of the computational effort (evaluations) we can said with a 95% of
confidence that the Annealing approach requires less number of evaluations
with the same quality of solutions that the others approaches.

Future works will include the design, implementation and study of a more
advanced constraint handling technique taking into account the results observed
in this work. Also, the formulation of different types of constraints and schedules
based on multiple maintenance teams will be considered.
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