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LOCAL CLASSIFICATION AND EXAMPLES OF AN IMPORTANT CLASS OF

PARACONTACT METRIC MANIFOLDS

VERÓNICA MARTÍN-MOLINA

Abstract. We study paracontact metric (κ, µ)-spaces with κ = −1, equivalent to h2 = 0 but not
h = 0. In particular, we will give an alternative proof of Theorem 3.2 of [11] and present examples
of paracontact metric (−1, 2)-spaces and (−1, 0)-spaces of arbitrary dimension with tensor h of
every possible constant rank. We will also show explicit examples of paracontact metric (−1, µ)-
spaces with tensor h of non-constant rank, which were not known to exist until now.

1. Introduction

Paracontact metric manifolds, the odd-dimensional analogue of paraHermitian manifolds, were
first introduced in [10] and they have been the object of intense study recently, particularly since
the publication of [14]. An important class among paracontact metric manifolds is that of the
(κ, µ)-spaces, which satisfy the nullity condition [5]

(1) R(X,Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX − η(X)hY ),

for all X,Y vector fields on M , where κ and µ are constants and h = 1
2Lξϕ.

This class includes the paraSasakian manifolds [10, 14], the paracontact metric manifolds satisfy-
ing R(X,Y )ξ = 0 for all X,Y [15], certain g-natural paracontact metric structures constructed on
unit tangent sphere bundles [7], etc.

The definition of a paracontact metric (κ, µ)-space was motivated by the relationship between
contact metric and paracontact geometry. More precisely, it was proved in [4] that any non-Sasakian
contact metric (κ, µ)-space accepts two paracontact metric (κ̃, µ̃)-structures with the same contact
form. On the other hand, under certain natural conditions, every non-paraSasakian paracontact
(κ̃, µ̃)-space admits a contact metric (κ, µ)-structure compatible with the same contact form ([5]).

Paracontact metric (κ, µ)-spaces satisfy that h2 = (κ+1)φ2 but this condition does not give any
type of restriction over the value of κ, unlike in contact metric geometry, because the metric of a
paracontact metric manifold is not positive definite. However, it is useful to distinguish the cases
κ > −1, κ < −1 and κ = −1. In the first two, equation (1) determines the curvature completely
and either the tensor h or ϕh are diagonalisable [5]. The case κ = −1 is equivalent to h2 = 0 but
not to h = 0. Indeed, there are examples of paracontact metric (κ, µ)-spaces with h2 = 0 but h 6= 0,
as was first shown in [2, 5, 8, 12].

However, only some particular examples were given of this type of space and no effort had been
made to understand the general behaviour of the tensor h of a paracontact metric (−1, µ)-space
until the author published [11], where a local classification depending on the rank of h was given
in Theorem 3.2. The author also provided explicit examples of all the possible constant values of
the rank of h when µ = 2. She explained why the values µ = 0 and µ = 2 are special and studying
them is enough. Finally, she showed some paracontact metric (−1, 0)-spaces of any dimension with
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2 V. MARTÍN-MOLINA

rank(h) = 1 and of paracontact metric (−1, 0)-spaces of dimension 5 and 7 for any possible constant
rank of h. These were the first examples of this type with µ 6= 2 and dimension greater than 3.

In the present paper, after the preliminaries section, we will give an alternative proof of Theo-
rem 3.2 of [11] that does not use [13] and we will complete the examples of all the possible cases
of constant rank of h by presenting (2n + 1)-dimensional paracontact metric (−1, 0)-spaces with
rank(h) = 2, . . . , n. Lastly, we will also show the first explicit examples ever known of paracontact
metric (−1, 2)-spaces and (−1, 0)-spaces with h of non-constant rank.

2. Preliminaries

An almost paracontact structure on a (2n + 1)-dimensional smooth manifold M is given by a
(1, 1)-tensor field ϕ, a vector field ξ and a 1-form η satisfying the following conditions [10]:

(i) η(ξ) = 1, ϕ2 = I − η ⊗ ξ,
(ii) the eigendistributions D+ and D− of ϕ corresponding to the eigenvalues 1 and −1, respec-

tively, have equal dimension n.

It follows that ϕξ = 0, η ◦ ϕ = 0 and rank(ϕ) = 2n. If an almost paracontact manifold admits a
semi-Riemannian metric g such that

g(ϕX,ϕY ) = −g(X,Y ) + η(X)η(Y ),

for all X,Y on M , then (M,ϕ, ξ, η, g) is called an almost paracontact metric manifold. Then g is
necessarily of signature (n+ 1, n) and satisfies η = g(·, ξ) and g(·, ϕ·) = −g(ϕ·, ·).

We can now define the fundamental 2-form of the almost paracontact metric manifold by Φ(X,Y ) =
g(X,ϕY ). If dη = Φ, then η becomes a contact form (i.e. η ∧ (dη)n 6= 0) and (M,ϕ, ξ, η, g) is said
to be a paracontact metric manifold.

We can also define on a paracontact metric manifold the tensor field h := 1
2Lξϕ, which is sym-

metric with respect to g (i.e. g(hX, Y ) = g(X,hY ), for all X,Y ), anti-commutes with ϕ and satisfies
hξ = trh = 0 and the identity ∇ξ = −ϕ+ ϕh ([14]). Moreover, it vanishes identically if and only if
ξ is a Killing vector field, in which case (M,ϕ, ξ, η, g) is called a K-paracontact manifold.

An almost paracontact structure is said to be normal if and only if the tensor [ϕ, ϕ]−2dη⊗ξ = 0,
where [ϕ, ϕ] is the Nijenhuis tensor of ϕ [14]:

[ϕ, ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

A normal paracontact metric manifold is said to be a paraSasakian manifold and is in particular
K-paracontact. The converse holds in dimension 3 ([6]) but not in general in higher dimensions.
However, it was proved in Theorem 3.1 of [11] that it also holds for (−1, µ)-spaces. Every paraSa-
sakian manifold satisfies

(2) R(X,Y )ξ = −(η(Y )X − η(X)Y ),

for every X,Y on M . The converse is not true, since Examples 3.8–3.11 of [11] and Examples 4.1
and 4.5 of the present one show that there are examples of paracontact metric manifolds satisfying
equation (2) but with h 6= 0 (and therefore not K-paracontact or paraSasakian). Moreover, it is also
clear in Example 4.5 that the rank of h does not need to be constant either, since h can be zero at
some points and non-zero in others.

The main result of [11] is the following local classification of paracontact metric (−1, µ)-spaces:

Theorem 2.1 ([11]). Let M be a (2n+ 1)-dimensional paracontact metric (−1, µ)-space. Then we

have one of the following possibilities:

(1) either h = 0 and M is paraSasakian,

(2) or h 6= 0 and rank(hp) ∈ {1, . . . , n} at every p ∈ M where hp 6= 0. Moreover, there exists

a basis {ξp, X1, Y1, . . . , Xn, Yn} of Tp(M) such that the only non-vanishing components of g

are

gp(ξp, ξp) = 1, gp(Xi, Yi) = ±1,
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and

hp|〈Xi,Yi〉 =

(
0 0
1 0

)
or hp|〈Xi,Yi〉 =

(
0 0
0 0

)
,

where obviously there are exactly rank(hp) submatrices of the first type.

If n = 1, such a basis {ξp, X1, Y1} also satisfies that

ϕpX1 = ±X1, ϕpY1 = ∓Y1,

and the tensor h can be written as

hp|〈ξp,X1,Y1〉 =




0 0 0
0 0 0
0 1 0



 .

Many examples of paraSasakian manifolds are known. For instance, hyperboloids H2n+1
n+1 (1) and

the hyperbolic Heisenberg groupH2n+1 = R
2n×R, [9]. We can also obtain (η-Einstein) paraSasakian

manifolds from contact (κ, µ)-spaces with |1− µ
2 | <

√
1− κ. In particular, the tangent sphere bundle

T1N of any space form N(c) with c < 0 admits a canonical η-Einstein paraSasakian structure, [3].
Finally, we can see how to construct explicitly a paraSasakian structure on a Lie group (see Example
3.4 of [11]) or on the unit tangent sphere bundle, [7].

On the other hand, until [11] only some types of non-paraSasakian paracontact metric (−1, µ)-
spaces were known:

• (2n+ 1)-dimensional paracontact metric (−1, 2)-space with rank(h) = n, [5].
• 3-dimensional paracontact metric (−1, 2)-space with rank(h) = n = 1, [12].
• 3-dimensional paracontact metric (−1, 0)-space with rank(h) = n = 1. This example is not
paraSasakian but it satisfies (2), [8].

The answer to why there seems to be only examples of paracontact metric (−1, µ)-spaces with
µ = 2 or µ = 0 is a Dc-homothetic deformation, i.e. the following change of a paracontact metric
structure (M,ϕ, ξ, η, g) [14]:

ϕ′ := ϕ, ξ′ :=
1

c
ξ, η′ := cη, g′ := cg + c(c− 1)η ⊗ η,

for some c 6= 0.
It is known that (ϕ′, ξ′, η′, g′) is again a paracontact metric structure onM and thatK-paracontact

and paraSasakian structures are also preserved. However, curvature conditions like R(X,Y )ξ = 0
are destroyed, since paracontact metric (κ, µ)-spaces become other paracontact metric (κ′, µ′)-spaces
with

κ′ =
κ+ 1− c2

c2
, µ′ =

µ− 2 + 2c

c
.

In particular, if (M,ϕ, ξ, η, g) is a paracontact metric (−1, µ)-space, then the deformed manifold is

another paracontact metric (−1, µ′)-space with µ′ = µ−2+2c
c

.
Therefore, given a (−1, 2)-space, a Dc-homothetic deformation with arbitrary c 6= 0 will give

us another paracontact metric (−1, 2)-space. Given a paracontact metric (−1, 0)-space, if we Dc-
homothetically deform it with c = 2

2−µ
6= 0 for some µ 6= 2, we will obtain a paracontact metric

(−1, µ)-space with µ 6= 2. A sort of converse is also possible: given a (−1, µ)-space with µ 6= 2, a
Dc-homothetic deformation with c = 1− µ

2 6= 0 will give us a paracontact metric (−1, 0)-space. The
case µ = 0, h 6= 0 is also special because the manifold satisfies (2) but it is not paraSasakian.

Examples of non-paraSasakian paracontact metric (−1, 2)-spaces of any possible dimension and
constant rank of h were presented in [11]:

Example 2.2 ((2n+1)-dimensional paracontact metric (−1, 2)-space with rank(h) = m ∈ {1, . . . , n}).
Let g be the (2n + 1)-dimensional Lie algebra with basis {ξ,X1, Y1, . . . , Xn, Yn} such that the only



4 V. MARTÍN-MOLINA

non-zero Lie brackets are:

[ξ,Xi] = Yi, i = 1, . . . ,m,

[Xi, Yj ] =





δij(2ξ +
√
2(1 + δim)Ym)

+(1− δij)
√
2(δimYj + δjmYi), i, j = 1, . . . ,m,

δij(2ξ +
√
2Yi), i, j = m+ 1, . . . , n,√

2Yi, i = 1, . . . ,m, j = m+ 1, . . . , n.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact

metric structure on G the following way:

ϕξ = 0, ϕXi = Xi, ϕYi = −Yi, i = 1, . . . , n,

η(ξ) = 1, η(Xi) = η(Yi) = 0, i = 1, . . . , n.

The only non-vanishing components of the metric are

g(ξ, ξ) = g(Xi, Yi) = 1, i = 1, . . . , n.

A straightforward computation gives that hXi = Yi if i = 1, . . . ,m, hXi = 0 if i = m+ 1, . . . , n and

hYj = 0 if j = 1, . . . , n, so h2 = 0 and rank(h) = m. Furthermore, the manifold is a (−1, 2)-space.

Examples of non-paraSasakian paracontact metric (−1, 0)-spaces of any possible dimension and
rank(h) = 1 were also given in [11]:

Example 2.3 ((2n+ 1)-dimensional paracontact metric (−1, 0)-space with rank(h) = 1). Let g be

the (2n + 1)-dimensional Lie algebra with basis {ξ,X1, Y1, . . . , Xn, Yn} such that the only non-zero

Lie brackets are:

[ξ,X1] = X1 + Y1, [ξ, Y1] = −Y1, [X1, Y1] = 2ξ,

[Xi, Yi] = 2(ξ + Yi), [X1, Yi] = X1 + Y1, [Y1, Yi] = −Y1, i = 2, . . . , n.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact

metric structure on G the following way:

ϕξ = 0, ϕX1 = X1, ϕY1 = −Y1, ϕXi = −Xi, ϕYi = Yi, i = 2, . . . , n,

η(ξ) = 1, η(Xi) = η(Yi) = 0, i = 1, . . . , n.

The only non-vanishing components of the metric are

g(ξ, ξ) = g(X1, Y1) = 1, g(Xi, Yi) = −1, i = 2, . . . , n.

A straightforward computation gives that hX1 = Y1, hY1 = 0 and hXi = hYi = 0, i = 2, . . . , n, so
h2 = 0 and rank(h) = 1.

Moreover, by basic paracontact metric properties and Koszul’s formula we obtain that

∇ξX1 = 0, ∇ξY1 = 0, ∇ξXi = Xi, ∇ξYi = −Yi, i = 2, . . . , n,

∇Xi
Y1 = δi1ξ, ∇Xi

Yj = δij(ξ + 2Yi), ∇Y1
X1 = −ξ, ∇Yi

Xj = −δijξ, i, j = 2, . . . , n,

∇X1
Xj = 0, ∇Y1

Y1 = ∇Y1
Yj = 0, ∇Yj

Y1 = Y1, i = 2, . . . , n,

and thus

R(Xi, ξ)ξ = −Xi, i = 1, . . . , n,

R(Yi, ξ)ξ = −Yi, i = 1, . . . , n,

R(Xi, Xj)ξ = R(Xi, Yj)ξ = R(Yi, Yj)ξ = 0, i, j = 1, . . . , n.

Therefore, the manifold is also a (−1, 0)-space.
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To our knowledge, the previous example is the first paracontact metric (−1, µ)-space with h2 = 0,
h 6= 0 and µ 6= 2 that was constructed in dimensions greater than 3. For dimension 3, Example 4.6
of [8] was already known.

In dimension 5, there also exist examples of paracontact metric (−1, 0)-space with rank(h) = 2
and in dimension 7 of rank(h) = 2, 3, as shown in [11]. Higher-dimensional examples of paracontact
metric (−1, 0)-spaces with rank(h) ≥ 2 were not included, which will be remedied in Example 4.1.
We will also see how to construct a 3-dimensional paracontact metric (−1, 0)-space and (−1, 2)-space
where the rank of h is not constant.

3. New proof of Theorem 2.1

We will now present a revised proof of Theorem 2.1 that does not use [13] when h 6= 0 but
constructs the basis explicitly.

Proof. Since κ = −1, we know from [5] that h2 = 0. If h = 0, then R(X,Y )ξ = −(η(Y )X−η(X)Y ),
for all X,Y on M and ξ is a Killing vector field, so Theorem 3.1 of [11] gives us that the manifold
is paraSasakian.

If h 6= 0, then let us take a point p ∈ M such that hp 6= 0. We know that ξ is a global vector
field such that g(ξ, ξ) = 1, that hξ = 0 and that h is self-adjoint, so Kerηp is h-invariant and
hp : Kerηp 7→ Kerηp is a non-zero linear map such that h2

p = 0. We will now construct a basis
{X1, Y1, . . . , Xn, Yn} of Kerηp that satisfies all of our requirements.

Take a non-zero vector v ∈ Kerηp such that hpv 6= 0, which we know exists because hp 6= 0.
Then we write Kerηp = L1 ⊕ L⊥

1 , where L1 = 〈v, hpv〉. Both L1 and L⊥
1 are hp-invariant because

hp is self-adjoint. Moreover, gp(v, hpv) 6= 0 because gp(hpv, hpv) = 0 = gp(hpv, w) for all w ∈ L⊥
1 ,

hpv 6= 0 and g is a non-degenerate metric.We now distinguish two cases:

(1) If gp(v, v) = 0, then we can take Xi =
1√

|gp(v,hpv)|
v and Yi =

1√
|gp(v,hpv)|

hpv, which satisfy

that gp(Xi, Xi) = 0 = gp(Yi, Yi), gp(Xi, Yi) = ±1 and hpXi = Yi.

(2) If gp(v, v) 6= 0, then v′ = v − gp(v,v)
gp(v,hpv)

hpv satisfies that gp(v
′, v′) = 0, so we can take

Xi =
1√

|gp(v′,hpv)′|
v′, Yi =

1√
|gp(v′,hpv′)|

hv′. We have again that gp(Xi, Xi) = 0 = gp(Yi, Yi),

gp(Xi, Yi) = ±1 and hpXi = Yi.

In both cases, L1 = 〈Xi, Yi〉, so we now take a non-zero vector v ∈ L⊥
1 and check if hpv 6= 0. We

know that we can take v such that hpv 6= 0 in this step as many times as the rank of hp, which
is at minimum 1 (since hp 6= 0) and at most n because dimKerηp = 2n and the spaces L1 have
dimension 2.

If we denote by m the rank of hp, then we can write Kerηp as the following direct sum of mutually
orthogonal subspaces:

Kerηp = L1 ⊕ L2 ⊕ · · · ⊕ Lm ⊕ V = 〈X1, Y1, . . . , Xm, Ym〉 ⊕ V,

where hpv = 0 for all v ∈ V . Each Li is of signature (1, 1) because {X̃i = 1√
2
(Xi + Yi), Ỹi =

1√
2
(Xi − Yi)} is a pseudo-orthonormal basis such that gp(X̃i, X̃i) = −gp(Ỹi, Ỹi) = gp(Xi, Yi) =

±1, gp(X̃i, Ỹi) = 0. Therefore, 〈X1, Y1, . . . , Xm, Ym〉 is of signature (m,m) and, since Kerηp is of
signature (n, n), we can take a pseudo-orthonormal basis {v1, . . . , vn−m, w1, . . . , wn−m} of V such
that gp(vi, vj) = δij and gp(wi, wj) = −δij . Therefore, it suffices to define Xm+i = 1√

2
(vi +

wi), Ym+i =
1√
2
(vi − wi) to have gp(Xi, Xi) = 0 = gp(Yi, Yi), gp(Xi, Yi) = 1 and hpXi = hpYi = 0,

i = m+ 1, . . . , n.
If n = 1, then ϕpX1 = ±X1 and ϕpY1 = ∓Y1 follow directly from paracontact metric properties

and the definition of the basis {X1, Y1, . . . , Xn, Yn}. �
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It is worth mentioning that Theorem 2.1 is true only pointwise, i.e. rank(hp) does not need to
be the same for every p ∈ M . Indeed, we will see in Examples 4.3 and 4.5 that we can construct
paracontact metric (−1, µ)-spaces such that h is zero in some points and non-zero in others.

4. New examples

We will first present an example of (2n + 1)-dimensional paracontact metric (−1, 0)-space with
rank of h greater than 1. This means that, together with Examples 2.2 and 2.3, we have examples
of paracontact metric (−1, µ)-spaces of every possible dimension and constant rank of h when µ = 0
and µ = 2.

Example 4.1 ((2n+1)-dimensional paracontact metric (−1, 0)-space with rank(h) = m ∈ {2, . . . , n}).
Let g be the (2n + 1)-dimensional Lie algebra with basis {ξ,X1, Y1, . . . , Xn, Yn} such that the only

non-zero Lie brackets are:

[ξ,X1] = X1 +X2 + Y1, [ξ, Y1] = −Y1 + Y2,

[ξ,X2] = X1 +X2 + Y2, [ξ, Y2] = Y1 − Y2,

[ξ,Xi] = Xi + Yi, i = 3, . . . ,m, [ξ, Yi] = −Yi, i = 3, . . . ,m,

[Xi, Xj] =





√
2X1, if i = 1, j = 2,

−
√
2Xj if i = 2, j = 3 . . . ,m,√

2[ξ,Xi], if i = 1, . . . ,m, j = m+ 1, . . . , n,

[Yi, Yj ] =

{√
2(−Y1 + Y2), if i = 1, j = 2,√
2Yj , if i = 1, 2, j = 3, . . . ,m,

[Xi, Yi] =





2ξ +
√
2(X2 + Y2) if i = 1,

−2ξ +
√
2X1, if i = 2,

−2ξ +
√
2(X1 −X2 − Y2), if i = 3, . . . ,m,

−2ξ −
√
2Xi, if i = m+ 1, . . . , n,

[Xi, Yj ]
i 6= j

=





√
2(Y1 +X2) if i = 1, j = 2,√
2X1, if i = 2, j = 1,√
2Xj , if i = 1, 2, j = 3, . . . ,m,√
2Yi, if i = 3, . . . ,m, j = 2,

−
√
2[ξ, Yj ], if i = m+ 1, . . . , n, j = 1, . . . ,m.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact

metric structure on G the following way:

ϕξ = 0, ϕXi = Xi, ϕYi = −Yi, i = 1, . . . , n,

η(ξ) = 1, η(Xi) = η(Yi) = 0, i = 1, . . . , n.

The only non-vanishing components of the metric are

g(ξ, ξ) = g(X1, Y1) = 1, g(Xi, Yi) = −1, i = 2, . . . , n.

A straightforward computation gives that hXi = Yi, i = 1, . . . ,m, hXi = 0, i = m + 1, . . . , n and

hYi = 0, i = 1, . . . , n, so h2 = 0 and rank(h) = m.

Moreover, very long but direct computations give that

R(Xi, ξ)ξ = −Xi, i = 1, . . . , n,

R(Yi, ξ)ξ = −Yi, i = 1, . . . , n,

R(Xi, Xj)ξ = R(Xi, Yj)ξ = R(Yi, Yj)ξ = 0, i, j = 1, . . . , n.
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Therefore, the manifold is also a (−1, 0)-space.

Remark 4.2. Note that the previous example is only possible when n ≥ 2. If n = 1, then we can

only construct examples of rank(h) = 1, as in Example 2.3.

In the definition of the Lie algebra of the previous example, some values of i and j are not possible

for m = 2 or m = n. In that case, removing the affected Lie brackets from the definition will give

us valid examples nonetheless.

We will present now an example of 3-dimensional paracontact metric (−1, 2)-space and one of
3-dimensional paracontact metric (−1, 0)-space, such that rank(hp) = 0 or 1 depending on the
point p of the manifold. These are the first examples of paracontact metric (κ, µ)-spaces with h of
non-constant rank that are known.

Example 4.3 (3-dimensional paracontact metric (−1, 2)-space with rank(hp) not constant). We

consider the manifold M = R
3 with the usual cartesian coordinates (x, y, z). The vector fields

e1 =
∂

∂x
+ xz

∂

∂y
− 2y

∂

∂z
, e2 =

∂

∂y
, ξ =

∂

∂z

are linearly independent at each point of M . We can compute

[e1, e2] = 2 ξ, [e1, ξ] = −x e2, [e2, ξ] = 0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing

components are g(e1, e2) = g(ξ, ξ) = 1, and the 1-form η as η = 2ydx+ dz, which satisfies η(e1) =
η(e2) = 0, η(ξ) = 1. Let ϕ be the (1, 1)-tensor field defined by ϕe1 = e1, ϕe2 = −e2, ϕξ = 0. Then

dη(e1, e2) =
1

2
(e1(η(e2))− e2(η(e1))− η([e1, e2])) = −1 = −g(e1, e2) = g(e1, ϕe2),

dη(e1, ξ) =
1

2
(e1(η(ξ)) − ξ(η(e1))− η([e1, ξ]) = 0 = g(e1, ϕξ),

dη(e2, ξ) =
1

2
(e2(η(ξ)) − ξ(η(e2))− η([e2, ξ]) = 0 = g(e2, ϕξ).

Therefore, (ϕ, ξ, η, g) is a paracontact metric structure on M .

Moreover, hξ = 0, he1 = xe2, he2 = 0. Hence, h2 = 0 and, given p = (x, y, z) ∈ R
3, rank(hp) = 0

if x = 0 and rank(hp) = 1 if x 6= 0.
Let ∇ be the Levi-Civita connection. Using the properties of a paracontact metric structure and

Koszul’s formula

(3) 2g(∇XY, Z) = X(g(Y, Z))+Y (g(Z,X))−Z(g(X,Y ))−g(X, [Y, Z])−g(Y, [X,Z])+g(Z, [X,Y ]),

we can compute

∇ξξ = 0, ∇e1ξ = −e1 − xe2, ∇e2ξ = e2, ∇ξe1 = −e1, ∇ξe2 = e2,

∇e1e1 = xξ, ∇e2e2 = 0, ∇e1e2 = ξ, ∇e2e1 = −ξ.

Using the following definition of the Riemannian curvature

(4) R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,

we obtain

R(e1, ξ)ξ = −e1 + 2he1, R(e2, ξ)ξ = −e2 + 2he2, R(e1, e2)ξ = 0,

so the paracontact metric manifold M is also a (−1, 2)-space.

Remark 4.4. The previous example does not contradict Theorem 2.1, as we will see by constructing

explicitly the basis of the theorem on each point p where hp 6= 0, i.e., on every point p = (x, y, z)
such that x 6= 0.

Indeed, let us take a point p = (x, y, z) ∈ R
3. If x 6= 0, then we define X1 =

e1p√
|x|

, Y1 =
hpe1p√

|x|
.

We obtain that {ξp, X1, Y1} is a basis of Tp(R
3) that satisfies that:
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• the only non-vanishing components of g are gp(ξp, ξp) = 1, gp(X1, Y1) = sign(x),

• the tensor h can be written as hp|〈ξp,X1,Y1〉 =



0 0 0
0 0 0
0 1 0


 ,

• ϕpξ = 0, ϕpX1 = X1, ϕpY1 = −Y1.

Example 4.5 (3-dimensional paracontact metric (−1, 0)-space with rank(hp) not constant). We

consider the manifold M = R
3 with the usual cartesian coordinates (x, y, z). The vector fields

e1 =
∂

∂x
+ xe−2z ∂

∂y
− 2y

∂

∂z
, e2 =

∂

∂y
, ξ =

∂

∂z

are linearly independent at each point of M . We can compute

[e1, e2] = 2 ξ, [e1, ξ] = 2xe−2z e2, [e2, ξ] = 0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing

components are g(e1, e2) = g(ξ, ξ) = 1, and the 1-form η as η = 2ydx+ dz, which satisfies η(e1) =
η(e2) = 0, η(ξ) = 1. Let ϕ be the (1, 1)-tensor field defined by ϕe1 = e1, ϕe2 = −e2, ϕξ = 0. Then

dη(e1, e2) =
1

2
(e1(η(e2))− e2(η(e1))− η([e1, e2])) = −1 = −g(e1, e2) = g(e1, ϕe2),

dη(e1, ξ) =
1

2
(e1(η(ξ)) − ξ(η(e1))− η([e1, ξ]) = 0 = g(e1, ϕξ),

dη(e2, ξ) =
1

2
(e2(η(ξ)) − ξ(η(e2))− η([e2, ξ]) = 0 = g(e2, ϕξ).

Therefore, (ϕ, ξ, η, g) is a paracontact metric structure on M .

Moreover, hξ = 0, he1 = −2xe−2ze2, he2 = 0. Hence, h2 = 0 and, given p = (x, y, z) ∈ R
3,

rank(hp) = 0 if x = 0 and rank(hp) = 1 if x 6= 0.
Let ∇ be the Levi-Civita connection. Using the properties of a paracontact metric structure and

Koszul’s formula (3), we can compute

∇ξξ = 0, ∇e1ξ = −e1 + 2xe−2ze2, ∇e2ξ = e2, ∇ξe1 = −e1, ∇ξe2 = e2,

∇e1e1 = −2xe−2zξ, ∇e2e2 = 0, ∇e1e2 = ξ, ∇e2e1 = −ξ.

Using now (4), we obtain

R(e1, ξ)ξ = −e1, R(e2, ξ)ξ = −e2, R(e1, e2)ξ = 0,

so the paracontact metric manifold M is also a (−1, 0)-space.
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