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LOCAL CLASSIFICATION AND EXAMPLES OF AN IMPORTANT CLASS OF
PARACONTACT METRIC MANIFOLDS

VERONICA MARTIN-MOLINA

ABSTRACT. We study paracontact metric (, u)-spaces with k = —1, equivalent to h? = 0 but not
h = 0. In particular, we will give an alternative proof of Theorem 3.2 of [11] and present examples
of paracontact metric (—1,2)-spaces and (—1, 0)-spaces of arbitrary dimension with tensor h of
every possible constant rank. We will also show explicit examples of paracontact metric (—1, p)-
spaces with tensor h of non-constant rank, which were not known to exist until now.

1. INTRODUCTION

Paracontact metric manifolds, the odd-dimensional analogue of paraHermitian manifolds, were
first introduced in [I0] and they have been the object of intense study recently, particularly since
the publication of [I4]. An important class among paracontact metric manifolds is that of the
(K, p)-spaces, which satisfy the nullity condition [5]

(1) R(X,Y)E = s(n(Y)X = n(X)Y) + p(n(Y)hX — n(X)nY),

for all X,Y vector fields on M, where x and p are constants and h = %Lg(p.

This class includes the paraSasakian manifolds [I0] [I4], the paracontact metric manifolds satisfy-
ing R(X,Y)¢ =0 for all X,Y [I5], certain g-natural paracontact metric structures constructed on
unit tangent sphere bundles [7], etc.

The definition of a paracontact metric (k, u)-space was motivated by the relationship between
contact metric and paracontact geometry. More precisely, it was proved in [4] that any non-Sasakian
contact metric (k, u1)-space accepts two paracontact metric (R, f)-structures with the same contact
form. On the other hand, under certain natural conditions, every non-paraSasakian paracontact
(R, t)-space admits a contact metric (k, u)-structure compatible with the same contact form ([5]).

Paracontact metric (k, u)-spaces satisfy that h? = (k + 1)¢? but this condition does not give any
type of restriction over the value of k, unlike in contact metric geometry, because the metric of a
paracontact metric manifold is not positive definite. However, it is useful to distinguish the cases
k> —1, k < —1 and kK = —1. In the first two, equation () determines the curvature completely
and either the tensor h or ph are diagonalisable [5]. The case k = —1 is equivalent to h? = 0 but
not to h = 0. Indeed, there are examples of paracontact metric (x, u1)-spaces with h2 = 0 but h # 0,
as was first shown in [2] 5] [8 12].

However, only some particular examples were given of this type of space and no effort had been
made to understand the general behaviour of the tensor h of a paracontact metric (—1, u)-space
until the author published [I1], where a local classification depending on the rank of h was given
in Theorem 3.2. The author also provided explicit examples of all the possible constant values of
the rank of h when p = 2. She explained why the values p = 0 and p = 2 are special and studying
them is enough. Finally, she showed some paracontact metric (—1,0)-spaces of any dimension with
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rank(h) = 1 and of paracontact metric (—1,0)-spaces of dimension 5 and 7 for any possible constant
rank of h. These were the first examples of this type with p # 2 and dimension greater than 3.

In the present paper, after the preliminaries section, we will give an alternative proof of Theo-
rem 3.2 of [11] that does not use [I3] and we will complete the examples of all the possible cases
of constant rank of h by presenting (2n + 1)-dimensional paracontact metric (—1,0)-spaces with
rank(h) = 2,...,n. Lastly, we will also show the first explicit examples ever known of paracontact
metric (—1,2)-spaces and (—1, 0)-spaces with h of non-constant rank.

2. PRELIMINARIES

An almost paracontact structure on a (2n + 1)-dimensional smooth manifold M is given by a
(1,1)-tensor field ¢, a vector field £ and a 1-form 7 satisfying the following conditions [I0]:
(ii) the eigendistributions DT and D~ of ¢ corresponding to the eigenvalues 1 and —1, respec-
tively, have equal dimension n.

It follows that & = 0, o ¢ = 0 and rank(p) = 2n. If an almost paracontact manifold admits a
semi-Riemannian metric g such that

(X, 9Y) = —g(X,Y) + n(X)n(Y),

for all X,Y on M, then (M, p,&,n,g) is called an almost paracontact metric manifold. Then g is
necessarily of signature (n + 1,n) and satisfies n = g(-,€) and g(-, ¢-) = —g(¢-, *).

We can now define the fundamental 2-form of the almost paracontact metric manifold by ®(X,Y") =
g(X,¢Y). If dyn = @, then 7 becomes a contact form (i.e. n A (dn)™ # 0) and (M, ¢, £, n,g) is said
to be a paracontact metric manifold.

We can also define on a paracontact metric manifold the tensor field h := %Lgcp, which is sym-
metric with respect to g (i.e. g(hX,Y) = g(X,hY), for all X,Y), anti-commutes with ¢ and satisfies
h& = trh = 0 and the identity V& = —¢ + ¢h ([I4]). Moreover, it vanishes identically if and only if
¢ is a Killing vector field, in which case (M, ¢, &, n, g) is called a K-paracontact manifold.

An almost paracontact structure is said to be normal if and only if the tensor [p, p] —2dn® ¢ = 0,
where [, ¢] is the Nijenhuis tensor of ¢ [14]:

[0, 0)(X,Y) = @*[X, Y]+ [pX, 0Y] — [pX, Y] — o[ X, pY].

A normal paracontact metric manifold is said to be a paraSasakian manifold and is in particular
K-paracontact. The converse holds in dimension 3 ([6]) but not in general in higher dimensions.
However, it was proved in Theorem 3.1 of [11] that it also holds for (—1, u)-spaces. Every paraSa-
sakian manifold satisfies

(2) R(X,Y)E = —-(n(Y)X —n(X)Y),

for every X,Y on M. The converse is not true, since Examples 3.8-3.11 of [I1] and Examples 1]
and of the present one show that there are examples of paracontact metric manifolds satisfying
equation (2)) but with h # 0 (and therefore not K-paracontact or paraSasakian). Moreover, it is also
clear in Example that the rank of h does not need to be constant either, since h can be zero at
some points and non-zero in others.

The main result of [I1] is the following local classification of paracontact metric (—1, u1)-spaces:

Theorem 2.1 ([I1]). Let M be a (2n + 1)-dimensional paracontact metric (—1, u)-space. Then we
have one of the following possibilities:
(1) either h =0 and M is paraSasakian,
(2) or h # 0 and rank(hy) € {1,...,n} at every p € M where h, # 0. Moreover, there exists
a basis {&p, X1, Y1, ..., X0, Yo} of Tp(M) such that the only non-vanishing components of g
are

gp(gpﬂgp) = 17 gp(X“}/l) = :tla
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0 0 0 0
hoy(xiviy = <1 0> or  hpx, vy = (() ()) ’

where obviously there are exactly rank(h,) submatrices of the first type.
If n=1, such a basis {&,, X1,Y1} also satisfies that

opX1==EX1, @Y1 =7F0,

and

and the tensor h can be written as

hy,

0 0 O
(€, X1, Y1) — 000
0 1 0

Many examples of paraSasakian manifolds are known. For instance, hyperboloids Hi’f{l(l) and

the hyperbolic Heisenberg group H?" ! = R?" xR, [9]. We can also obtain (1-Einstein) paraSasakian
manifolds from contact (k, u1)-spaces with [1—%| < /1 — «. In particular, the tangent sphere bundle
T1 N of any space form N(c) with ¢ < 0 admits a canonical 7-Einstein paraSasakian structure, [3].
Finally, we can see how to construct explicitly a paraSasakian structure on a Lie group (see Example
3.4 of [11]) or on the unit tangent sphere bundle, [7].

On the other hand, until [11] only some types of non-paraSasakian paracontact metric (—1, u)-
spaces were known:

e (2n + 1)-dimensional paracontact metric (—1, 2)-space with rank(h) = n, [B].

e 3-dimensional paracontact metric (—1, 2)-space with rank(h) =n = 1, [12].

e 3-dimensional paracontact metric (—1,0)-space with rank(h) = n = 1. This example is not
paraSasakian but it satisfies (2]), []].

The answer to why there seems to be only examples of paracontact metric (—1, u)-spaces with
@ =2or p=0is a D.-homothetic deformation, i.e. the following change of a paracontact metric
structure (M, p,&,n,g) [14):

1
pli=p, =28 0= gli=egtele—nen,
for some ¢ # 0.

It is known that (¢, &', 7, ¢') is again a paracontact metric structure on M and that K-paracontact
and paraSasakian structures are also preserved. However, curvature conditions like R(X,Y)¢ = 0
are destroyed, since paracontact metric (k, 11)-spaces become other paracontact metric (', p’)-spaces
with

, Kk+1-¢2 #/f“_2+2c

K = 5

c2 c
In particular, if (M, ,&,n,g) is a paracontact metric (—1, 1)-space, then the deformed manifold is
another paracontact metric (—1, u')-space with ' = #

Therefore, given a (—1,2)-space, a D.-homothetic deformation with arbitrary ¢ # 0 will give
us another paracontact metric (—1,2)-space. Given a paracontact metric (—1,0)-space, if we D,-
homothetically deform it with ¢ = % # 0 for some p # 2, we will obtain a paracontact metric
(—1, u)-space with g # 2. A sort of converse is also possible: given a (—1, u)-space with u # 2, a
D.-homothetic deformation with ¢ = 1 — £ # 0 will give us a paracontact metric (—1,0)-space. The
case = 0, h # 0 is also special because the manifold satisfies (2)) but it is not paraSasakian.

Examples of non-paraSasakian paracontact metric (—1,2)-spaces of any possible dimension and
constant rank of h were presented in [T1]:

Example 2.2 ((2n+1)-dimensional paracontact metric (—1,2)-space with rank(h) = m € {1,...,n}).
Let g be the (2n + 1)-dimensional Lie algebra with basis {&, X1,Y1,..., Xn, Yo} such that the only
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non-zero Lie brackets are:
[€7X'L]:}/'L7 i:]‘,"'7m7
8i5 (26 + V2(1 + 8im)Yin)
8i5 (26 +V2Y3), ij=m+1,...,n,
V2Y;, i=1,....m,j=m+1,...,n.

[X“YJ] =

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact
metric structure on G the following way:

=0, X;=X;, @Y;=-Y, i=1,...,n,

n€) =1, nX;)=n;)=0, i=1,...,n
The only non-vanishing components of the metric are
9(6:6) =9(Xi,Y;) =1, i=1,...,n.
A straightforward computation gives that hX; =Y; ifi=1,...,m, hX; =0ifi=m+1,...,n and
RY; =0 if j=1,...,n, so h* =0 and rank(h) = m. Furthermore, the manifold is a (—1,2)-space.

Examples of non-paraSasakian paracontact metric (—1,0)-spaces of any possible dimension and
rank(h) = 1 were also given in [11]:

Example 2.3 ((2n + 1)-dimensional paracontact metric (—1,0)-space with rank(h) = 1). Let g be
the (2n + 1)-dimensional Lie algebra with basis {€, X1,Y1, ..., Xy, Yn} such that the only non-zero
Lie brackets are:

€, X1] = X1+ Y1, £, 1] = -Y1, [X1,Y1] = 2¢,
(X, Y] =2(§£ + Y5), [X1,Yi] = X, + Y7, M,Yi]=-Y1, i=2,...,n.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact
metric structure on G the following way:

gﬁg:oa @XlzXla <PY1:—Y17 wXZ:_X’L @}/Z:}/h 7;:25"'777’5

n@) =1, n(X;)=n;) =0, i=1...,n
The only non-vanishing components of the metric are
g(gﬂg)zg(XhYVl):lu g(XhY;):_lu 1227771
A straightforward computation gives that hX; =Y1, hY1 =0 and hX; = hY; =0,i=2,...,n, so
h? =0 and rank(h) = 1.
Moreover, by basic paracontact metric properties and Koszul’s formula we obtain that
VeX1 =0, VY1=0, VX;=X;, VY,=-Y, i=2...,n,
VXzifl = 51'155 VXz}/J = 51](5 + 2}/1)7 leXl = _57 szXJ = _5ij§a Zv] = 27 -y,
leXjZOa leH:VYi}/j:Ov VY}Y1:Y17 7;:25"'777’5
and thus
R(Xlug)gz_Xza i=1,...,n,
R(Yl,§)§:—YZ, izla"'vna

Therefore, the manifold is also a (—1,0)-space.
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To our knowledge, the previous example is the first paracontact metric (—1, u)-space with h2 = 0,
h # 0 and p # 2 that was constructed in dimensions greater than 3. For dimension 3, Example 4.6
of [8] was already known.

In dimension 5, there also exist examples of paracontact metric (—1,0)-space with rank(h) = 2
and in dimension 7 of rank(h) = 2, 3, as shown in [T1]. Higher-dimensional examples of paracontact
metric (—1, 0)-spaces with rank(h) > 2 were not included, which will be remedied in Example [111
We will also see how to construct a 3-dimensional paracontact metric (—1, 0)-space and (—1, 2)-space
where the rank of i is not constant.

3. NEW PROOF OF THEOREM 211

We will now present a revised proof of Theorem [ZT] that does not use [13] when h # 0 but
constructs the basis explicitly.

Proof. Since k = —1, we know from [5] that h? = 0. If h = 0, then R(X,Y)¢ = —(n(Y)X —n(X)Y),
for all X,Y on M and ¢ is a Killing vector field, so Theorem 3.1 of [11] gives us that the manifold
is paraSasakian.

If h # 0, then let us take a point p € M such that h, # 0. We know that £ is a global vector
field such that g(£,£) = 1, that h§ = 0 and that h is self-adjoint, so Kern, is h-invariant and
hy, : Kern, — Kern, is a non-zero linear map such that h% = 0. We will now construct a basis
{X1,Y1,..., X, Yy} of Kern, that satisfies all of our requirements.

Take a non-zero vector v € Kern, such that h,v # 0, which we know exists because h, # 0.
Then we write Kern, = L1 & Li, where L = (v, hpv). Both Ly and L{ are hy-invariant because
h, is self-adjoint. Moreover, g,(v, h,v) # 0 because gp(hyv, hpyv) = 0 = g,(hyv,w) for all w € Li,
hpv # 0 and ¢ is a non-degenerate metric. We now distinguish two cases:

(1) If g,(v,v) = 0, then we can take X; = —=2——v and Y; = —2~——h,,v, which satisfy

lgp (v,hpv)| vV lgp (v,hpv)]
that g,(X;, Xi) = 0 = g,(Y;, Vi), gp(X;, Y;) = £1 and hpX; = Y;.

(2) If gp(v,v) # 0, then v/ = v — gffv(j’,;zz)) hpv satisfies that g,(v',v") = 0, so we can take

Xi=—1 | V,=—F——L____hv'. Wehave again that g,(X;, X;) =0 = g,(Vi, Y3),

lgp (v",hpv)’| lgp (v",hpv’)]|
9p(Xi,Y:) =+1 and h, X; =Y.

In both cases, L1 = (X;,Y;), so we now take a non-zero vector v € Li- and check if h,v # 0. We
know that we can take v such that hyv # 0 in this step as many times as the rank of h,, which
is at minimum 1 (since h, # 0) and at most n because dim Kern, = 2n and the spaces L; have
dimension 2.

If we denote by m the rank of h,, then we can write Kern, as the following direct sum of mutually
orthogonal subspaces:

Kerny=L1®Lo® - PL,, eV =(X,11,...,. X, Y) BV,

where h,v = 0 for all v € V. Each L; is of signature (1,1) because {X; = \%(Xi +Y),Y; =

\%(Xi —Y;)} is a pseudo-orthonormal basis such that g,(X;, X;) = —g,(Y:,Y;) = ¢,(X;, Vi) =

+1, gp(f(l-,f/i) = 0. Therefore, (X1,Y1,..., X, Yn) is of signature (m, m) and, since Kern, is of

signature (n,n), we can take a pseudo-orthonormal basis {v1,...,Vp—m,w1,..., Wp—m} of V such
that g,(vi,v;) = d;; and gp(w;,w;) = —d;;. Therefore, it suffices to define X,,y; = \%(vz +
Wi), Ymgi = %(Ui — w;) to have g,(X;, X;) = 0 = g,(Y3,Yi), 9p(X;,Y;) = 1 and hpX; = hyY; =0,
i=m+1,...,n.

If n =1, then ¢, X; = £X; and ¢,Y; = FY) follow directly from paracontact metric properties
and the definition of the basis {X1,Y1,..., X, Yo} O
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It is worth mentioning that Theorem [2.1]is true only pointwise, i.e. rank(h,) does not need to
be the same for every p € M. Indeed, we will see in Examples [£.3] and that we can construct
paracontact metric (—1, u)-spaces such that h is zero in some points and non-zero in others.

4. NEW EXAMPLES

We will first present an example of (2n + 1)-dimensional paracontact metric (—1,0)-space with
rank of h greater than 1. This means that, together with Examples and 2.3 we have examples
of paracontact metric (—1, u)-spaces of every possible dimension and constant rank of & when p =0
and p = 2.

Example 4.1 ((2n+1)-dimensional paracontact metric (—1,0)-space with rank(h) = m € {2,...,n}).
Let g be the (2n + 1)-dimensional Lie algebra with basis {&, X1,Y1,..., Xn, Yo} such that the only
non-zero Lie brackets are:

£, X1] = X1 + Xo + 174, [, Y1] = -1 + Yz,
[, Xo] = X1 + X2 + Y2, [, Y2] =Y1 — Yo,
[gaXl]:Xl—’—Y;u i:37"'7m7 [57}/71]:_5/;7 i:37"'7m7
\/§X17 Zflzla.]:27
(X, X;] =< —V2X;,  ifi=2,j=3...,m,
V26, X), difi=1,....m, j=m+1,...,n,
¥, Y] = V2(-Yi+Ya), ifi=1,j=2,
vl V2Y;, ifi=1,2,7=3,...,m,
2 + V2(X2 + Ya) ifi=1,
—2 2X if i =2
Xy = { VRN fi=2
_2§+\/§(X1_X2_}/2)7 ZfZ:?)a"'umu
—2¢ —V2X;, ifi=m+1,...,n,
V2(Vi + Xo)  ifi=1, =2,
V2X1, ifi=2,7=1,
[X“}/]]: \/§va ZfZ:172a.]:357m7
i#J V2Y;, ifi=3,...,m, j=2,
—ﬁ[{,Yj], ifi=m+1,...,n, 5=1,...,m.

If we denote by G the Lie group whose Lie algebra is g, we can define a left-invariant paracontact
metric structure on G the following way:

=0, X;=X;, ©Yi=-Y, i=1,...,n,
n€) =1, nX;)=n;)=0, i=1,...,n

The only non-vanishing components of the metric are

(&8 =g9(X1,11) =1, ¢(X3,Y)=-1, i=2,...,n
A straightforward computation gives that hX; =Y;, i =1,....m, hX; =0, i=m+1,...,n and
hY; =0,i=1,...,n, so h? =0 and rank(h) = m.

Moreover, very long but direct computations give that
R(X;,6)=-X;, i=1,...,n,
R(Y;ug)é-:_y;, i=1,...,n,
R(Xi, X;)€ = R(Xi,Y;)E = R(Y;, V)6 =0, i,j=1,...,n.
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Therefore, the manifold is also a (—1,0)-space.

Remark 4.2. Note that the previous example is only possible when n > 2. If n = 1, then we can
only construct examples of rank(h) = 1, as in Example [Z3

In the definition of the Lie algebra of the previous example, some values of i and j are not possible
for m =2 or m = n. In that case, removing the affected Lie brackets from the definition will give
us valid examples nonetheless.

We will present now an example of 3-dimensional paracontact metric (—1,2)-space and one of
3-dimensional paracontact metric (—1,0)-space, such that rank(h,) = 0 or 1 depending on the
point p of the manifold. These are the first examples of paracontact metric (x, p)-spaces with h of
non-constant rank that are known.

Example 4.3 (3-dimensional paracontact metric (—1,2)-space with rank(h,) not constant). We
consider the manifold M = R3 with the usual cartesian coordinates (x,y,z). The vector fields

I R Y
T o xz(?y Yoz 62_834’ 0z

are linearly independent at each point of M. We can compute

[61762] = 257 [6175] = —xeé, [6275] =0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing
components are g(e1,e2) = g(£,€) =1, and the 1-form n as n = 2ydx + dz, which satisfies n(e1) =
n(e2) =0, n(§) = 1. Let p be the (1,1)-tensor field defined by pe; = e1, pea = —ea, o€ = 0. Then

dn(er, e2) = %(61(77(62)) —ea(ne1)) —n(ler,e2])) = =1 = —g(e1, e2) = g(e1, pez),
1

dn(e1,€) = (e (n(€)) = £(n(er)) = nlfer,€]) = 0= glex, E),
dnfes, €) = 3 (ex(n(€)) — E(n(e2)) — nllez, €]) = 0 = gle, 26).

Therefore, (¢,€,m,9) is a paracontact metric structure on M.

Moreover, hé =0, hey = zez, hea = 0. Hence, h? = 0 and, given p = (z,y, 2) € R3, rank(h,) =0
if x =0 and rank(h,) =1 if x # 0.

Let V be the Levi-Civita connection. Using the properties of a paracontact metric structure and
Koszul’s formula

(3) 29(VxY, Z) = X(g(Y, 2))+Y (9(Z, X)) = Z(9(X, V) —g(X, [Y, Z]) —g(Y, [X, Z]) +9(Z, [X, Y]),
we can compute
Ve =0, Ve &=—e1—zea, V,&=e2, Veer =—e1, Veea=ey,
Vee1 =28, Ve,ea=0, Veer=¢ Veer=—¢.
Using the following definition of the Riemannian curvature
(4) R(X,Y)Z =VxVyZ —VyVxZ -V xyZ,

we obtain
R(61,§)§ = —€1 + 2h61, R(62,§)§ = —€2 + 2h€2, R(el, 62)5 = O,
so the paracontact metric manifold M is also a (—1,2)-space.
Remark 4.4. The previous example does not contradict Theorem[21], as we will see by constructing
explicitly the basis of the theorem on each point p where hy, # 0, i.e., on every point p = (z,y, 2)
such that x # 0.
Indeed, let us take a point p = (x,y,z) € R3. If x # 0, then we define X, = S Y, = hpety

o] Vil
We obtain that {&,, X1,Y1} is a basis of T,(R3) that satisfies that:
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e the only non-vanishing components of g are g,(&p,&p)

o the tensor h can be written as hp‘(5 Xy =
p X1,

0 0

0 0

0 1
e pp6 =0, ppX1=X1, @pY1=-Y1.

Example 4.5 (3-dimensional paracontact metric (—1,0)-space with rank(h,) not constant). We

consider the manifold M = R? with the usual cartesian coordinates (x,vy,z). The vector fields

6*——|—IE672Z——2£ e*2 {*2
YT ox Oy Yoz’ 2T oy’ GE
are linearly independent at each point of M. We can compute
[617 62] = 257 [6175] = 2x€_22 €2, [6276] =0.

We define the semi-Riemannian metric g as the non-degenerate one whose only non-vanishing
components are g(e1,e2) = g(&,€) = 1, and the 1-form n as n = 2ydx + dz, which satisfies n(e1) =
n(ea) =0, n(&) = 1. Let ¢ be the (1,1)-tensor field defined by pe1 = e1, pea = —ea, € = 0. Then

dn(er, e2) = %(61(77(62)) —ea(ner)) —n(ler,e2])) = =1 = —g(e1, e2) = g(e1, pez),

dnfer,€) = 3 (er(n(©) ~ EGnlen) — nller, &) = 0 = gler, 26),
dnfes, €) = ¢ (ex(n(E)) — E(n(e2)) — n(lez,€]) = 0 = gles, 26).

Therefore, (¢,€,m,9) is a paracontact metric structure on M.

Moreover, hé = 0, hey = —2xe ??eq, hea = 0. Hence, h? = 0 and, given p = (x,y,2) € R3,
rank(hp) =0 if £ = 0 and rank(h,) =1 if x # 0.

Let V be the Levi-Civita connection. Using the properties of a paracontact metric structure and
Koszul’s formula @), we can compute

Ve =0, Ve &=—er+ 2re ey, Ve, & = €2, Veer = —e1, Veea = ey,

velel = _21;6_2267 v6262 = 07 v6162 = 57 vegel = _6'
Using now [ @), we obtain

R(el7 6)6 = —€1, R(e27 5)5 = —€2, R(elu 62)5 = 07

so the paracontact metric manifold M is also a (—1,0)-space.

Acknowledgements. The author would like to thank Prof. Martin Avendano for his invaluable
help.
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