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ABSTRACT In this paper, we study the problem of node aggregation under different perspectives for
increasing PageRank of some nodes of interest. PageRank is one of the parameters used by the search engine
Google to determine the relevance of a web page. We focus our attention to the problem of finding the best
nodes in the network from an aggregation viewpoint, i.e., what are the best nodes to merge with for the given
nodes. This problem is studied from global and local perspectives. Approximations are proposed to reduce
the computation burden and to overcome the limitations resulting from the lack of centralized information.

Several examples are presented to illustrate the different approaches that we propose.

INDEX TERMS Networks, game theory, graphs, centrality measures, model reduction.

I. INTRODUCTION

The relationships established among the entities that interact
in a large-scale system can be often modeled as a graph.
This is particularly visible in the case of networks, where
nodes are connected through links that allow exchanging or
transmitting different types of flows (e.g., water, electricity,
and information). The characterization of the relevance of the
nodes and links in a graph is a problem that has been studied
under different perspectives and that is generally related to the
calculation of measures, i.e., numerical values that provide
a notion of the relevance according to a specific criterion.
While some measures focus on the inherent structure of
the network (e.g., the well-known degree and betweenness
centrality measures), others aggregate additional information
into the calculation.

In this article, we study specifically the centrality measure
provided by the PageRank. It has been used by search engine
Google, as one of the means to rank the relevance of the
results they offer to their users.! Specific information about
the PageRank value can be found in [4] and [5]. An analysis
of this value and algorithms for its computation can be found
in [19] and [20]. The rationale behind PageRank is that the
relevance of a web page must be greater if there are significant

1Given that the PageRank was introduced originally in the context of a
network of web pages, we will be using the term node to refer to web pages
as well. Note however, that all the claims made are applicable to all types of
networks in general.

pages pointing to it. Somehow it is as if each page votes the
pages that it points to by means of the hyperlinks. Hence,
the PageRank value depends only on the link structure of the
graph that describes the web and its calculation can be seen
as a variation to that of another popular centrality measure:
eigenvector centrality.

In particular, we would like to gain insights into the prob-
lem of finding the most interesting nodes for given nodes to
merge with from a PageRank viewpoint. While the aggrega-
tion of several nodes into a new one is beneficial in terms of
incoming hyperlinks (as long as the new node is pointed to
by all the links that were originally pointing to the merged
nodes), it is clear that not all the nodes contribute equally to
the fusion. Moreover, some fusions may be super-additive in
the sense that the PageRank of the new node can be greater
than the sum of the PageRanks of the merged nodes.

This viewpoint can be of interest in several applications
where the fusion of nodes is an option to gain relevance,
e.g., web pages, journals, conferences and companies. For
example, PageRank was used together with other measures
to evaluate company’s value taking into account the effect of
network structures in [32], where data of one million Japanese
companies were studied. In [9], the world trade matrix is stud-
ied to rank countries by means of PageRank and CheiRank,
which is a variation that deals with the transposed link matrix.
Another interesting work is [21], where economic influ-
ence and contagion propagation over the world economy are
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analyzed by means of a Google matrix of economic activities
in the period 1995-2009. Other interesting applications can be
found in [14], where the social network Twitter is examined
by using this approach to detect the most influencing users,
and in [22], where PageRank is used as a tool in citation
analysis. Finally, it is worthy to mention [2], where the effect
of newly created links on PageRank is analyzed to find out
how much a web page can control its PageRank.

In order to analyze this problem, we propose two different
approaches, from the global and local perspectives. In the
global one, we assume that full information about the net-
work structure is available. In order to gain insights into the
relevance of the web pages, we propose different cooperative
games in which the value of each coalition is characterized
as the PageRank received by the new node resulting from
aggregation. The Shapley value [31] of the games is related
to the PageRank that a certain page should expect from
joining randomly to a coalition of web pages. In this way,
new centrality measures are obtained. Notice that the Shapley
value has been proposed as a mathematical tool to measure
node centrality in a network in many works of the literature.
For example, in [28], the information diffusion process in a
network is modeled as a cooperative game and its Shapley
value is used to provide a measure of the node influence.
Another related work is [16], where the Shapley value of
the difference of a game and its graph-restricted version is
proposed as a centrality measure in a network. Likewise, it
has been also applied to characterize the relative relevance of
links by means of the position value in [3]. Although other
solution concepts also appear in the literature (e.g., in [18]
a measure degree of centrality in a social network based on
an extension of the Banzhaf power index is presented), the
Shapley value is by far the most used game theoretical payoff
rule used in this context, probably due to its properties and its
straightforward interpretation in terms of average marginal
contribution. Applications of the Shapley value as a measure
to gain an insight into the relevance of the players in this
context include social networks [18], [28], wine ranking [15],
scientific influence attribution [29], shareholder influence
attribution in companies [25], and control systems [24], [27],
among many others.

In addition, we provide a mechanism to compute a numer-
ical approximation of these values to overcome the combi-
natorial explosion issues that arise in this type of problems.
It must be noticed that, while there are numerous studies
on the Shapley value from a theoretical perspective, from
a practical point of view the complexity of its computa-
tion is exponential, in general, leading to an NP-complete
problem [8]. In the literature, the Shapley value has been
computed for special classes of games as weighted voting
games restricted by a tree [13] or weighted multiple majority
games [1] where it has been calculated in polynomial time by
algorithms based on generating functions, or particular cases
of operations research games called extended tree games [17],
among others. An approximation of the Shapley value for vot-
ing games by a randomized polynomial method is presented
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in [10]. Also, the Shapley value for some centrality-related
cooperative games on networks has been solved analytically
by exact algorithms in polynomial time [26]. In addition,
a polynomial method based on sampling theory which can
be applied to approximate the Shapley value for cooperative
games is given in [7], since it is not possible to compute the
marginal contributions from every player when the number
of players is large. In fact, the authors of this work applied
sampling as a method to describe the average of the marginal
contributions for each player on the set of all possible permu-
tations of the set of players from a representative sample of
the set of all permutations. This method is only efficient if the
worth of any coalition can be calculated in polynomial time.

The second approach we propose is based solely on local
information. In particular, it is assumed that the nodes only
have information about their neighbors. Hence, it is not possi-
ble to calculate directly the PageRank of any merger, although
it can be approximated if certain simplifying assumptions
hold, e.g., if the PageRank of the neighbors is not modified
after the merger is formed or if the rest of the network can be
approximated so that the PageRank of the nodes under study
is preserved. Four alternatives are considered depending on
different assumptions regarding the way the approximated
PageRank is computed, which are assessed by simulation.
As it will be seen in the corresponding section, our simulation
results show that some of these methods are very accurate for
determining super-additivity.

Finally, this work enhances substantially and contributes
with more relevant results to the earlier version [23] in several
ways: it includes the proofs of the theorems contained in
that paper and it presents additional theoretical contributions
to calculate analytically equivalent networks in a PageRank
sense and estimators for the PageRank of a coalition of
nodes when there is no global information available. As
it will be shown, the methods proposed allow predicting
with high accuracy whether a fusion of nodes will be super-
additive from a PageRank viewpoint. Moreover, the limita-
tions derived from the combinatorial explosion problem in
large networks, which limited the applicability of our previ-
ous results, are solved in this article by means of a randomized
method proposed in [6], which is adapted here to the games
considered and assessed by means of a large example.

The outline of the paper is as follows. In Section II, grounds
on the calculation of the PageRank and the problem setting
are given. Section III deals with the centralized approach
and introduces cooperative games based on the PageRank
whose Shapley values are proposed as centrality measures.
Section IV deals with the local information approach. Each of
the proposed approaches is illustrated with different examples
in the corresponding sections. Finally, Section V concludes
the paper with final remarks and comments about future
research.

Il. PROBLEM SETTING
Let AV be a set of networked web pages. The network can be
represented as a directed graph G = (N, £), where & is the set

VOLUME 5, 2017



J. M. Maestre et al.: Node Aggregation for Enhancing PageRank

IEEE Access

of edges representing the hyperlinks among the web pages.
In case that a web page i has a link pointing to web page j
then (i,j) € €.

The PageRank is itself a centrality measure related to
eigenvector centrality. It provides information regarding the
relevance of a certain web page based on the dominant
eigenvector of a modified adjacency matrix. In particular,
the PageRank of the web page i is given by the number
x} e [0, 1], with ) ;. nrx/ = 1. It relies on the assumption
that a web page having links from important web pages is also
important. Hence, the value of a web page i is the sum of the

contributions from all web pages that have links to it, i.e.,

x¥

k J
xi—Z—

n;’
jenN;

where NV; := {j : (j, i) € £} is the set of web pages pointing
to the web page i and n; is the number of outgoing links of
web page j.

The calculation of the PageRank can also be stated in
matrix form. Let x* := [x}];c or be a vector of the PageRanks
of all the web pages. The calculation of the PageRank can be
performed by solving

X =Ax, x*e0, IV, Y =1, (1)
ieN
where A is the so-called hyperlink matrix, a variation of the
adjacency matrix, given by
1
ajj = n;
0 otherwise.

The matrix A is column stochastic, i.e., Zie A aij = 1 for
all j € N. As it is shown in [20], in order to have a graph
of the network that satisfies this property it is necessary to
remove the so-called dangling nodes, i.e., the pages with no
links to other pages. This can be done by assuming that they
have backward links to (some of) the pages pointing to them,
which corresponds to the use of the back button in the web
browser.

The PageRank vector x* is the nonnegative unit eigenvec-
tor that corresponds to the eigenvalue 1 of A. However, in
order to guarantee its uniqueness, (1) is slightly modified and
the PageRank vector x* is defined as the solution of

x* =Mx*, x*e|0, I]IN‘, le* =1 2)

ieN
with M (= (1 — m)A +mJ, m € (0,1). Matrix M is a
convex combination of A and J, with J = 71v—‘1W|XW|,

which is a jump matrix with all its elements equal to 1/|A].
The jump matrix models the random jumps between pages
that users perform while surfing the web. Notice that matrix
M is a column stochastic matrix with all positive entries. The
parameter m is usually set to 0.15 by Google [5], [20].

A. NODE AGGREGATION

Let S = {s1, 52, ..., 55} be a set composed of the web pages
s1, 82, ... Ss that are aggregated into a single web page that
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preserves all the original links of the merged web pages.?
For convenience we also define R = {ry, r2, ..., rr} as the
complementary set A/ \ S. In this paper, we are interested in
the value of the resulting web page in the new configuration
of the network, which will be denoted as the directed graph
G'=W,é&n.

The aggregation of web pages can be analytically achieved
by means of three auxiliary transformation matrices, namely
Ps, Ts, and Dg.? Matrix P is a permutation matrix whose
purpose is to rearrange the link matrix so that the web pages
inside S appear next to each other in the first columns and
rows. In particular, the permutation is given by

Ps = [es ey, ...e5€ €, .. .0, ],

where e; denotes the column vector of length |A/| with 1 in
the i-th entry and O in all other entries. Tg is a transformation
matrix whose goal is to aggregate into a single web page the
members in S. It is given by

1|5 [x1
Ts = |:0R|><1
Finally, Ds guarantees that the new link matrix A’ is also

a column stochastic matrix. To this end, it normalizes the
column in which the web pages are aggregated. Hence,

1

01SIxIR]
[RIXIRI |-

lelR\

Ds=| |[S]
o'RIx1  [IRIXIR]

The link matrix of G’ can be derived from the original
network G as follows:

A’ = TSPSAPSTsDs.

Here, the rows and columns of A are conveniently rear-
ranged by Pg, the rows and columns of the web pages in
S are merged by means of Tg, and Ds adjusts the final
result to have the column stochastic matrix A’. The corre-
sponding PageRank can be calculated as in (2), with M’ :=
(1 —mA" +mJ and J = 1NV,

The PageRank of the web page that results from merging
the web pages in S is defined as the PageRank of the aggre-
gated web page in G/, that is, the first component of the new
PageRank vector x"*. This can be calculated as the limit of
the sequence generated by the power method as

X[k+1] = M'X[k] = (1 —rn)zsxx’[k]JrU’\"f—/'l”\f"x1 3)
when k — oo and X'[0] = lW]qllN”Xl.

Remark 1: Itis possible to consider alternatives in the way
the matrix M’ is built. The only strong requirement is that
it must be a column stochastic matrix. One key question is
whether to assume if the random surfer still jumps between
the pages in the merged network G' with the same pro-
bability, i.e., if J = |W171|N,|X NI should hold for this case.

2The links between these web pages are transformed into self-pointing
links of the resulting web page.

3 A lower number of auxiliary matrices could be used but the operations
performed to calculate the link matrix are clearer in this way.
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FIGURE 1. Example web with six pages.

This corresponds to the extreme case in which the new node
receives the same amount of random jumps as any other one
even when it may emerge after the fusion of many nodes.

An alternative case could be to consider that the random
surfer jumps with an aggregated probability to the nodes
inside S, i.e.,

I
J: i
In this case, it is assigned to the merged node an additional
probability of random jumps because it comes from the aggre-
gation of several independent nodes. Additional alternatives
based on a different rationale are possible and even a convex
combination of them could be used for the calculation. How-
ever, it should be noticed that strictly speaking the use of any
of these alternatives does not lead to the PageRank but to a
modified value for the merger.

1 |8|11><|./\/"|
|: 1IRIXIN| ] :

B. AN ACADEMIC EXAMPLE

In this subsection, we introduce an example taken from [20],
which will help us illustrate the main problem studied in this
paper.

The network is shown in Fig. 1. As can be seen,
it can be modeled by means of a directed graph
G = W,&), where NN = {1,2,3,4,5,6} and
& =1{(1,2),2,1),(1,4),(2,3),3.2),(4,3),(3,4),(4,06),
6,4),(4,5), (5,6),(6,5), (3, 6)}. The matrix A of this net-
work is

- | .
0 3 0 0 0 O
1 1
- 0 - 0 0 O
2 3
0 ! 0 ! 0 O
A= 2 3 1
3 0 3 0 0 =
i T
o o o - 0 <
? 2
1
0o 0 - - 1 0
L 3 3 A
and the corresponding matrix M becomes
0.025 0.450 0.025 0.025 0.025 0.025
0.450 0.025 0.308 0.025 0.025 0.025
M= 0.025 0.450 0.025 0308 0.025 0.025
10450 0.025 0.308 0.025 0.025 0.450 |
0.025 0.025 0.025 0.308 0.025 0.450
0.025 0.025 0.308 0.308 0.875 0.025
19802

TABLE 1. PageRank of the example network.

Page PR
1 0.061
2 0.086
3 0.122
4 0.214
5 0.214
6 0.302

Table 1 provides the values of the PageRank (PR) of this
network. As can be seen, web pages 4, 5 and 6 have the high-
est PageRank values due to their larger numbers of incoming
links. The value of web page 6 is greater because its incoming
links come from web pages with larger values, namely pages
3,4 and 5. It is very interesting that pages 4 and 5 share the
same value of PageRank, specially since page 5 is a dangling
node in [20].*

Finally, the aggregation of web pages can be studied by
using (3). For example, the PageRank of the merger of web
pages 1 and 2 is 0.11, which is greater than the PageRank of
any of these web pages, as shown in Table 1. Nevertheless,
the PageRank of the merger is lower than the sum of the
PageRanks corresponding to the merged nodes. Next, let us
examine what happens when nodes 1 and 4 are aggregated.
In this case, the PageRank of the merger becomes 0.281,
which is greater than the sum of the PageRanks of the nodes
aggregated. Hence, the aggregation is super-additive in terms
of PageRank.

In the next sections, we explore the generation of super-
additive PageRank from different perspectives. In partic-
ular, we study which nodes are more likely to generate
super-additive PageRank and also different estimators for the
PageRank value of the merger when full information is not
available.

Ill. GLOBAL APPROACH: COOPERATIVE GAMES BASED
ON THE PAGERANK
Game theory deals with situations in which there are several
coupled interacting entities. The outcome of a game depends
on the combinations of the decisions taken by its players.
Depending on the way the decisions are taken, it is possible
to classify the games as cooperative or noncooperative. In
the former case, players may attain binding agreements; in
the latter case, decisions are taken without guarantees regard-
ing the behavior of the rest of the players. In this work,
we focus on cooperative games, which are defined by two
basic elements, namely a set of players and a characteristic
function. More specifically, we propose to use the PageRank
that an aggregation of web pages obtains as the value that
corresponds to that coalition. The Shapley value [31] of
these aggregation PageRank games is proposed as a centrality
measure.

In this section, we first provide some grounds about coop-
erative game theory. Next we define how the PageRank can

4Web page 5 is a dangling node and the link going from 5 to 6 was
introduced to guarantee that the link matrix is stochastic.
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be computed. Finally, cooperative games based on the
PageRank are defined.

A. COOPERATIVE GAME THEORY

Cooperative game theory studies situations in which players
can negotiate and attain binding agreements. Which coali-
tions of players should be expected and how to divide the
benefits/costs derived from cooperation are major concerns
in this branch of game theory. Formally, a cooperative game
with transferable utility is a pair (N, v), where N is the set of
players and v is a function that assigns a value to each possible
coalition S € N, with v(#) = 0. A payoff rule is a vector
that assigns a certain amount to each player according to its
contribution to the game. In this work we use the Shapley
value, which assigns to each player i € N the value

ISIN] =S| = D! .
! (S U{iH—w(S)].

SN, M= Y
ScNM\{i}
)

This can be interpreted as the value that each player gets
according to a weighted average of the contributions he
makes to the different coalitions. The Shapley value on the
class of transferable utility games satisfies some interesting
properties such as Linearity, Efficiency, Dummy player and
Symmetry [31].

B. THE PAGERANK AGGREGATION GAME

The definition of a cooperative game requires a characteristic
function that assigns a value to each of the possible coalitions
of players that can be formed. In the PageRank aggregation
game, the players are the web pages contained in G and
the term coalition is understood in the sense of aggregation.
A coalition of web pages S = {s1, 52, ..., 55} is the aggrega-
tion of these web pages into a single web page that preserves
all the original links. The value of coalition S is defined as
the PageRank of the aggregated web page in G/, that is, the
first component of the new PageRank vector x*. Hence

v(S) =[10...01x* = elx*. (5)

Note that (5) depends only on the structure of the network
of web pages G and hence the Shapley value of this game
provides us with a centrality measure of the web pages.

C. THE PAGERANK DIFFERENCE AGGREGATION GAME

An allocation vector of the previous game provides infor-
mation regarding the players that are expected to provide
more PageRank when they are aggregated into a coalition.
‘While this information is valuable, it does not consider the net
effect of the aggregation. It is interesting to know whether the
PageRank of the merger is greater, lower or equal to the sum
of the individual PageRanks of the players in the coalition.
To this end, we define the PageRank difference aggregation
game over the same set of players but with the following
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characteristic function:

vaif(S) = v(S) = Y _v(j),
jeS

where for simplicity we have denoted v({i}) by v(i). The
characteristic function vg;f(S) measures the gain or loss of
PageRank derived from the aggregation. If vgir(S) > 0O for
a certain coalition S then the aggregation is rational and the
players have a strong incentive to perform the coalition. The
Shapley value of the difference game provides information
about the best players to be integrated from this perspective.

Remark 2: The fact that the PageRank obtained by a coali-
tion is lower than the sum of the PageRanks of its members
should not be taken as if it is not rational to carry out the
integration. A certain loss of PageRank can be acceptable in
order to gain relevance in terms of centrality.

Finally, the following proposition simplifies the calcula-
tion of the Shapley value of the difference aggregation game.

Proposition 1: The Shapley value of the difference aggre-
gation game can be calculated as

i(N, vair) = ¢i(N, v) — v(i).
Proof: The Shapley value is linear by construction.
Hence,

¢\, vair) = BN, (S) — D v()

jesS
= ¢\, W(S) — ¢V, Y (i)
jeS
The Shapley value of the game > v(j) is simply
JjeS

&N, > v(j)) = v(i) because the marginal contribution
€S

in thisj game of adding any player to a random coalition is
constant and equal to its own value v(i). Q.E.D.

Remark 3: Notice that the computation of ¢;(N', vgif) can
be performed immediately after ¢;(N,v) is computed as it
only requires to subtract the PageRank of the corresponding
player to this amount.

D. AN ACADEMIC EXAMPLE (CONT.)

In this subsection, we work again with the example in
Section II-B, which will help us show the differences between
the PageRank of the web pages in the network and the Shap-
ley value of the games proposed.

From the viewpoint of game theory, we model the web
given by the directed graph G as a cooperative game (N, v)
where A is the set of web pages and v is defined as the
PageRank of the aggregated coalition. In Table 2, the value
of the characteristic function v is shown for each coalition of
web pages.

Table 3 provides the values of the PageRank (PR) and the
Shapley values of the PageRank aggregation games of this
network. As can be seen, the Shapley value of the aggregation
game is fairly close to the PageRank, but it does recognize a
difference on the relevance on nodes 4 and 5. In particular,
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TABLE 2. Characteristic function for the example network.

S > 0() [ v(S) [ vau(S)
{1y 0.061 | 0.061 0
{2} 0.086 | 0.086 0
{3} 0.122 | 0.122 0
{4} 0214 | 0214 0
{5} 0214 | 0214 0
{6} 0302 | 0.302 0
{12} 0.147 | 0.110 | —0.038
{13} 0.184 | 0.165 | —0.019
{14} 0276 | 0.281 | 0.006
{1.5} 0276 | 0249 | —0.027
{1.6} 0364 | 0331 | —0.033
{23} 0208 | 0.179 | —0.029
{24} 0300 | 0.295 | —0.004
{2.5} 0300 | 0.281 | —0.019
{2.6} 0388 | 0.365 | —0.023
{34} 0336 | 0.324 | —0.012
3.5} 0336 | 0.316 | —0.020
{3.6} 0424 | 0410 | —0.015
{45} 0428 | 0405 | —0.023
{4.6} 0517 | 0473 | —0.044
{5.6} 0517 | 0460 | —0.056
{123} 0269 | 0.198 | —0.071
{124} 0361 | 0.370 | 0.008
{125} 0361 | 0373 | 0.011
{126} 0449 | 0460 | 0.010
{134} 0398 | 0.386 | —0.012
{135} 0398 | 0.393 | —0.005
{1.3.6} 0486 | 0479 | —0.007
{145} 0490 | 0.465 | —0.025
{1.4.6} 0578 | 0.524 | —0.054
{156} 0578 | 0434 | —0.144
{234} 0422 | 0408 | —0.014
{235} 0422 | 0435 | 0013
{2.3.6} 0510 | 0.528 | 0.018
{245} 0514 | 0490 | —0.024
{2.4.6} 0.602 | 0.552 | —0.050
{2.5.6} 0.602 | 0479 | —0.123
(34,5} 0551 | 0.528 | —0.022
{34.6} 0.639 | 0.595 | —0.043
{3.5.6} 0.639 | 0.515 | —0.123
{456} 0731 | 0.605 | —0.125
{1234} 0483 | 0.458 | —0.026
{1235} 0483 | 0.511 | 0.028
{1236} 0572 | 0.608 | 0.036
{1245} 0576 | 0.596 | 0.021
{1246} 0.664 | 0.653 | —0.010
{1256} 0.664 | 0.570 | —0.093
{1345} 0612 | 0.611 | —0.001
{1346} 0.700 | 0.672 | —0.028
{1356} 0.700 | 0.588 | —0.112
{1456} 0792 | 0.637 | —0.155
{2345} 0.636 | 0.653 | 0.017
{2346} 0724 | 0.717 | —0.007
{2.3.5.6} 0.724 | 0.644 | —0.080
{2456} 0.816 | 0.682 | —0.134
{34,5.6} 0.853 | 0.710 | —0.143
{12345} | 0698 | 0751 | 0.053
{12346} | 078 | 0810 | 0.024
{12356} | 0.786 | 0.737 | —0.049
{12456} | 0878 | 0.791 | —0.087
{13456} | 0914 | 0801 | —0.113
{23456} | 0939 | 0859 | —0.080
123456} 1 1 0

node 4 is more important because of its greater impact when
it is aggregated into a random coalition of web pages. For
example, in all the coalitions with 5 web pages, the one with
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TABLE 3. Comparison of the values.

Page [ PR [ ¢i(N,v) | ¢i(WN,vair)
1 0.061 0.079 0.017
2 0.086 0.116 0.030
3 0.122 0.144 0.021
4 0.214 0.218 0.004
5 0.214 0.184 —0.030
6 0.302 0.259 —0.043

the lowest value is that in which web page 4 is not included.
As a direct consequence, the relative relevance of page 6 is
also reduced. The Shapley value of the difference aggregation
game shows that nodes 1 to 4 are more likely to produce
mergers with a higher PageRank value. Indeed, a closer look
at Table 2 shows that most coalitions that produce a positive
difference contain at least some of these players. Likewise,
notice that the Shapley values of this game correspond to that
of the aggregation game minus the PageRank of each player.
This simple academic example shows the potential of the
Shapley value of the aggregation PageRank games as an
alternative centrality measure for the nodes. In addition, this
perspective is also useful when evaluating the potential fusion
of nodes inside the network. For example, several web owners
that plan to integrate their web pages would be very inter-
ested in this type of information, specially since revenues
are related to the number of visitors and hence PageRank.
However, a problem arises at this point due to the combinato-
rial explosion and the need of centralized information. While
there are efficient methods for the distributed computation
of the PageRank [20], the computational and informational
requirements to calculate this value are very demanding.

E. THE SHAPLEY VALUE OF LARGE NETWORKS

As previously pointed out, one of the most important solution
concepts in cooperative games is the Shapley value [30].
The Shapley value allocates the worth of the grand coalition
when all agents in the set of players decide to cooperate.
However, a well-known problem of the Shapley value is
its computation. The explosion on the number of coalitions
that have to be computed hinders its calculation for large-
scale games. For a set of players 21 different coalitions
need to be evaluated. For example, a network with only 30
nodes requires 230 coalitions to be evaluated, i.e., a billion
of value computations for a relatively small size network. To
overcome this issue, in this work we employ the numerical
approximation of the Shapley value proposed in [6], which
is based on a randomized method. Next, we describe briefly
this method. It is important to emphasize that for the games
defined previously the computation of the value of each
coalition can be realized in polynomial time.

In the sampling method given in [6], an alternative def-
inition of the Shapley value is used. Indeed, the Shapley
value can be expressed in terms of all possible orders of the
players A/, assuming that all different orders have the same

S5The small differences are due to the precision employed for the presen-
tation of the results.
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probability, in the following way:

ﬁ Z m! (N, v), foralli e N,

" wellN)

$iN,v) =

where TT1(V) is the collection of all permutations 7 : N' — N
on N, and for every permutation & € TI(N),

m N, v) =v({j e N | n() =D}
—v({jeN|n( <m®}, (6)

is the marginal contribution of player i to the players that
are ranked before him in the order . Therefore, the Shapley
value assigns to every game the average over all marginal
vectors associated to all permutations of the player set NV

Next, some terminology corresponding to the sampling
process to approximate the Shapley value is given as follows:

(1) The population set P = IT(N') from which the sample
is taken is represented by the set of all possible orders of the
set of players NV. The sample Q is an element of

PxPx---xP,
—_—

q times

i.e., the sample size is ¢ and it is obtained with replacement.
(2) The parameter vector ¢ = (¢1, ..., ¢,) under consid-
eration consists of the Shapley value for each i € NV.
(3) The characteristics observed for each sampling unit
7 € TI(N) correspond to the marginal contributions of the
players in the order 7, i.e.,

x() = (x1(7), ..., x5())  with xi(w) = m] (N, v).

(4) The estimate of the Shapley value, &(N , V), will be
given by the average of the marginal contributions over the
sample Q, i.e.,

Gi(N.v) = é S mIW.v),  forallieN.
weQ

(5) Any order w € II(N) will be taken with equal proba-
bility to determine the sample Q in the process of selection.

The sampling process described above gives an approxi-
mation of the Shapley value with desirable properties. For
instance, it is possible to calculate the theoretical error in a
probabilistic way. In particular,

BN, v) ~ N(gi(N, v), o2 /q),

i.e., the estimator is unbiased and its variance is given by
02/q [6]. Hence, if the sample size satisfies g > Zg/zoz/ez,
then P(|¢i(N, v) — ¢i(N, v)| < e) > 1 — «, with e being the
approximation error, Z ~ N(0, 1), and Z(f 1 being the value
such that P(Z > Z ;) = a/2. Given that o is unknown, it is
necessary to provide an upper bound, which becomes 0% <
(x}ax — X_. )/4 for any random variable bounded in a range
[xr’nin, xfnax] [6]. If we take into account that ¢;(N, v) € [0, 1],
then the bound simply becomes o> < 0.25 in our case.
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FIGURE 2. Example web with 200 pages.

F. EXAMPLE

In this subsection we deal with a web composed of 200 nodes.
The links between the nodes can be seen in Figure 2, where
yellow and blue are used to denote respectively the presence
and absence of links between two given nodes. Notice that the
direct computation of the Shapley value of any of the games
proposed in this work requires the computation of the value
of 2290 coalitions (1.60 x 10°0), which is not feasible.

The application of the method from the previous subsection
is particularly interesting in this case. In particular, the fact
that the PageRank of any given node is limited between
0 and 1 allows calculating accurate results with a reduced
set of samples. For example, a maximum error of 0.01 in the
PR requires the evaluation of 829400 coalitions. A maximum
error ten times lower requires to compute 1353600 coalitions.
As can be seen, the resulting computation burden is feasible
within the limits imposed by current technology. In addi-
tion, it must be noticed that the computation can be easily
parallelized.

Figure 3 shows the PageRank and Shapley values of the
aggregation and difference games of the example calculated
for a maximum error of 5 x 10~ and a 99% confidence level.
In general, there is a strong correlation between the PageRank
and the Shapley value of the aggregation game. However, the
difference in the value of the last nodes is remarkable. As can
be seen in Figure 2, these nodes are almost isolated. Hence, it
is difficult for the random surfer to get out of this set of nodes
once he is there. As a consequence, the PageRank of these
nodes is high. However, this effect is corrected in the Shapley
value of the aggregation game. From this perspective, there
is not much to gain by merging with the nodes in this set.
Moreover, the Shapley value of the difference game shows
losses in terms of PageRank for any merger containing one
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FIGURE 3. PageRank (PR), Shapley values of the aggregation (SV) and
difference games (SVdg) of the 200 nodes example.

of the nodes in this set. Merging breaks the isolation of
the nodes, and hence the gain of PageRank may be lost.
Finally, the Shapley value of the difference game shows that
nodes more likely to provide an increased PageRank are those
between 50 and 90.

IV. LOCAL APPROACH

Even when we have shown that obtaining information regard-
ing the suitability of merging a set of nodes S is feasible,
full information is not always available. In such cases, it is
possible to assess the potential of the merger by means of an
approximation of v(S), denoted by v/(S), before making any
decision. To this end, let us partition the nodes A/ in G in three
disjoint sets:

o S: These are the core nodes, i.e., those whose fusion is
to be assessed.

o 7: Interface nodes, which are the nodes that point to or
are pointed to by the nodes in S. These are the neighbors
of the core nodes, i.e., their interface with the rest of the
network. We assume that information from this nodes is
also available.

o O: The rest of the nodes are grouped here and are called
the outer nodes.

Without loss of generality, let us assume that the set A/
in G has its elements arranged in the following order: outer
nodes (O), interface nodes (Z), and core nodes (S). The
link-matrix A has this structure as well:

Aoo Aoz Aos
A=|Az0 Azz Azs|. (N

Aso Asz  Ass
Let us define the function PR(-) that provides us with the
PageRank vector of the nodes in its argument, e.g., PR(S)
stands for the PageRank of the core nodes. As we saw,
the PageRank is the eigenvector corresponding to the unit
eigenvalue of the matrix M in (2). Hence, the PageRank of
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the core nodes has to satisfy the following equation:

PR(S) = (1-m) [Aso Asz Ass] PRI+ %1'5'“.
Taking into account that Asp = 0 by construction and
that we can decompose the PageRank vector as PR(N) =
[PR(O)T, PR(T)T, PR(S)™T, it is possible to rewrite the
equation as

PR(S) = [m— DAss +1551]
Sla- M qisixl
[(1 MASTPR) + 371 } ®)

Remark 4: A more general version of (8) can be built by
considering a non-homogeneous jump matrix J. In this case,
(8) becomes

PR(S) = [(m— DAss — mlss + I|3|x|sw]*‘
- [(1 = mAsTPR(I)
+mJsoPR(O) + JszPR(D))] . 9)

A. NAIVE COALITION VALUE ESTIMATION

Equation (8) allows us to calculate the PageRank of the set
of core nodes from the PageRank of its neighbors. This also
motivates us to introduce our first and simplest estimator for
v(S) as the sum of the PageRank of the corresponding nodes
inS as

VSPR(S) — 11X|8|PR(S),

where PR(S) is obtained as in (8). Despite its simplicity,
VSPR(S) has a problem: it cannot be used to obtain informa-
tion regarding the super-additivity of the merger regarding
PageRank. This is important because we would like to know
whether the PageRank of the merger will be greater than or
equal to the sum of the PageRanks of the merged nodes.

B. CETERIS PARIBUS APPROACH

Equation (8) can also be applied to the link-matrix of the
network resulting from merging the nodes in the coalition S,
denoted by A’, i.e.,

PR(S) =
) (m— DAl + 1

.10

Xhere the matrices A’ ¢ and A's can be easily obtained from
as

A 11><|S|AS$1|S|><1
SS |S| ’

Ay =1751Ag7.

Here, the superscript denotes the PageRank and the matrices
that correspond to the network after merging the core nodes.
Note that this is consistent with Section II-A. Also, everything
in (10) can be known in advance with the exception of PR'(Z),
i.e., the PageRank of neighbors after the merging. Note more-
over that Equation (10) provides also the actual value of v(S),
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i.e.,, v(S) = PR/(S). As a consequence, and taking into
account that super-additive coalitions must satisfy

wS) = vSPR(S),

it is possible to write the condition that has to be satisfied to
have a super-additive coalition.

Proposition 2: A coalition S generates super-additivity in
terms of PageRank if and only if the following condition
holds:

1x|S
(1= m1SIASTPRD) + s,

n— DI Ty

> 1990 [(m — DAss + 1905

: [(1 — m)As7PR(T) + Wm|1'5'“] (11)

No proof is provided for the proposition since it is a simple

consequence of the definitions of v(S) and vVSPR(S).

Equation (11) highlights two key ideas for a coalition to be

super-additive:

« Coalitions with nodes with a strong internal link inter-
action with respect to their interaction with rest of the
network have more chances due to the term Agg in the
denominator of (11). Given that m — 1 < 0, the greater
the elements of this matrix are, the better.

« Coalitions making their neighbors better off after the
merging have better chances due to the influence of
PR/(T) in (11). That is, nodes forming a coalition should
not only pay attention to their PageRank. Their neigh-
bors’ PageRank is very important in this regard.

Note also that it is not possible to evaluate Equation (11)
before actually computing A’. Nevertheless, if we take the
classical ceteris paribus approach and assume that everything
holds constant despite merging the nodes, we can evaluate
Equation (11) by taking PR'(Z) = PR(Z). This assumption
provides us with a reasonable guess of whether we can expect
a super-additive coalition as long as the PageRank of neigh-
bors is not much altered after the merging, which is likely to
happen in a large-scale network. As a consequence, we arrive
at our ceteris paribus estimator for v(S), which is defined as

(1 —m1™SIASTPR(T) + s
n— DA 4y

VP(S) = (12)

A second version of this estimator can be defined in the line
of Equation (9), i.e., for the case in which the jump matrix
is also affected by the node aggregation. In this case, the
probability of randomly jumping to the merger becomes the
sum of the probabilities of the merged nodes before the jump
took place, hence giving

(1 — m1'*ISIAs7PR(T) + m%

_ llx\S\ASSI\S\xl
(m 1)—|8|

VF2(S) = (13)

VOLUME 5, 2017

C. EQUIVALENT SUBNETWORKS IN A PAGERANK SENSE
In this subsection, we take a slightly different approach and
pay attention to the following problem: given a network G
that contains a subnetwork Gq,p,, we would like to find another
network G’ that also contains Ggyp so that the PageRank of the
nodes in Ggyp is equal in both networks G and G'.

Definition 1: Let G and G’ be two networks containing a
subnetwork Gy, We say that they are equivalent in a strict
PageRank sense for the subnetwork Gy if the PageRank of
the nodes in Gy, is the same in both networks.

Our goal is to find a network G simpler than G that allows
assessing the convenience of merging some of the elements
in Ggyp. In particular, we assume that G, contains the nodes
in S and Z and their internal links.

Proposition 3: Given a subnetwork Ggpn of G with a
nonempty set S of core nodes, a simplified network G' that
also contains Gy, must have the same number of nodes with
G to provide the same PageRank to the nodes in Gy, i.e., to
provide strict PageRank equivalence for subnetwork Ggyp.

Proof: Let A and A’ be the link-matrices that corre-
spond respectively to G and G’. Strict PageRank equivalence
requires that the condition PR(S) = PR'(S) holds. Now note
that:

. A:g o 1s azero block because there is no link relationship

between core and outer nodes.

« Likewise, A:SZ and A:S  must be equal in A’ and A to

preserve the link relationship between these groups of
nodes.

Since Equation (8) can be applied to both networks, we can
observe that PR(S) = PR'(S) holds only if

Skt M qiSixa

V] V| ’
which is equivalent to |N'| = |N”|. Consequently, a different
number of nodes will lead to a different value of the PageRank
in the core nodes. Q.E.D.

According to Proposition 3, it is possible to obtain a net-
work G’ with a simpler structure but the number of nodes
must remain constant whenever there exist core nodes. Over-
coming this issue requires to introduce changes in the way
the PageRank is computed following the ideas of Remark 1.
If the structure of M is changed, then it may be possible
to find a network G’ with a reduced number of nodes that
still provides the same PageRank value for the nodes of the
subnetwork under study according to the modified version
of the PageRank computation. To this end, we introduce the
following definition:

Definition 2: Let G and G' be two networks containing a
subnetwork Geup. For G, let M’ be a column stochastic matrix
built using a non-uniform distribution of the random surfer
Jumps, which is denoted by J, i.e., M' = (1 — m)A’ + mJ'.
Let PR’ be the eigenvector that corresponds to the eigenvalue
1 of this matrix. We say that G and G’ are equivalent in a wide
PageRank sense for the subnetwork Gy if the PageRank PR
of G and the modified PageRank PR’ of G' are the same for
the nodes in Ggp.
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From the definition, it is clear that wide-sense PageRank
equivalence is less restrictive than strict PageRank equiva-
lence. The reduced network G’ can be ultimately described
by A’, which must be calculated.

Proposition4: Let A’ and J be nonnegative column
stochastic matrices representing respectively the link-matrix
and the jump matrix of network G' so that

(1 = mA’ +mJ') PR'N") = PR'(N). (14)

For the networks G and G' to be equivalent in a wide PageR-
ank sense for a subnetwork Gqyp, it holds that

AL, = Azz, (15)
Al = Azs. (16)
Agr = Ast, (17)
Algs = Ass, (18)
Agp =0, (19)
Alg =0, (20)

PR'(T) = PR(T), Q1)

PR'(S) = PR(S). (22)

Proof: The inner structure of G, is preserved by means
of the equality constraints of A" (15)-(20). Both A’s, and
Alyg are zero blocks of the corresponding sizes and the
elements in A/II’ A/I S AZSZ and Azs < have the same values
as those in the corresponding submatrices in A. Finally, Equa-
tions (21) and (22) require that the core and interface nodes
receive the same value in PR’, which stems from the defini-
tion of equivalent network in a wide PageRank sense.Q.E.D.

Notice that the conditions given are necessary but they do
not lead in general to a unique solution. In particular, the fol-
lowing elements have to be designed: A/(’)(')’ A/I(’)’ A’OI, J,
and PR'(O’). The direct computation of these elements based
on (14) leads us to a set of bilinear equations because there are
cross multiplications in these variables. Alternatively, it may
be preferable to solve a set of linear equations for different
fixed values of the modified PageRank value of the external
nodes, especially because there is an incentive to keep a low
number of them for the sake of simplicity.

Another noteworthy point is that there may not be a fea-
sible solution for the set of constraints given, i.e., the set of
equations may be incompatible, or even when a solution can
be found A’ may be non-stochastic, etc. In that case, a new
attempt can be made with an increase in the number of exter-
nal nodes. Consecutive increments can be made until A’ is
found. Finally, notice that the increase of external elements is
bounded because in the worst case a solution for the problem
is guaranteed trivially for G = G’. In that case G would not
be reducible for the considered subnetwork.

Once this merged network G’ has been calculated, an esti-
mation of w(S) is given by V/(S), i.e., the PageRank that
corresponds to the fusion of the nodes in the reduced network.

Next, we present a particular case of this approach and the
corresponding estimator.
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1) DIRECT APPROXIMATION

Here, we introduce a direct approximation for v/(S) based
on a simplification of the original network G in which we
aggregate all the nodes outside Gy, into a single node. As we
will see, even if full information is not available, it is possible
to calculate this approximation if the links between the nodes
in Z and O are known. To this end, we construct A’ as follows:

1x|T
o[-t f' A7y Apr O
A= Ao Azz  Azs|. (23)
0 Asz  Ass
with
A/(’)IZ 11><|I| _11><|I\AII_11><|S|ASI (24)
and
AzoPR(O)
A= —— 25
07 1— % PRG) )
ieSUZ

Likewise, the matrix J' is built by accumulating the jump
probability of the nodes aggregated into the new node while
it remains constant for the rest of the nodes in the network,
i.e.,

(1— IZ| + |S|)11><(1+|I|+|S\)
y=| | W . ©6)
T1(|I\+|$|)x(1+|I|+\:>‘\)
[NV

Once the simplified network is calculated, it is possible
to assess the performance of the merger by using (10). To
this end, the nodes in S are merged and the PageRank of
the resulting merger PR’(S) provides us with the direct
approximation estimator vPA(S). It is also possible to calcu-
late an analytical expression for this estimator based on the
PageRank of the interface nodes as follows:

(1 —m1™SIASTPR' (D) + s

llx\S\ASSI\S\xl
m—1)——2——
( ) ST

WAS) = , @D

where PR”(Z) is the PageRank that the interface nodes 7
receive in the new network. Here, the double apostrophe ”
denotes that the network has been transformed twice before
the calculation of the PageRank of these nodes. As can be
seen, the rest of the elements in (27) belong to the original link
matrix A.

A second version for this estimator is based on the cal-
culation of the PageRank by means of the corresponding
aggregated jump matrix
T+

IV

1 izixez)

V]

181 1xe+iz)
N

a )11><(2+|I\)

J// —
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[0.00 0.10 0.00 0.00 0.00 0.00 0.00
0.00 0.62 050 050 1.00 040 0.60
1.00 0.01 0.00 0.00 0.00 0.00 0.00
0.00 0.06 0.00 0.00 0.00 0.00 0.20
0.00 0.00 0.00 0.00 0.00 0.20 0.00
0.00 0.03 0.00 0.00 0.00 0.00 0.00

A — 0.00 0.02 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 020 0.00

0.00 0.03 0.00 050 0.00 0.00 0.00

0.00 0.03 0.00 0.00 0.00 0.00 0.00

0.00 0.04 0.25 0.00 0.00 0.20 0.00

0.00 0.06 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

| 0.00 0.00 025 0.00 0.00 0.00 0.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00]
0.50 0.80 0.00 0.00 0.60 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.25 0.00
0.00 0.00 0.00 0.00 0.00 0.25 0.00
0.00 0.00 0.00 0.00 0.00 0.25 0.33
0.00 0.00 0.00 0.00 0.00 0.00 0.00 (29)
0.00 0.00 0.00 0.00 020 025 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.50 0.00 0.20 0.00 0.33
0.00 0.00 0.00 0.00 0.00 0.00 0.33
0.00 020 0.50 1.00 0.00 0.00 0.00

We denote the estimator by vPA%(S). We can also provide an
analytical expression for this estimator based on the contri-
bution of interface nodes by using (9) as follows:

[(1 — m1'™¥ISIAs7] PR'(D) + m )

VDAZ(S) _ NV ) (28)

1x|S| |S|x1
(m— DA + 1
D. EXPERIMENTAL RESULTS
In this subsection, we show some experimental results
to illustrate the different local information approaches
proposed.

1) EQUIVALENT NETWORK EXAMPLE

In Figure 4 a randomly generated 30 node network is
depicted. Let’s suppose that we would like to assess whether
nodes 4 and 8 should be merged, which would be our core
nodes. We will take the 1-hop neighborhood as interface
nodes, i.e., nodes 1, 2, 9, 11, 16, 19, 23, 24, 25, and 26.
Consequently, nodes 3, 5, 6, 7, 10, 12, 13, 14, 15, 17, 18,
20, 21, 22, 27, 28, 29 and 30 are external nodes.

The method described after Proposition 4 can be applied
to find a link-matrix equivalent in a wide PageRank sense
by solving the set of bilinear equations that stems from (14).
The result is given in (29), as shown at the top of this page
and corresponds to a 14-node network that provides the same
PageRank value for all the nodes of interest.

2) ESTIMATOR ASSESSMENT

Finally, we have assessed our estimators. To this end, 10000
simulations with randomly generated networks were carried
out for different network sizes in the range [25, 200]. The
probability that a link is established between any given two
nodes was set to 0.1. The coalition size was also randomly set
in the range [2, 5].

The results are shown in Tables 4-7. There, we can
see data regarding the average absolute (|e|) and relative
(ler|) approximation error for two cases, namely, standard
PageRank calculation (PR) and PageRank when an aggre-
gated jump matrix is used (PR (aggr. J)). As for the latter,
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FIGURE 4. Example web with thirty pages.

it corresponds to the case where the merger receives a prob-
ability of jump that is equal to the sum of the probabilities
of the nodes before merging. The standard deviations for
these errors are also provided (|€|, and |€,|s). In addition,
two additional columns are added to show the rates of cor-
rect predictions of PageRank super-additivity/subadditivity
based on the estimator turns to be true. These are denoted
by CFR, which stands for correct forecast rate. Note that the
performance of vSPR(S) in this regard is omitted because this
estimator cannot be used to predict super-additivity.

Clearly, the estimators work better for the cases they are
designed for. It is remarkable that some of them offer much
better results than the mere sum of PageRank of the merged
nodes, specially regarding the prediction of super-additivity.
In particular, v°P(S) and vPA%(S) are capable of providing
very accurate predictions on this matter. Moreover, these esti-
mators become better as the size of the network grows, which
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TABLE 4. Assessment of the estimations (|| = 25).

PR PR (aggr. J)
Method d lelo ler] ler|o CFR d lelo ler] ler|o CFR
vSPR(S) | 0.0757 | 0.0553 | 2.1323 | 1.3541 - 0.0113 | 0.0203 | 0.2052 | 0.3529 -
vCF(S) 0.0025 | 0.0100 | 0.0293 | 0.0785 | 0.9883 | 0.0693 | 0.0561 | 0.5810 | 0.1788 | 0.6898
vCP2 (S) 0.0686 | 0.0560 1.8003 1.0529 | 0.6765 | 0.0018 | 0.0097 | 0.0137 | 0.0496 | 0.8926
vPA(S) 0.2246 | 0.1581 | 5.9453 | 2.6092 | 0.0293 | 0.1558 | 0.1068 | 1.5056 | 0.5792 | 0.3484
vPA2(S) | 0.0688 | 0.0554 | 1.8063 | 1.0460 | 0.6934 | 0.0001 | 0.0005 | 0.0006 | 0.0035 | 0.9057
TABLE 5. Assessment of the estimations (JA/| = 50).
PR PR (aggr. J)
Method €] lelo ler] ler|o CFR €] lelo ler] ler|o CFR
vSPR(S) | 0.0147 | 0.0170 | 0.7701 | 0.9888 - 0.0055 | 0.0122 | 0.1390 | 0.2873 -
vCP(S) 0.0008 | 0.0025 | 0.0251 | 0.0478 | 0.9956 | 0.0115 | 0.0096 | 0.3170 | 0.1659 | 0.5219
vCP2(S) | 0.0114 | 0.0095 | 0.6067 | 0.6307 | 0.6165 | 0.0007 | 0.0024 | 0.0139 | 0.0319 | 0.8580
WwPA(S) 0.0302 | 0.0494 | 1.9042 | 3.0676 | 0.2648 | 0.0199 | 0.0426 | 0.6354 | 1.0966 | 0.6039
vPA2(S) | 0.0115 | 0.0093 | 0.6092 | 0.6303 | 0.5174 | 0.0000 | 0.0001 | 0.0009 | 0.0015 | 0.9769
TABLE 6. Assessment of the estimations (|JA/| = 100).
PR PR (aggr. J)
Method le] lelo ler] ler|o CFR le] lelo ler] ler|o CFR
vSPR(S) | 0.0052 | 0.0050 | 0.5184 | 0.7495 - 0.0010 | 0.0031 | 0.0602 | 0.1984 -
vCP(S) 0.0001 | 0.0002 | 0.0073 | 0.0133 | 1.0000 | 0.0047 | 0.0032 | 0.2595 | 0.1455 | 0.5046
vCP2(8) | 0.0046 | 0.0032 | 0.4411 | 0.4860 | 0.6158 | 0.0001 | 0.0001 | 0.0031 | 0.0053 | 0.8308
vPA(S) 0.0128 | 0.0319 | 1.8146 | 4.4072 | 0.3790 | 0.0094 | 0.0294 | 0.6756 | 1.6691 | 0.5284
vPA2(S) | 0.0047 | 0.0033 | 0.4420 | 0.4869 | 0.5046 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.9916
TABLE 7. Assessment of the estimations (|JA/| = 200).
PR PR (aggr. J)
Method |e] lelo ler] ler|o CFR €] lelo ler] ler|o CFR
vSPR(S) | 0.0022 | 0.0017 | 04371 | 0.6329 - 0.0002 | 0.0008 | 0.0244 | 0.1244 -
vCP(S) 0.0000 | 0.0000 | 0.0031 | 0.0068 | 1.0000 | 0.0021 | 0.0014 | 0.2420 | 0.1435 | 0.4938
vCP2(S) | 0.0021 | 0.0014 | 0.4034 | 0.4699 | 0.6396 | 0.0000 | 0.0000 | 0.0007 | 0.0016 | 0.8212
WwPA(S) 0.0065 | 0.0228 | 2.2127 | 69114 | 0.4264 | 0.0053 | 0.0218 | 0.8301 | 2.4574 | 0.5136
vPA2(S) | 0.0021 | 0.0014 | 0.4036 | 0.4703 | 0.4944 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.9944

make them very suitable for real large-scale networks. Like-
wise, the estimations provided by v*P?(S) are good, although
they are not as accurate as those of vPA%(S). Surprisingly,
vPA(S) offers very poor results, specially in terms of absolute
relative error. In fact, the results of this estimator are even
worse than those of vSPR(S).

V. CONCLUSIONS
In this work, we have studied the problem of merging nodes in
a network from a PageRank viewpoint. A global perspective
analysis has allowed us to define games of interest in this
context. Two measures have been given, one of which is
directly related to the amount of additional PageRank that
can be expected when merging with a node. A method for
the computation of the new measures in polynomial time for
large networks has been also applied.

The same problem has also been addressed from a local
perspective. The lack of full information is a strong limi-
tation that only allows obtaining estimates of the expected
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PageRank value. Different estimators have been introduced
and experiments have been carried out to show the remark-
able accuracy of some of these approximations, very par-
ticularly in their capability of assessing the potential of the
coalition to generate additional PageRank.

Future work should deal with the utilization of models of
restricted cooperation to integrate the structure of the directed
graph in the solution. Likewise, the application of these val-
ues to coalitional control schemes [11], [12], [24] will be also
studied.
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