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The  region around the  Strait of Gibraltar is considered to be one of the  most  relevant ‘hot spots’ of biodiversity in 
the  Mediterranean Basin due  to its  historical, biogeographical, and  ecological  features. Prominent among these is 
its  role  as  a land bridge for the  migration and  differentiation of species during the  Pleistocene, as  a consequence 
of the  lowering of sea  level  and  climate changes associated with the  Ice Ages.  In  the  present study, we  report a 
multilevel hierarchical investigation of the  genetic diversity of Calicotome villosa, a common pioneer legume shrub, 
at the   regional scale.   The  results of  genetic analysis  of  progeny arrays  are   consistent with a  predominantly 
outcrossing mating system in  all  the  populations analysed. Geographically, a  pattern of population  isolation by 
distance  was   found,  but   the   Strait  accounted for  only   approximately  2%  of  the   among-population  genetic 
differentiation. Consequently, extensive historical gene  flow appears to  be  the  rule  for  this species in  this area. 
According to the  natural history traits of C. villosa (pollination, dispersal, and  colonization ability), we hypothesize 
that gene  flow must be  strongly influenced by  seed  dispersal because pollen  flow is  very  limited. Based on  the 
history of trade and  land use,  cattle and  human movements across the  Strait must have strongly favoured seed 
dispersal. We review and  discuss these results and  compare them with those of other reported studies of genetic 
and  phylogenetic differentiation across the  Strait of Gibraltar. It is stressed that colonization ability, which  depends 
upon  seed  dispersal and  life form,  can  be a more  critical factor in gene  flow than pollination.  © 2008 The  Linnean 
Society  of London, Biological Journal of the  Linnean Society, 2008,  93,  39–51. 
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INTRODUCTION 
 

In  biogeography, some  areas are of particular interest 
because their  geographical settings and historical 
constraints  are  thought  to   strongly influence the 
geographical ranges  of  species. Among these areas, 
islands, refugia, and corridors are favourite targets 
because of the strong limitations on species move- 
ments, making it easier to  interpret  observed pat- 
terns (Hewitt, 2000;  Holloway, 2003). The  old  theory 
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of land bridges attempted to  explain global patterns 
of  biogeographical similarities  (for  a botanical per- 
spective, see  van Steenis, 1962)   until it was   super- 
seded by  interpretations based on  continental drift 
(Raven & Axelrod, 1974). Some  particular areas, such 
as  Beringia and Mesoamerica, are still considered as 
appropriate places to study the effects of land bridges 
as  corridors for  historical species movements. This is 
hypothesized to  be  the most plausible explanation  of 
the current range of several animal and plant species 
(Cavers,  Navarro  &   Lowe,   2003;    Brubaker  et al., 
2005;  García-Moreno et al.,  2006). One  of these areas 
is split by the Strait of Gibraltar, which separates the 
Eurasian  and African plates at  their  westernmost 
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extremities. This region has had a convulsive geologi- 
cal  history, involving recurrent closings and openings 
of the Strait until the late Tertiary, 5.5 Mya  (Duggen 
et al.,  2003). Although there was  no  physical connec- 
tion  during the Pleistocene, the Ice  Ages  provoked a 
lowering of the sea  level, resulting in the land masses 
being closer. It has been stressed that  this complex 
history, in  terms of its geological, climatic, and tem- 
poral heterogeneity, has determined most of the evo- 
lution of the plant lineages in  the Mediterranean 
(Thompson, 2005). This geological instability, together 
with Pleistocene climate changes, may have increased 
the role  of the Strait of Gibraltar as  an active land 
bridge in  the migration and differentiation of species 
(Quézel, 1978;  Caujapé-Castells & Jansen,  2003). 

A comprehensive biogeographical study of the 
regional flora  is  lacking, but studies focusing on  the 
standing components of biodiversity and the ecology 
of woody  communities across the Strait are available 
(Ojeda, Marañón & Arroyo, 2000;  Ajbilou, Marañón  & 
Arroyo, 2006). For  example, short-term ecological pro- 
cesses associated with strong human disturbance 
regimes (especially from   the last millennium to  the 
present day;  Mikesell, 1960;  Reille, 1977;  Moore  et al., 
1998)   explain the diversity of  the lesser shrub and 
tree species observed in  northern Morocco  relative to 
that in  southern  Spain (Ojeda, Marañón &  Arroyo, 
1996a; Ajbilou et al.,  2006). On  an evolutionary time 
scale, most phylogenetic and phylogeographical 
analyses undertaken of woody  species (Arroyo et al., 
2004;  Rodríguez-Sánchez et al.,  in  press) have shown 
some  genetic differentiation across the Strait of 
Gibraltar, irrespective of taxonomic group, plant  life 
form, or reproductive traits.  However, none of these 
studies  included widespread, pioneer species, whose 
large geographical ranges are due  to  their wide  eco- 
logical niches (Morin & Chuine, 2006). Such a study 
would be useful to compare the effects of colonization 
ability on gene flow and on patterns of genetic varia- 
tion  at the regional scale. 

Breeding systems and ecological requirements are 
reputedly associated with colonization and migration 
processes (Baker & Stebbins, 1965), and species with 
contrasted colonizing ability are particularly useful to 
test these associations. Calicotome villosa (Poir.) Link 
is  a common pioneer shrub, the geographical range 
of which extends across both sides of the Strait of 
Gibraltar.  This species usually grows in  large, dense, 
and continuous populations in anthropogenic environ- 
ments of intense land use  (agriculture, herding). 
Although many ecological data  are available for  this 
species (Ojeda, 1995;  Ajbilou, 2001), detailed informa- 
tion  about its demography and reproductive biology 
remains  very    scarce  and  the  breeding  system  of 
C. villosa in  particular  remains unexplored. Partial 
self-incompatibility   or    inbreeding depression has 

been suggested in  two  other pioneer shrub legumes, 
Cytisus and Retama (Parker, 1997;  Rodríguez-Riaño, 
Ortega-Olivencia & Devesa, 1999a), the closest rela- 
tives of Calicotome (Käss & Wink, 1997;  Cubas, Pardo 
& Tahiri, 2002). 

In   the present study, we  performed a multilevel 
hierarchical investigation of the genetic diversity, 
genetic identity, and mating system in  populations  of 
C. villosa at the regional scale of the Strait of Gibral- 
tar. The  aim   was   to compare the observed patterns 
with those previously reported for  other species with 
different ecological requirements,  contrasting biologi- 
cal  traits  (growth form, pollination and dispersal 
mechanisms) and historical and geographical ranges 
across the Strait of Gibraltar.  Accordingly, we  should 
be  able   to  test the extent to  which the Strait has 
represented a  barrier  to   gene  flow   and  promoted 
genetic differentiation. Our expectation was  that, in a 
species with poor  pollen dispersal, patterns of genetic 
differentiation should be related to seed dispersal and 
establishment,  both of  which are directly related to 
colonizing ability  (DeWoody, Nason  &  Smith,  2004). 
Specifically, given their  suitability  in  reflecting his- 
torical patterns  of genetic differentiation and breed- 
ing    systems  (Hamrick  &   Godt,   1989),  we   used 
allozyme variation to determine: (1) the genetic diver- 
sity,  genetic  structure,  and  genetic  identity  of  C. 
villosa at both the population and regional scales and 
(2)  the breeding system of the species in  selected 
populations using a mixed-mating model approach 
(Ritland, 2002)  in  relation to  its migration ability. 
Finally, we discuss the results obtained in the light of 
the evidences gathered for  other species in  this same 
region of high biogeographical significance. 
 
 
 

MATERIAL AND  METHODS 
STUDY   SPECIES 

Calicotome Link [Cytiseae (= Genisteae),  Legumino- 
sae]  comprises four  species of spiny brooms with 
Mediterranean distributions. The  monophyly of this 
genus  and  its  genetic  differentiation  from    other 
genera  have  been  demonstrated   by   Cubas  et al. 
(2002). Calicotome villosa is  a circun Mediterranean 
component of  the lowland shrub vegetation in  open 
woodlands  (Greuter,   Burdet   &    Long,    1984–89). 
Within the western Mediterranean area, the species 
is  much more frequent in  southern Spain and north- 
western Morocco,   where it sometimes forms almost 
monospecific shrublands.  In  this range, C. villosa is 
associated with disturbance processes, mostly caused 
by cattle browsing, and to  a lesser extent by fire  and 
slashing.  This  species  is   very   digestible  by   cattle 
(Anmar, López  & González, 2005)  and thus it occurs 
in  open  sites with low or  no  tree cover  and extensive 
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Figure 1.  Distribution areas of Calicotome villosa on both  sides  of the  Strait of Gibraltar (shaded areas) and  the  locations 
of the  26  populations studied. 

 

 
cattle management (cows  and goats). However, the 
species is quite resilient to serious damage because of 
strong spiny branches and profuse regeneration by 
seeds  (R. Braza  &   J.  Arroyo, unpubl.  data).  The 
species’ tolerance  is  promoted by  strong resprouting 
after  damage. Calicotome villosa has  a  pollination 
mechanism usually triggered by  bees   of  medium to 
large  size   (Arroyo,  1981;   Rodríguez-Riaño, Ortega- 
Olivencia & Devesa, 1999b). The  species is potentially 
dispersed by cattle when browsed during the fruiting 
season. Humans may also  facilitate dispersal because 
the species is  more frequent along roadsides and 
paths. Furthermore, the species survives the dry 
summer   period  because  of   its  summer-deciduous 
habit (DeLillis & Fontanella,  1992). 

 
 

STUDY   AREA 

The   region of  the Strait of  Gibraltar is  considered 
one  of the most important ‘hot  spots’  of biodiversity 
in    the   Mediterranean   Basin  (Médail  &   Quézel, 
1997).  On   the one   hand,  geological instability and 
climatic   changes   (Duggen  et al.,    2003;    Pirazzoli, 
2005)  have actively shaped the floristic and commu- 
nity  compositions, giving  rise  to   a  rich    endemic 
woody    flora    restricted  to   poor    sandstone-derived 
soils  (e.g.  Satureja salzmannii, Teline tribracteolata, 
Drosophyllum  lusitanicum,  Thymelaea  villosa, 
Genista  tridens;   Arroyo,  1997;    Médail  &   Quézel, 
1997;  Ojeda et al.,  2000)  and a group of late Tertiary 
and Pleistocene relict species (e.g.  Rhododendron 
ponticum,   Frangula   alnus;   Hampe   et al.,    2003; 

Mejías, Arroyo & Marañón, 2007)  typically restricted 
to  deep,  wet,   and  temperate  gorges. On   the  other 
hand, open  lowlands of fertile soils  harbour  most of 
the  typical,  widespread  Mediterranean  species 
(Ajbilou, 2001). 
 
 
FIELD  SAMPLING AND  ALLOZYME   ELECTROPHORESIS 

Twenty-six populations  of  C. villosa were sampled 
across the Strait of  Gibraltar, including nine in 
Morocco  and 17  in  Spain (Table 1, Fig.  1). The  densi- 
ties of the populations sampled in  the study area 
approximately reflect the natural abundance of popu- 
lations, with more samples taken in areas close  to the 
Strait, and less  in  distant areas. This distribution is 
in   part due   to  the fact   that  natural  vegetation is 
steadily replaced by  cultivated lands in  low-altitude 
areas where the studied species grows. 

The  vegetative tissues of C. villosa (leaves and coty- 
ledons) were discarded for  electrophoresis  because of 
their poor resolution and inconsistency in zymograms. 
Instead, seeds were collected and the embryos used 
for   electrophoresis.  In   1993   and  1994, seeds  were 
picked from  30  mother plants in  each population 
whenever possible and stored at 4 °C  in  dark until 
their  proteins were extracted. Electrophoreses were 
run using one  seed per  mother plant, with 30  seeds 
per  population (i.e. 30 mothers per  population). In  the 
small  Moroccan populations  M90   and M99,   two   to 
three  seeds were used from   each available mother 
plant (16  and 11,  respectively) to  complete 30  seeds 
per  population. 



 

© 2008  The  Linnean Society  of London, Biological Journal  of the  Linnean Society, 2008,  93,  39–51 

 

 

 
Table 1.  Allele  frequencies for polymorphic loci of Calicotome villosa at the  population and  regional levels  (M = Morocco, 
E = Spain), and  for  all  populations combined 

 
Populations 

 

Locus Allele M5 M6 M10 M87 M89 M90 M91 M99 M100 E68 E69 E70 E71 E72 

Adh-1 A 0.800 0.883 0.950 0.917 0.917 0.983 0.967 0.700 1.000 0.967 0.933 0.967 0.967 0.917 
 B 0.200 0.117 0.050 0.083 0.083 0.017 0.033 0.300 – 0.033 0.067 0.033 0.033 0.083 
6-Pgd-1 A 0.317 0.233 0.100 0.104 0.500 – 0.083 0.182 0.179 0.294 0.207 0.261 0.217 0.240 
 B 0.683 0.767 0.900 0.896 0.500 1.000 0.917 0.818 0.821 0.706 0.793 0.739 0.783 0.760 
6-Pgd-2 A 0.983 0.950 1.000 0.519 0.904 1.000 0.500 0.955 1.000 0.966 1.000 0.981 0.917 0.920 
 B 0.017 0.050 – 0.481 0.096 – 0.500 0.046 – 0.034 – 0.019 0.083 0.080 
Pgm-1 A 0.345 0.357 0.313 0.283 0.407 0.350 0.500 0.433 0.333 0.450 0.417 0.052 0.450 0.367 
 B 0.655 0.643 0.688 0.717 0.593 0.650 0.500 0.567 0.667 0.550 0.583 0.948 0.550 0.633 
Pgm-2 A 0.143 0.183 0.080 0.167 0.172 0.200 0.067 0.286 0.183 0.450 0.300 0.362 0.067 0.167 
 B 0.786 0.683 0.920 0.783 0.793 0.783 0.850 0.714 0.783 0.533 0.700 0.569 0.467 0.717 
 C 0.071 0.133 – 0.050 0.035 0.017 0.083 – 0.033 0.016 – 0.069 0.467 0.117 

 
The   seeds were scarified and  soaked in  distilled 

water overnight. The   seed coat   and the endosperm 
layer were then  removed and  discarded, and  the 
embryos homogenized in four drops of DL-dithiothreitol 
(0.065 M) and Na2HPO4 (0.05  M) buffer at pH  7. Crude 
extracts were adsorbed onto  Whatman 3MM  paper 
wicks and stored at -80 °C until electrophoresis. Elec- 
trophoresis was  performed following the general pro- 
tocols  of Wendel & Weeden (1989)  on 12% starch and 
2.5% sucrose gels. Sixteen enzyme systems were tested 
for  activity and consistent banding patterns in  three 
different  electrode  buffers  following the  staining 
recipes of Soltis et al. (1983). Only  three gave  sufficient 
consistent resolution in a histidine/citrate electrode 
buffer   (pH  = 6.5/6.5)  (Cardy   et al.,    1983):    alcohol 
dehydrogenase (ADH;  EC 1.1.1.1), phosphogluconate 
dehydrogenase  (6-PGD; EC 1.1.1.43), and phosphoglu- 
comutase (PGM;  EC 5.4.2.2). Zymograms were inter- 
preted in terms of loci and alleles, which were labelled 
starting from  the most anodally migrating band. 

 
MATING-SYSTEM ESTIMATES 

Sampling included the simultaneous collection of seed 
families for mating-system estimations. In  particular, 
populations E68,   M89,  E81,   and E84   (for  locations, 
see  Fig.  1) were selected for this purpose because they 
provided both adequate  numbers of  seeds and high 
or  low  Ho   values. Ten  pooled   seeds from   each of 15 
mothers randomly selected in each population were 
screened   for    allozyme   variation   (i.e.    10 seeds ¥ 
15 families ¥ 4 populations). All  five  polymorphic  loci 
that  were resolved (see  Results) were used for  this 
purpose. 

 
DATA  ANALYSIS 

Genetic diversity statistics were hierarchically calcu- 
lated at both the population and regional (Morocco and 

Spain) levels using the Genetic Data Analysis program 
(GDA;  Lewis &  Zaykin, 2001), including the  mean 
number of alleles per  locus  (A), percentage of polymor- 
phic loci (P, at the 99% cut-off), mean number of alleles 
per  polymorphic locus  (Ap),  and observed (Ho)  and 
expected (He)  heterozygosity under Hardy–Weinberg 
equilibrium. Weir  & Cockerham’s (1984)  inbreeding 
coefficient (f) was  computed for each population and its 
statistical significance was  examined with a c2 test (Li 
& Horviz, 1953):  c2 = f 2N(k – 1), with d.f. = k(k – 1)/2, 
where N  is  the number of individual plants sampled 
and k is the number of alleles in  the population. 

Population  differentiation  (q)  was   also   computed 
using  GDA.   The   statistics  f  and  q  are  similar  to 
Wright’s (1951)  F-statistics and are unbiased with 
respect to  small and uneven sample numbers and 
population sizes (Culley & Grubb, 2003). The  inbreed- 
ing  coefficient is  a measure of the correlation of the 
genes of individuals within populations and is conse- 
quently analogous to  Fis,  whereas q is  a measure  of 
the amount of differentiation among populations rela- 
tive  to  the total diversity and is  therefore analogous 
to Fst. q was  calculated across loci at the regional level 
in   Morocco   and  Spain  (qpM     and  qpS,   respectively), 
among populations within regions (qp),  and between 
regions  (qr).  To  evaluate  the  relative  influences  of 
genetic drift and historical gene flow on  the distribu- 
tion   of genetic variation, assuming a stepping-stone 
model of population structure (Hutchinson & Temple- 
ton,  1999), q was  also  calculated for each possible pair 
of populations using GDA.  Their correlation with geo- 
graphical distances was   evaluated with the Mantel 
test in  GENETIX, version 4.02  (Belkhir et al.,  2001). 
Slightly  negative   values  of   q   were  set    to   zero 
(Williams & Guries, 1994). A population pairwise 
geographical distance matrix was  generated using 
ArcGis procedures (Environmental Research Insti- 
tute, Redlands, CA,  USA). 
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Populations  
All 

E73 E74 E75 E76 E77 E78 E79 E81 E82 E83 E84 E85 Morocco Spain populations 

1.000 0.917 0.817 0.950 0.967 0.950 0.967 0.967 0.967 0.983 1.000 1.000 0.902 0.955 0.937 
– 0.083 0.183 0.050 0.033 0.050 0.033 0.033 0.033 0.017 – – 0.098 0.045 0.064 
0.259 0.317 0.433 0.339 0.214 0.103 0.150 0.217 0.375 0.183 0.133 0.367 0.191 0.254 0.233 
0.741 0.683 0.567 0.661 0.786 0.897 0.850 0.783 0.625 0.817 0.867 0.633 0.809 0.746 0.767 
0.948 0.933 0.850 0.946 0.982 0.862 0.917 1.000 1.000 0.967 0.967 0.967 0.870 0.947 0.922 
0.052 0.067 0.150 0.054 0.018 0.138 0.083 – – 0.033 0.033 0.033 0.130 0.053 0.078 
0.450 0.350 0.109 0.160 0.400 0.417 0.217 0.067 0.259 0.217 0.207 0.383 0.370 0.297 0.322 
0.550 0.650 0.891 0.840 0.600 0.583 0.783 0.933 0.741 0.783 0.793 0.617 0.630 0.703 0.678 
0.150 0.417 0.200 0.111 0.233 0.167 0.233 0.067 0.077 0.150 0.133 0.017 0.165 0.195 0.185 
0.750 0.567 0.733 0.870 0.433 0.567 0.550 0.433 0.846 0.783 0.817 0.333 0.786 0.625 0.680 
0.100 0.017 0.067 0.019 0.333 0.267 0.217 0.500 0.077 0.067 0.050 0.650 0.048 0.180 0.135 

 
 

Nei’s (1972)  genetic identity and distance were also 
calculated with GDA,  and the linkage disequilibrium 
of individual loci  and the effective number of alleles 
per    locus    (Ne)   were  estimated   using  POPGENE, 
version 1.32  (Yeh & Boyle,  1997). A Neighbour-joining 
(NJ) tree of populations based on Nei’s  (1972)  genetic 
distances   was     constructed   and   branch   support 
assessed by  bootstrapping (1000  replicates) with 
PHYLIP, version 3.5  (Felsenstein,  1993). 

For   progeny, maximum likelihood multilocus and 
single-locus outcrossing rates (tm, ts), correlated pater- 
nity (rp), and biparental inbreeding (tm – ts) were com- 
puted following Ritland’s (1989)  mixed-mating model 
and   sibling-pair   model  with   MLTR,  version   3.0 
(Ritland, 2002). Standard  errors  were calculated by 
bootstrapping over  families (1000  replicates). Because 
most seeds could  be  assigned to  a specific genotype, 
we  applied the Newton–Raphson algorithm, which 
provides estimates of tm  from  the theoretical bounds 
when dealing with  multiple heterozygote fathered 
progeny arrays  (Ritland, 2002). 

For  each population, the maternal multilocus geno- 
types inferred by  MLTR   were used to  compute the 
‘observed’   maternal  inbreeding coefficient (fob)  using 
GDA.  ‘Expected’ maternal inbreeding (fex)  was  calcu- 
lated  with  the  equation  tm = (1 - fex)/(1 + fex)   (Jain, 
1979), given the tm  population outcrossing rate. 

 
 

RESULTS 
GENETIC  DIVERSITY AND  POPULATION 

GENETIC  STRUCTURE 

ADH,  6-PGD, and PGM, encoded by six  loci (two  loci 
each), showed consistent and interpretable  bands on 
all   zymograms. Adh-2  was   monomorphic across all 
populations and the rest of the loci were polymorphic 
in   at  least 20   populations.  At   the  regional  scale, 

6-Pgd-1, 6-Pgd-2, and Adh-1 were fixed in at least one 
Moroccan population  whereas  6-Pgd-2 and  Adh-1 
were fixed  in  at least one  Spanish population. Allele 
frequencies were not   significantly different between 
Morocco  and Spain, and no  alleles were exclusive at 
either the regional or  population level   (Table 1).  No 
linkage  disequilibrium  was    detected   between   loci 
within any of the populations. 

Measures of genetic variation did  not  differ sig- 
nificantly at  the  population or   regional  level. The 
percentage  of  polymorphic  loci   was    in   the  range 
50–83.3% but the number of alleles per  locus  was  very 
low  (range 1.66–2.00), and the number of alleles per 
polymorphic locus  was  also  low  (ranging 2.20–2.33). 
Most   loci   consisted  of  one   frequent  allele,  so   the 
effective number  of  alleles was   in  the range 1.208– 
1.561 (Table 2). 

At the population level, most populations (81%) 
exhibited an excess of heterozygotes. This excess sig- 
nificantly differed from  Hardy–Weinberg expectations 
in  two  populations in  Morocco  (M89  and M91)  and in 
two   in  Spain (E68   and E71)   (Table 2).  Across  loci, 
Pgm-1 showed a significant excess of heterozygotes, 
whereas Pgm-2 showed a significant deficiency. The 
same trend for  these two  loci  was   observed in  both 
the  Spanish  and  Moroccan subsets  of  populations. 
6-Pgd-2 showed a significant excess of heterozygotes 
in  Morocco  (Table 3).  Finally, the overall inbreeding 
coefficient (f) was  not  significantly different from  zero 
at  either the regional or  species  level, showing  no 
departure from  Hardy–Weinberg proportions. 

Between-population genetic identities were high, 
ranging between 0.999 (M6/E72) and 0.866 (M91/E85) 
(overall mean ± SD = 0.965 ± 0.025). At  the regional 
scale, populations in Morocco  and in Spain showed 
exactly the  same mean values. Accordingly, the NJ 
tree based on  Nei’s  (1972)   genetic distances showed 



 

 

M5 29.5 2.000 83.3 2.200 1.441 0.306 0.270 -0.134 
M6 29.7 2.000 83.3 2.200 1.450 0.274 0.271 -0.010 
M10 28.2 1.667 66.7 2.000 1.208 0.167 0.145 -0.157 
M87 28.3 2.000 83.3 2.200 1.441 0.321 0.272 -0.185 
M89 28.0 2.000 83.3 2.200 1.473 0.397 0.280 -0.428* 
M90 27.7 1.667 50.0 2.333 1.233 0.117 0.141 0.177 
M91 29.3 2.000 83.3 2.200 1.435 0.348 0.252 -0.394* 
M99 27.0 1.833 83.3 2.000 1.483 0.332 0.289 -0.152 
M100 29.3 1.667 50.0 2.333 1.293 0.193 0.185 -0.045 
E68 29.7 2.000 83.3 2.200 1.480 0.365 0.263 -0.395* 
E69 29.8 1.667 66.7 2.000 1.384 0.308 0.230 -0.344 
E70 27.8 2.000 83.3 2.200 1.337 0.196 0.191 -0.027 
E71 30.0 2.000 83.3 2.200 1.503 0.400 0.273 -0.476** 
E72 28.3 2.000 83.3 2.200 1.433 0.273 0.267 -0.024 
E73 29.7 1.833 66.7 2.250 1.399 0.281 0.234 -0.205 
E74 30.0 2.000 83.3 2.200 1.490 0.289 0.283 -0.021 
E75 28.8 2.000 83.3 2.200 1.449 0.303 0.281 -0.079 
E76 28.0 2.000 83.3 2.200 1.283 0.194 0.194 0.002 
E77 29.3 2.000 83.3 2.200 1.561 0.327 0.265 -0.241 
E78 29.7 2.000 83.3 2.200 1.495 0.314 0.269 -0.172 
E79 30.0 2.000 83.3 2.200 1.430 0.244 0.239 -0.025 
E81 27.7 1.833 66.7 2.250 1.331 0.161 0.185 0.128 
E82 28.2 1.833 66.7 2.250 1.325 0.249 0.202 -0.239 
E83 30.0 2.000 83.3 2.200 1.268 0.178 0.186 0.043 
E84 29.8 1.833 66.7 2.250 1.219 0.119 0.159 0.256 
E85 30.0 1.833 66.7 2.250 1.451 0.300 0.249 -0.210 
Morocco 28.6 ± 0.94 1.871  ± 0.16 74.1 ± 15 2.185  ± 0.12 1.384  ± 0.11 0.273  ± 0.09 0.234  ± 0.06 -0.170 ± 
Spain 29.2 ± 0.88 1.931  ± 0.10 77.5 ± 8 2.203  ± 0.06 1.402  ± 0.10 0.265  ± 0.08 0.234  ± 0.04 -0.140 ± 
All populations 29.0 ± 0.94 1.910  ± 0.13 76.3 ± 11 2.197  ± 0.08 1.396  ± 0.10 0.268  ± 0.08 0.234  ± 0.05 -0.150 ± 
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Table 2.  Genetic diversity statistics for  populations, regions and  all  populations combined of Calicotome villosa 
 

Populations N  A  P  Ap  Ne  Ho  He  f 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.19 
0.19 
0.19 

 
F-values significantly different from  zero  at *P < 0.05,  **P < 0.001. 
Measures of genetic variation include sample size  averaged over  loci (N),  mean number of alleles per  locus  (A), percentage of polymorphic loci (P, 99% cut-off), 
mean number of alleles per  polymorphic locus  (Ap), effective number of alleles per  locus  (Ne),  observed heterozygosity (Ho), expected heterozygosity (He),  and  the 
fixation index  (f) of Weir  & Cockerham (1984). 
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Table 3.  F-statistics  for  both   regions (Morocco  and   Spain) and   for  all  populations  combined of  Calicotome  villosa, 
including the   fixation index   of  Weir   &  Cockerham (1984)  (f),  the   proportion of  genetic diversity partitioned  among 
populations within regions (qpM   and   qpS   for  Morocco  and   Spain, respectively), and   the   proportion of genetic diversity 
partitioned among populations (qp) and  regions (qr)  in  the  species (all  populations) 

 

 Morocco   Spain   All populations  

Locus f qpM  f qpS  f qp qr 

Adh-1 -0.2074 0.0923  -0.0758 0.0291  -0.1425 0.0768 0.0172 
6-Pgd-1 -0.3946 0.1269  -0.3493 0.0340  -0.3617 0.0649 0.0047 
6-Pgd-2 -0.6494 0.3521  -0.0790 0.0240  -0.3293 0.2148 0.0236 
Pgm-1 -0.4126 0.0091  -0.4822 0.0844  -0.4554 0.0636 0.0063 
Pgm-2 0.5628 0.0027  0.2762 0.1301  0.3559 0.1313 0.0350 
Mean -0.1667 0.0934  -0.1400 0.0811  -0.1487 0.1007 0.0175 
95% CIlower -0.4819 0.0147  -0.4173 0.0302  -0.4129 0.0650 0.0064 
95% CIupper 0.3029 0.2279  0.2193 0.1170  0.2323 0.1502 0.0317 

Upper and  lower  confidence intervals (CI) for mean values were  estimated by bootstrapping (2000  replicates) across loci. 
 
 

no  pattern of  geographical clustering of  populations 
across the Strait of Gibraltar and very  low  bootstrap 
support for  most branches (Fig.  2). 

Within  each  region,  the   genetic  differentiation 
among populations  was   not   great. Overall, the 
population   genetic   differentiation   was     moderate 
(qp  = 0.101).  Therefore,  approximately   90%   of   the 
genetic variation occurred within populations. At  the 
regional  scale,  the  Strait   of   Gibraltar  can    only 
account  for   1.8%   of  the  total  genetic  variation  of 
C. villosa (qr = 0.018) (Table 3).  The  genetic differen- 
tiation in all the studied populations was  significantly 
correlated   with   geographical  distance   (r = 0.444, 
P = 0.004),   although    the    correlation    coefficient 
decreased, but was  still significant, when the geo- 
graphically   most   distant   population   (E85)     was 
excluded from   the analysis (r = 0.241, P = 0.027). At 
the  regional  scale,  the  Moroccan populations  did 
not   show   a significant correlation between pairwise 
q-values   and    geographical   distance    (r = -0.230, 
P = 0.862), whereas all  Spanish populations showed a 
significant correlation (r = 0.535, P = 0.010), robust to 
the inclusion of the distant E85  population (r = 0.224, 
P = 0.048). Under the assumption of a stepping-stone 
population model, in which gene flow is most likely to 
occur  between neighbouring populations, the scatter 
plot   of  q  versus geographical distance is  consistent 
with a lack   of  equilibrium  between  gene flow  and 
genetic drift in  C. villosa, with  historical  gene flow 
being  much  more  influential  than   genetic  drift 
(Fig.  3). 

Multilocus outcrossing rates (tm) were high for 
populations E68,  E81,  and M89  and moderate for 
population E84  (Table 4),  indicating a general trend 
towards  outcrossing  in   the  studied  populations  of 
C. villosa. The  levels of biparental inbreeding (tm – ts) 

were  consistently  low  and correlated paternity  (rp) 
was    markedly  different  among  populations,  with 
8–71%  of seeds within a family being full  sibs. 

The   observed maternal  inbreeding  coefficient (fob) 
was    in   the  range  -0.276   to   0.176, whereas the 
expected maternal  inbreeding coefficient (fex)  was   in 
the range 0.00–0.234. When we  compared fob  with fex, 
a deficit of homozygotes became evident  in  the four 
populations studied,  which was   remarkably high in 
populations E81  and M89  (Fig.  4). 
 
 

DISCUSSION 
 
In the present study, we have shown that the Strait of 
Gibraltar has not  acted as  a biogeographical barrier 
for  C. villosa on  the historical time scale, as  demon- 
strated by  the lack   of  genetic structure across the 
studied populations on both sides of the Strait. Some 
ecological and   biological traits   of   C. villosa  may 
explain the observed results. 
 
 
POPULATION  GENETIC  STRUCTURE, MATING SYSTEM, 

AND  DISPERSAL 

Most  scored loci  were polymorphic, with the number 
of alleles per  polymorphic locus  (Ap)  and the effective 
number of  alleles (Ne)   per   locus   at  the population 
level   being similar  to  the average values for  many 
other plant  species with different life-history traits 
(Hamrick & Godt, 1989). The  values for gene diversity 
(He)  were high, consistent  with averaged values for 
long-lived perennial  plants  with  effective seed- 
dispersal mechanisms and outcrossing breeding 
systems (Hamrick & Godt, 1996). This is relevant 
because reproductive biology, together with other life- 
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Figure 2.  Unrooted Neighbour-joining tree  for  the   26  populations of  Calicotome villosa studied  across the   Strait of 
Gibraltar based on Nei’s (1972)  genetic distances. Branch support was  calculated by bootstrap analysis (1000  replicates). 
Only  values above  50% are  shown. 

 
 

history traits of species, is a keystone in  interpreting 
population genetic variation (Hamrick & Godt, 1989). 

Self-incompatibility  is   relatively  common  in   the 
Leguminosae, especially among woody species (Arroyo, 
1981). Within the tribe Cytiseae, low  fruit set  after 
self-pollination has been interpreted in some  species of 
Cytisus and  Retama  as   partial  self-incompatibility 
or late-acting inbreeding depression (Parker, 1997; 
Rodríguez-Riaño et al.,  1999a). Detailed studies of the 
reproductive biology  of C. villosa are lacking but the 
genetic data  collected in  the present study on  seed 
progenies at the population level  reveal high rates of 
outcrossing (tm), supporting  a major role   for  partial 
self-incompatibility in  the breeding system of this 
species.  In   the  present  study,  it  was    found that 
observed and expected heterozygosities did not  exhibit 

large discrepancies and, consequently, no  significant 
departure from  Hardy–Weinberg expectations was 
detected at the species level. Despite the overall nega- 
tive  value of the inbreeding coefficient (f) at the popu- 
lation level, only  four  populations (15.4%)  showed a 
significant departure  from   random mating, with an 
excess of heterozygotes. 

In  C. villosa, we  found high values of He    and  low 
values of q,  typical of a species with potential long- 
distance dispersal events in  seed flow  and/or pollen 
flow (Hamrick & Godt, 1989, 1996). These events are 
dependent on  the pollination and breeding systems, 
seed dispersal, habitat requirements, and the physi- 
cal    setting  (barriers,  habitat   availability). First, 
honey bees   have often been observed visiting many 
flowers  in   the  mass  flowering plants  of  C. villosa 
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Figure 3.  Mantel test, correlation coefficient and  associated P-value, and  scatterplot showing the  relationship between 
pairwise genetic differentiation among populations of Calicotome villosa (qp) in the  region of the  Strait of Gibraltar, and 
the  geographical distances among them. 

 
Table 4.  Multilocus outcrossing  rates  (tm)  and   levels   of  biparental  inbreeding  (tm – ts)  in   the   four   populations  of 
Calicotome villosa selected for  progeny analysis (for  details, see  Material and  methods) 

 

Population tm tm - ts rp fob   (95% CI) 
 

E68 
 

1.200   (0.028) 
 

0.052   (0.043) 
 

0.153   (0.274) 
 

-0.098  (-0.556–0.292) 
E81 0.824   (0.129) 0.097   (0.054) 0.707   (0.333) -0.236  (-0.471–0.104) 
E84 0.620   (0.142) -0.017  (0.034) 0.389   (0.362) 0.176   (-0.135–0.427) 
M89 0.875   (0.116) 0.050   (0.061) 0.086   (0.244) -0.267  (-0.450–0.180) 

Standard errors based on  bootstrap analysis (1000  replicates) are  shown in  parenthesis. 
CI,  confidence interval. 
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plants (J. Arroyo, pers. observ.), as  has also  been 
observed in  related plant species in  the region with 
similar flower   morphologies (Herrera,  1988). Thus, 
among-population gene flow  by  pollen movement 
should be  low.  Second, explosive pods,  which have a 
limited  dispersal  distance,  would also   produce this 
pattern of mating. Many species have dispersal 
mechanisms that  are  not   directly related  to   their 
inferred functional morphology (i.e.  dispersal  syn- 
dromes; Herrera,  2002). For  example, capsules from 
some   species of shrubby Cistus can  be  ingested and 
dispersed by deer that browse in similar communities 

Figure 4.  Observed  (fob,  filled   diamonds)  and   expected 
(fex, open  diamonds) maternal inbreeding coefficients in the 
four  populations of Calicotome villosa selected for progeny 
analysis (for  details, see  Material and  methods). 

 
before  moving  to   nearby  plants,  causing  predomi- 
nantly geitonogamy and cross pollination with rela- 
tives, whereas the much less  frequent bee  species  of 
the genus Anthophora tend to  move  to  more distant 

(Malo   &   Suárez,  1998).  The   germinability  of  the 
woody  legume Cytisus scoparius also  increases after 
cattle gut  passage (Manzano, Malo  & Peco,  2005). The 
strong association of C. villosa with extensive herding 
and  its  palatability  to   cattle  (Anmar  et al.,   2005) 
could  account for such seed dispersal over  longer 
distances,  as   has  been  observed  in   other   woody 
legumes  (Prosopis flexuosa, Campos &  Ojeda, 1997; 
Acacia spp., Argaw, Teketay &  Olsson, 1999). More- 
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over,  it has been demonstrated that Macaronesian 
broom species, also  apparently limited in  their poten- 
tial seed dispersal, have repeatedly colonized oceanic 
islands (Percy & Cronk, 2002). Third, the association 
of this broom species with disturbed, often cultivated 
land and roadsides, may cause seed mixing with 
agricultural crops, and thus subject it to  movement 
along trade routes. This may account for  the lack  of 
genetic differentiation across short distances and 
explain why   most genetic diversity  in   C. villosa is 
within rather than among populations, even when the 
historical existence of the Strait of Gibraltar is taken 
into  account. Only  at the longest distances within the 
range does  there appear to exist considerable genetic 
differentiation (as  indicated by the Mantel test), prob- 
ably   because the process of  range expansion is  dif- 
fusive, which is  consistent with a short-distance 
stepping-stone  model. 

 
 

ROLE   OF  HISTORICAL  FACTORS 

The  area around the Strait of Gibraltar is  one  of the 
centres of diversity of the tribe Cytiseae (Gómez- 
González  et al.,   2004). Many  of  the  species of  this 
tribe are endemic to the area, and many others, such 
as  C. villosa, present their largest populations there 
because  broom scrubland  is   one   of  the  prominent 
woody  communities in  the region (Ojeda, Arroyo & 
Marañón, 1995). Although there has been no compre- 
hensive phylogenetic or phylogeographical study of 
Calicotome, a  wider  study  that   included related 
genera  (Cubas et al.,   2002)   showed the  monophyly 
and clear genetic differentiation of  Calicotome with 
both nuclear and plastid markers, although the two 
samples  of   C. villosa   differed   in    their   nuclear 
sequences. It  is  interesting to  note that,  although 
many species of Cytiseae are narrowly endemic in the 
area, only  a few are confined to one  side  of the Strait 
(e.g.  Teline tribracteloata on  the Iberian side, Teline 
osmariensis, on  the Moroccan side). This may be  due 
to  the ancient origin of these taxa before the separa- 
tion  of the African and Iberian plates and an improb- 
able   lack   of  differentiation during  the  subsequent 
5.5 Mya,  or to their dispersal across the Strait once  it 
had  formed. A  recent study of  closely related  Ulex 
species on  both sides of the Strait of Gibraltar, using 
polymerase chain reaction-based plastid microsatel- 
lite  markers (Cubas, Pardo & Tahiri, 2005), which 
indicate  gene flow  by  seed, showed that  the differ- 
ences among species are  very   low  compared to  the 
differences among populations (on the long-distance 
dispersal of  other  broom species, see   also   Percy  & 
Cronk, 2002). Ulex  spp.  probably have seed dispersal 
patterns similar to  those of  Calicotome, which sug- 
gests that the Strait is  not  a biogeographical barrier 
to   these  legume  species. The   14-km width  of  the 

Strait appears to  be  crossed by  genes and, although 
the pattern could  be  consistent with pollen flow,  this 
flow is most probably by seeds. A simultaneous study 
with appropriate molecular, nuclear, and organellar 
markers is  required to  resolve this  question. Given 
the short distances over  which pollen is dispersed by 
bee  pollinators and over  which seeds are dispersed by 
autochory, and in  secondary dispersal by  cattle, it is 
probable that  the  genetic exchange between the 
African and Iberian sides is  recent and was  aided by 
humans  (with the  movement of  cattle  and  crops). 
There are very  few  studies of the patterns of genetic 
differentiation of wild  species mediated by human 
influence in  the studied region, except when they are 
deliberately cultivated (Tuomi & Lumaret,  1998). In 
this  context, seed dispersal is  a necessary, but not 
sufficient, condition to preclude genetic differentiation 
because seeds must germinate and seedlings become 
established. In  this species, the seed germination rate 
is very  high and seed viability long  lasting, and seed- 
ling  growth is  very  fast under greenhouse conditions 
(Braza, 2005). Although its behaviour under field  con- 
ditions is not  well  known, we hypothesize that the 
colonization ability of the species is very  high, as  has 
been observed in other gorse and broom species in the 
area (Ojeda, Marañón & Arroyo, 1996b). 

This pattern of differentiation across the Strait  of 
Gibraltar  contrasts  with  that   observed in    other 
species. Although the available information for plants 
straddling the Strait of Gibraltar is still scarce, there 
are  interesting  contrasting  patterns.  Traditionally, 
the Iberian Peninsula has been considered as  one  of 
the three main Mediterranean refugia (together with 
the Italian and Balkan Peninsulas) for  plants and 
animals in  harsh climatic periods since the late Ter- 
tiary  (Hewitt, 2000). This refugium should probably 
be  extended to  include northern Morocco  because its 
ecological and  historical  conditions  are  similar  to 
those in southern Spain (Reille, 1977). The  Strait has 
probably been a filter for  some   species through its 
expansion/retraction cycles  during the Quaternary, 
insofar as   the  nearby African side   has a tree and 
shrub  flora   poorer than  that  on   the  Spanish  side 
(Marañón  et al.,    1999;    Ajbilou  et al.,    2006).  This 
filtering  process  must  involve the  biological traits 
and performance of species. Thus, some   emblematic 
long-lived species of Mediterranean forests (Quercus 
rotundifolia/ilex, Quercus suber, Pinus pinaster) and 
some  relict species (Frangula alnus) show  a clear 
genetic discontinuity across the Strait, mostly attrib- 
utable to  limited seed dispersal  (Tuomi &  Lumaret, 
1998;    Burban  et al.,    1999;    Salvador  et al.,    2000; 
Lumaret et al.,   2002,  2005;   Burban &  Petit,  2003; 
Hampe  et al.,   2003). Although these  species have 
fruits that are potentially dispersed by  animals 
(Gómez,  2003;   Hampe,  2004)   or   wind  over   longer 
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distances than are the seeds of C. villosa, they could 
not   cross  this  effective barrier.   Unlike  our   study 
species, those species are not  associated with distur- 
bances and their dispersal is  not  affected by  human 
activities, except when they are deliberately planted. 
All   of  them  are  long-lived trees,  late-successional 
species with reduced colonizing ability compared to 
that of shorted-lived, early successional species. 
However, herbaceous  species show   a variety of  pat- 
terns, with no differentiation in  the bulb geophyte 
Androcymbium  gramineum    (Caujapé-Castells    & 
Jansen,  2003), and strong differentiation in  the 
perennial herb Saxifraga globulifera (Vargas, Morton 
&  Jury,  1999). Even within the  same genus, Bellis 
annua (Compositae) shows genetic differentiation 
among European and African populations, whereas 
Bellis microcephala does  not,   although  both species 
are annuals (Fiz,  Valcárcel & Vargas, 2002). Because 
of the low number of species studied, we are far  from 
determining the general properties of species filtered 
by  the Strait. Nonetheless, it appears that the high 
seed dispersal and establishment potential of pioneer 
shrub  species  are  key    factors suppressing their 
genetic differentiation. 
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